Skip to main content
Erschienen in: European Journal of Epidemiology 12/2010

01.12.2010 | Methods

Models of population-based analyses for data collected from large extended families

verfasst von: Wenyu Wang, Elisa T. Lee, Barbara V. Howard, Richard R. Fabsitz, Richard B. Devereux, Jean W. MacCluer, Sandra Laston, Anthony G. Comuzzie, Nawar M. Shara, Thomas K. Welty

Erschienen in: European Journal of Epidemiology | Ausgabe 12/2010

Einloggen, um Zugang zu erhalten

Abstract

Large studies of extended families usually collect valuable phenotypic data that may have scientific value for purposes other than testing genetic hypotheses if the families were not selected in a biased manner. These purposes include assessing population-based associations of diseases with risk factors/covariates and estimating population characteristics such as disease prevalence and incidence. Relatedness among participants however, violates the traditional assumption of independent observations in these classic analyses. The commonly used adjustment method for relatedness in population-based analyses is to use marginal models, in which clusters (families) are assumed to be independent (unrelated) with a simple and identical covariance (family) structure such as those called independent, exchangeable and unstructured covariance structures. However, using these simple covariance structures may not be optimally appropriate for outcomes collected from large extended families, and may under- or over-estimate the variances of estimators and thus lead to uncertainty in inferences. Moreover, the assumption that families are unrelated with an identical family structure in a marginal model may not be satisfied for family studies with large extended families. The aim of this paper is to propose models incorporating marginal models approaches with a covariance structure for assessing population-based associations of diseases with their risk factors/covariates and estimating population characteristics for epidemiological studies while adjusting for the complicated relatedness among outcomes (continuous/categorical, normally/non-normally distributed) collected from large extended families. We also discuss theoretical issues of the proposed models and show that the proposed models and covariance structure are appropriate for and capable of achieving the aim.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Liang KY, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika. 1986;73:13–22.CrossRef Liang KY, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika. 1986;73:13–22.CrossRef
2.
Zurück zum Zitat Diggle PJ, Heagerty P, Liang KY, Zeger SL. Analysis of longitudinal data. New York: Oxford University Press Inc.; 2002. Diggle PJ, Heagerty P, Liang KY, Zeger SL. Analysis of longitudinal data. New York: Oxford University Press Inc.; 2002.
3.
Zurück zum Zitat Heagerty PJ, Zeger SL. Marginalized multilevel models and likelihood inference. Stat Sci. 2000;15:1–26. Heagerty PJ, Zeger SL. Marginalized multilevel models and likelihood inference. Stat Sci. 2000;15:1–26.
4.
Zurück zum Zitat McCulloch CE, Searle SR. Generalized, linear, and mixed models. New York: Wiley; 2001. McCulloch CE, Searle SR. Generalized, linear, and mixed models. New York: Wiley; 2001.
5.
Zurück zum Zitat North KE, Howard BV, Welty TK, Best LG, Lee ET, Yeh JL, Fabsitz RR, Roman MJ, MacCluer JW. Genetic and environmental contributions to cardiovascular disease risk in american indians: the strong heart family study. Am J Epidemiol. 2003;157:303–14.CrossRefPubMed North KE, Howard BV, Welty TK, Best LG, Lee ET, Yeh JL, Fabsitz RR, Roman MJ, MacCluer JW. Genetic and environmental contributions to cardiovascular disease risk in american indians: the strong heart family study. Am J Epidemiol. 2003;157:303–14.CrossRefPubMed
6.
Zurück zum Zitat Lee ET, Welty TK, Fabsitz R, Cowan LD, Le N-A, Oopik AJ, Cucchiara AJ, Savage PJ, Howard BV. The strong heart study—a study of cardiovascular disease in American Indians: design and methods. Am J Epidemiol. 1990;132:1141–55.PubMed Lee ET, Welty TK, Fabsitz R, Cowan LD, Le N-A, Oopik AJ, Cucchiara AJ, Savage PJ, Howard BV. The strong heart study—a study of cardiovascular disease in American Indians: design and methods. Am J Epidemiol. 1990;132:1141–55.PubMed
7.
Zurück zum Zitat Khoury MJ, Beaty TH, Cohen BH. Fundamentals of genetic epidemiology. New York: Oxford University Press; 1993. Khoury MJ, Beaty TH, Cohen BH. Fundamentals of genetic epidemiology. New York: Oxford University Press; 1993.
8.
Zurück zum Zitat Jacquard A. The genetic structure of population. Springer, New York, 1974. Jacquard A. The genetic structure of population. Springer, New York, 1974.
9.
Zurück zum Zitat Boichard D. PEDIG: a fortran package for pedigree analysis suited for large populations. In Proceedings of the 7th world congress on genetics applied to livestock production, Montpellier, 2002-08-19/23 2002;32:525–528. Boichard D. PEDIG: a fortran package for pedigree analysis suited for large populations. In Proceedings of the 7th world congress on genetics applied to livestock production, Montpellier, 2002-08-19/23 2002;32:525–528.
10.
Zurück zum Zitat Breslow NE, Clayton DG. Approximate inference in generalized linear mixed models. J Am Stat Assoc. 1993;88:9–25.CrossRef Breslow NE, Clayton DG. Approximate inference in generalized linear mixed models. J Am Stat Assoc. 1993;88:9–25.CrossRef
11.
Zurück zum Zitat Wolfinger R, O’Connell M. Generalized linear mixed models: a pseudo-likelihood approach. J Stat Comput Simul. 1993;48:233–43.CrossRef Wolfinger R, O’Connell M. Generalized linear mixed models: a pseudo-likelihood approach. J Stat Comput Simul. 1993;48:233–43.CrossRef
12.
Zurück zum Zitat Lange K, Westlake J, Spence MA. Extensions to pedigree analysis. III. Variance components by the scoring method. Ann Hum Genet. 1976;39:485–91.CrossRefPubMed Lange K, Westlake J, Spence MA. Extensions to pedigree analysis. III. Variance components by the scoring method. Ann Hum Genet. 1976;39:485–91.CrossRefPubMed
13.
Zurück zum Zitat Hopper JL, Mathews JG. Extensions to multivariate normal models for pedigree analysis. Ann Hum Genet. 1982;46:373–83.CrossRefPubMed Hopper JL, Mathews JG. Extensions to multivariate normal models for pedigree analysis. Ann Hum Genet. 1982;46:373–83.CrossRefPubMed
14.
Zurück zum Zitat Hopper JL. Variance components for statistical genetics: applications in medical research to characteristics related to human diseases and health. Stat Methods Med Res. 1993;2:199–223.CrossRefPubMed Hopper JL. Variance components for statistical genetics: applications in medical research to characteristics related to human diseases and health. Stat Methods Med Res. 1993;2:199–223.CrossRefPubMed
15.
Zurück zum Zitat Duggirala R, Williams JT, Williams-Blangero S, Blangero J. A variance component approach to dichotomous trait linkage analysis using a threshold model. Gen Epidemiol. 1997;14:987–92.CrossRef Duggirala R, Williams JT, Williams-Blangero S, Blangero J. A variance component approach to dichotomous trait linkage analysis using a threshold model. Gen Epidemiol. 1997;14:987–92.CrossRef
16.
Zurück zum Zitat Neale MC, Cardon LR. Methodology for genetic studies of twins and families. London: Kluwer; 1992. Neale MC, Cardon LR. Methodology for genetic studies of twins and families. London: Kluwer; 1992.
17.
Zurück zum Zitat Burton PR, Tiller KJ, Gurrin LC, Cookson WO, Musk AW, Palmer LJ. Genetic variance components analysis for binary phenotypes using generalized linear mixed models (GLMMs) and Gibbs sampling. Genet Epidemiol. 1999;17:118–40.CrossRefPubMed Burton PR, Tiller KJ, Gurrin LC, Cookson WO, Musk AW, Palmer LJ. Genetic variance components analysis for binary phenotypes using generalized linear mixed models (GLMMs) and Gibbs sampling. Genet Epidemiol. 1999;17:118–40.CrossRefPubMed
18.
Zurück zum Zitat Laird NM, Horvath S, Xu X. Implementing a unified approach to family based tests of association. Genet Epidemiol Suppl. 2000;19:S36–42.CrossRef Laird NM, Horvath S, Xu X. Implementing a unified approach to family based tests of association. Genet Epidemiol Suppl. 2000;19:S36–42.CrossRef
19.
Zurück zum Zitat Lunetta KL, Faraone SV, Biederman J, Lair-d NM. Family-based tests of association and linkage that use unaffected sibs, covariates, and interactions. Am J Hum Genet. 2000;66:605–14.CrossRefPubMed Lunetta KL, Faraone SV, Biederman J, Lair-d NM. Family-based tests of association and linkage that use unaffected sibs, covariates, and interactions. Am J Hum Genet. 2000;66:605–14.CrossRefPubMed
20.
Zurück zum Zitat Zeger SL, Karim MR. Generalized linear models with random effects; a Gibbs sampling approach. J Am Stat Assoc. 1991;86:79–86.CrossRef Zeger SL, Karim MR. Generalized linear models with random effects; a Gibbs sampling approach. J Am Stat Assoc. 1991;86:79–86.CrossRef
21.
Zurück zum Zitat Smith AFM, Roberts GO. Bayesian computation via the Gibbs sampler and related Markov Chain Monte Carlo Methods. J R Stat Soc B. 1993;55:3–23. Smith AFM, Roberts GO. Bayesian computation via the Gibbs sampler and related Markov Chain Monte Carlo Methods. J R Stat Soc B. 1993;55:3–23.
22.
Zurück zum Zitat Cupples LA, Arruda HT, Benjamin EJ, D’Agostino RB Sr, Demissie S, Destefano AL, et al. The Framingham Heart Study 100 K SNP genome-wide association study resource: Overview of 17 phenotype working group reports. BMC Med Genet. 2007;8(Suppl 1):S1. Cupples LA, Arruda HT, Benjamin EJ, D’Agostino RB Sr, Demissie S, Destefano AL, et al. The Framingham Heart Study 100 K SNP genome-wide association study resource: Overview of 17 phenotype working group reports. BMC Med Genet. 2007;8(Suppl 1):S1.
23.
Zurück zum Zitat Liang KY, Beaty TH. Measuring familial aggregation using odds ratio regression models. Genet Epi. 1991;8:361–70.CrossRef Liang KY, Beaty TH. Measuring familial aggregation using odds ratio regression models. Genet Epi. 1991;8:361–70.CrossRef
24.
Zurück zum Zitat Liang KY. Estimating effects of probands’ characteristics on familial risk: I. Adjustment for censoring and correlated ages at onset. Genet Epidemiol. 1991;8:329–38.CrossRefPubMed Liang KY. Estimating effects of probands’ characteristics on familial risk: I. Adjustment for censoring and correlated ages at onset. Genet Epidemiol. 1991;8:329–38.CrossRefPubMed
25.
Zurück zum Zitat Pulver AE, Liang KY. Estimating effects of probands’ characteristics on familial risk: II. The association between ages at onset and familial risk in the Maryland schizophrenia sample. Genet Epidemiol. 1991;8:339–50.CrossRefPubMed Pulver AE, Liang KY. Estimating effects of probands’ characteristics on familial risk: II. The association between ages at onset and familial risk in the Maryland schizophrenia sample. Genet Epidemiol. 1991;8:339–50.CrossRefPubMed
26.
Zurück zum Zitat Lehmann EL. Theory of point estimation. Wiley, New York, 1983. Lehmann EL. Theory of point estimation. Wiley, New York, 1983.
Metadaten
Titel
Models of population-based analyses for data collected from large extended families
verfasst von
Wenyu Wang
Elisa T. Lee
Barbara V. Howard
Richard R. Fabsitz
Richard B. Devereux
Jean W. MacCluer
Sandra Laston
Anthony G. Comuzzie
Nawar M. Shara
Thomas K. Welty
Publikationsdatum
01.12.2010
Verlag
Springer Netherlands
Erschienen in
European Journal of Epidemiology / Ausgabe 12/2010
Print ISSN: 0393-2990
Elektronische ISSN: 1573-7284
DOI
https://doi.org/10.1007/s10654-010-9512-y

Weitere Artikel der Ausgabe 12/2010

European Journal of Epidemiology 12/2010 Zur Ausgabe