Skip to main content
Erschienen in: Dysphagia 3/2018

02.11.2017 | Original Article

Modification of Masticatory Rhythmicity Leading to the Initiation of the Swallowing Reflex in Humans

verfasst von: Masaki Yoneda, BA, Kazuya Saitoh, PhD, MD

Erschienen in: Dysphagia | Ausgabe 3/2018

Einloggen, um Zugang zu erhalten

Abstract

Modification of movements by proprioceptive feedback during mastication has an important role in shifting from the oral to the pharyngeal phase of swallowing. The aim of this study was to investigate the kinetics of masticatory muscles throughout a sequence of oropharyngeal swallowing and to present a hypothetical model of the involvement of the nervous system in the transition from mastication to the swallowing reflex. Surface electromyographic signals were recorded from the jaw-closing masseter muscles and the jaw-opening suprahyoid muscle group when a piece of bread (3–5 g) was ingested. Participants were not provided any additional instruction regarding how to chew and swallow. In the final stage of mastication, compared with other stages of mastication, the duration between sequential peak times of rhythmic activity of the masseter muscles was prolonged. Electromyography revealed no significant change in the suprahyoid muscle group. Accordingly, contraction of the jaw-closing muscles and the jaw-opening muscles altered from out-of-phase to in-phase. We have presented a hypothetical model based on the results of the present study, in which mastication shifts to the swallowing reflex when feed-forward inputs from rhythm generators for the jaw-closing and the jaw-opening muscles converge onto an assumed “convertor” neuron group concurrently. This model should contribute to understanding the pathophysiology of dysphagia.
Literatur
1.
Zurück zum Zitat Hiiemae KM, Crompton AW. Mastication, food transport, and swallowing. In: Hildebrand M, Bramble DM, Liem KF, Wake DB, editors. Functional vertebrate morphology. Cambridge: The Belknap Press of Harvard University Press; 1985. p. 262–90. Hiiemae KM, Crompton AW. Mastication, food transport, and swallowing. In: Hildebrand M, Bramble DM, Liem KF, Wake DB, editors. Functional vertebrate morphology. Cambridge: The Belknap Press of Harvard University Press; 1985. p. 262–90.
3.
Zurück zum Zitat Laitman JT, Reidenberg JS. Comparative and developmental anatomy of laryngeal position. In: Bailey BJ, editor. Head and Neck Surgery-Otolaryngology, vol. One. Philadelphia: J. B. Lippincott Company; 1993. p. 36–43. Laitman JT, Reidenberg JS. Comparative and developmental anatomy of laryngeal position. In: Bailey BJ, editor. Head and Neck Surgery-Otolaryngology, vol. One. Philadelphia: J. B. Lippincott Company; 1993. p. 36–43.
4.
Zurück zum Zitat Inoue T, Kato T, Masuda Y, Nakamura T, Kawamura Y, Morimoto T. Modifications of masticatory behavior after trigeminal deafferentation in the rabbit. Exp Brain Res. 1989;74:579–91.CrossRefPubMed Inoue T, Kato T, Masuda Y, Nakamura T, Kawamura Y, Morimoto T. Modifications of masticatory behavior after trigeminal deafferentation in the rabbit. Exp Brain Res. 1989;74:579–91.CrossRefPubMed
5.
Zurück zum Zitat Hidaka O, Morimoto Y, Masuda T, Kato T, Matsuo R, Inoue T, Kobayashi M, Takada K. Regulation of masticatory force during cortically induced rhythmic jaw movements in the anesthetized rabbit. J Neurophysiol. 1997;77:3168–79.CrossRefPubMed Hidaka O, Morimoto Y, Masuda T, Kato T, Matsuo R, Inoue T, Kobayashi M, Takada K. Regulation of masticatory force during cortically induced rhythmic jaw movements in the anesthetized rabbit. J Neurophysiol. 1997;77:3168–79.CrossRefPubMed
6.
Zurück zum Zitat Hidaka O, Morimoto Y, Kato T, Masuda T, Inoue T, Takada K. Behavior of jaw muscle spindle afferents during cortically induced rhythmic jaw movements in the anesthetized rabbit. J Neurophysiol. 1999;77:3168–79.CrossRef Hidaka O, Morimoto Y, Kato T, Masuda T, Inoue T, Takada K. Behavior of jaw muscle spindle afferents during cortically induced rhythmic jaw movements in the anesthetized rabbit. J Neurophysiol. 1999;77:3168–79.CrossRef
15.
Zurück zum Zitat Sherrington CS. Flexion-reflex of the limb, crossed extension reflex, and reflex stepping and standing. J Physiol (Lond). 1910;40:28–121.CrossRef Sherrington CS. Flexion-reflex of the limb, crossed extension reflex, and reflex stepping and standing. J Physiol (Lond). 1910;40:28–121.CrossRef
16.
Zurück zum Zitat Grillner S, Rossignol S. On the initiation of the swing phase of locomotion in chronic spinal cats. Brain Res. 1978;146:269–77.CrossRefPubMed Grillner S, Rossignol S. On the initiation of the swing phase of locomotion in chronic spinal cats. Brain Res. 1978;146:269–77.CrossRefPubMed
18.
Zurück zum Zitat Hiebert GW, Whelan PJ, Prochazka A, Pearson KG. Contribution of hindlimb flexor muscle afferents to the timing of phase transitions in the cat step cycle. J Neurophysiol. 1996;75:1126–37.CrossRefPubMed Hiebert GW, Whelan PJ, Prochazka A, Pearson KG. Contribution of hindlimb flexor muscle afferents to the timing of phase transitions in the cat step cycle. J Neurophysiol. 1996;75:1126–37.CrossRefPubMed
19.
Zurück zum Zitat Luschei ES, Goodwin GM. Patterns of mandibular movement and jaw muscle activity during mastication in the monkey. J Nerophysiol. 1974;37:954–66.CrossRef Luschei ES, Goodwin GM. Patterns of mandibular movement and jaw muscle activity during mastication in the monkey. J Nerophysiol. 1974;37:954–66.CrossRef
20.
Zurück zum Zitat Goodwin GM, Luschei ES. Discharge of spindle afferents from jaw-closing muscle during chewing in alert monkeys. J Neuophysiol. 1975;38:560–71.CrossRef Goodwin GM, Luschei ES. Discharge of spindle afferents from jaw-closing muscle during chewing in alert monkeys. J Neuophysiol. 1975;38:560–71.CrossRef
21.
Zurück zum Zitat Plesh O, Bishop B, McCall WD. Patterns of jaw muscle activity during voluntary chewing. J Oral Rehabil. 1996;23:262–9.CrossRefPubMed Plesh O, Bishop B, McCall WD. Patterns of jaw muscle activity during voluntary chewing. J Oral Rehabil. 1996;23:262–9.CrossRefPubMed
23.
Zurück zum Zitat Nakamura Y, Katakura N. Generation of masticatory rhythm in the brainstem. Neuosci Res. 1995;23:1–19.CrossRef Nakamura Y, Katakura N. Generation of masticatory rhythm in the brainstem. Neuosci Res. 1995;23:1–19.CrossRef
24.
Zurück zum Zitat Thexton AJ, Karen M, Hiiemae M, Crompton AW. Food consistency and bite size as regulators of jaw movement during feeding in the cat. J Neurophysiol. 1980;44:456–74.CrossRefPubMed Thexton AJ, Karen M, Hiiemae M, Crompton AW. Food consistency and bite size as regulators of jaw movement during feeding in the cat. J Neurophysiol. 1980;44:456–74.CrossRefPubMed
29.
Zurück zum Zitat Lennartsson B. Number and distribution of muscle spindles in the masticatory muscles of the rat. J Anat. 1980;130:279–88.PubMedPubMedCentral Lennartsson B. Number and distribution of muscle spindles in the masticatory muscles of the rat. J Anat. 1980;130:279–88.PubMedPubMedCentral
30.
Zurück zum Zitat Saverino D, De Santanna A, Simone R, Cervioni S, Cattrysse E, Testa M: Observational study on the occurrence of muscle spindles in human digastric and mylohyoideus muscles. BioMed Res Int. 2014: Article ID 294263, 2014. 10.1155/2014/294263 Saverino D, De Santanna A, Simone R, Cervioni S, Cattrysse E, Testa M: Observational study on the occurrence of muscle spindles in human digastric and mylohyoideus muscles. BioMed Res Int. 2014: Article ID 294263, 2014. 10.1155/2014/294263
31.
Zurück zum Zitat Lamkadem M, Zoungrana OR, Amri M, Car A, Roman C. Stimulation of the chewing area of the cerebral cortex induces inhibitory effects upon swallowing in sheep. Brain Res. 1999;832:97–111.CrossRefPubMed Lamkadem M, Zoungrana OR, Amri M, Car A, Roman C. Stimulation of the chewing area of the cerebral cortex induces inhibitory effects upon swallowing in sheep. Brain Res. 1999;832:97–111.CrossRefPubMed
32.
Zurück zum Zitat Zoungrana OR, Lamkadem M, Amri M, Car A, Roman C. Effects of lingual nerve afferents on swallowing in sheep. Exp Brain Res. 2000;132:500–19.CrossRefPubMed Zoungrana OR, Lamkadem M, Amri M, Car A, Roman C. Effects of lingual nerve afferents on swallowing in sheep. Exp Brain Res. 2000;132:500–19.CrossRefPubMed
33.
Zurück zum Zitat Morimoto T, Inoue T, Masuda Y, Nagashima T. Sensory components facilitating jaw-closing muscle activities in the rabbit. Exp Brain Res. 1989;76:424–40.CrossRefPubMed Morimoto T, Inoue T, Masuda Y, Nagashima T. Sensory components facilitating jaw-closing muscle activities in the rabbit. Exp Brain Res. 1989;76:424–40.CrossRefPubMed
Metadaten
Titel
Modification of Masticatory Rhythmicity Leading to the Initiation of the Swallowing Reflex in Humans
verfasst von
Masaki Yoneda, BA
Kazuya Saitoh, PhD, MD
Publikationsdatum
02.11.2017
Verlag
Springer US
Erschienen in
Dysphagia / Ausgabe 3/2018
Print ISSN: 0179-051X
Elektronische ISSN: 1432-0460
DOI
https://doi.org/10.1007/s00455-017-9860-9

Weitere Artikel der Ausgabe 3/2018

Dysphagia 3/2018 Zur Ausgabe

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.