Skip to main content
Erschienen in: Acta Diabetologica 6/2017

27.03.2017 | Review Article

Modulation of microglia in the retina: new insights into diabetic retinopathy

verfasst von: Ana I. Arroba, Ángela M. Valverde

Erschienen in: Acta Diabetologica | Ausgabe 6/2017

Einloggen, um Zugang zu erhalten

Abstract

During last decades, the diagnosis of diabetes has been associated with several chronic complications such as diabetic retinopathy (DR). Recent studies of DR have revealed an inflammatory component, which precedes the detection of alterations in the visual function. During DR, the inflammatory process presents two opposite roles depending on the polarization of resident immune cells of the retina triggering proinflammatory (M1) or antiinflammatory (M2) actions. In an early stage of DR, the M2 response concurs with the M1 and is able to ameliorate inflammation and delay the progression of the disease. However, during the progression of DR, the M1 response is maintained whereas the M2 declines and, in this scenario, the classical proinflammatory signaling pathways are chronically activated leading to retinal neurodegeneration and the loss of visual function. The M1/M2 responses are closely related to the activation and polarization of microglial cells. This review aims to offer an overview of the recent insights into the role of microglial cells during inflammation in DR. We have focused on the possibility of modulating microglia polarization as a new therapeutic strategy in DR treatments.
Literatur
1.
Zurück zum Zitat Bourne RR et al (2013) Causes of vision loss worldwide, 1990–2010: a systematic analysis. Lancet Glob Health 1(6):e339–e349CrossRefPubMed Bourne RR et al (2013) Causes of vision loss worldwide, 1990–2010: a systematic analysis. Lancet Glob Health 1(6):e339–e349CrossRefPubMed
2.
Zurück zum Zitat Romero-Aroca P et al (2016) Changes observed in diabetic retinopathy: eight-year follow-up of a Spanish population. Br J Ophthalmol 100(10):1366–1371CrossRefPubMedPubMedCentral Romero-Aroca P et al (2016) Changes observed in diabetic retinopathy: eight-year follow-up of a Spanish population. Br J Ophthalmol 100(10):1366–1371CrossRefPubMedPubMedCentral
3.
6.
Zurück zum Zitat Porta M, Bandello F (2002) Diabetic retinopathy A clinical update. Diabetologia 45(12):1617–1634CrossRefPubMed Porta M, Bandello F (2002) Diabetic retinopathy A clinical update. Diabetologia 45(12):1617–1634CrossRefPubMed
7.
Zurück zum Zitat Aiello LP, D.E.R. Group (2014) Diabetic retinopathy and other ocular findings in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. Diabetes Care 37(1):17–23CrossRefPubMed Aiello LP, D.E.R. Group (2014) Diabetic retinopathy and other ocular findings in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. Diabetes Care 37(1):17–23CrossRefPubMed
8.
Zurück zum Zitat Antonetti DA, Klein R, Gardner TW (2012) Diabetic retinopathy. N Engl J Med 366(13):1227–1239CrossRefPubMed Antonetti DA, Klein R, Gardner TW (2012) Diabetic retinopathy. N Engl J Med 366(13):1227–1239CrossRefPubMed
10.
Zurück zum Zitat Simo R, Hernandez C, European R (2014) Consortium for the early treatment of diabetic, neurodegeneration in the diabetic eye: new insights and therapeutic perspectives. Trends Endocrinol Metab 25(1):23–33CrossRefPubMed Simo R, Hernandez C, European R (2014) Consortium for the early treatment of diabetic, neurodegeneration in the diabetic eye: new insights and therapeutic perspectives. Trends Endocrinol Metab 25(1):23–33CrossRefPubMed
11.
Zurück zum Zitat Crosby-Nwaobi R et al (2015) cross talk between lipid metabolism and inflammatory markers in patients with diabetic retinopathy. J Diabetes Res 2015:191382CrossRefPubMedPubMedCentral Crosby-Nwaobi R et al (2015) cross talk between lipid metabolism and inflammatory markers in patients with diabetic retinopathy. J Diabetes Res 2015:191382CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Kowluru RA, Mishra M (2015) Contribution of epigenetics in diabetic retinopathy. Sci China Life Sci 58(6):556–563CrossRefPubMed Kowluru RA, Mishra M (2015) Contribution of epigenetics in diabetic retinopathy. Sci China Life Sci 58(6):556–563CrossRefPubMed
15.
Zurück zum Zitat Powell ED, Field RA (1964) Diabetic retinopathy and rheumatoid arthritis. Lancet 2(7349):17–18CrossRefPubMed Powell ED, Field RA (1964) Diabetic retinopathy and rheumatoid arthritis. Lancet 2(7349):17–18CrossRefPubMed
16.
Zurück zum Zitat Brucklacher RM et al (2008) Whole genome assessment of the retinal response to diabetes reveals a progressive neurovascular inflammatory response. BMC Med Genomics 1:26CrossRefPubMedPubMedCentral Brucklacher RM et al (2008) Whole genome assessment of the retinal response to diabetes reveals a progressive neurovascular inflammatory response. BMC Med Genomics 1:26CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Joussen AM et al (2004) A central role for inflammation in the pathogenesis of diabetic retinopathy. FASEB J 18(12):1450–1452PubMed Joussen AM et al (2004) A central role for inflammation in the pathogenesis of diabetic retinopathy. FASEB J 18(12):1450–1452PubMed
19.
Zurück zum Zitat Silva PS, Sun JK, Aiello LP (2009) Role of steroids in the management of diabetic macular edema and proliferative diabetic retinopathy. Semin Ophthalmol 24(2):93–99CrossRefPubMed Silva PS, Sun JK, Aiello LP (2009) Role of steroids in the management of diabetic macular edema and proliferative diabetic retinopathy. Semin Ophthalmol 24(2):93–99CrossRefPubMed
20.
Zurück zum Zitat Vujosevic S et al (2016) Proteome analysis of retinal glia cells-related inflammatory cytokines in the aqueous humour of diabetic patients. Acta Ophthalmol 94(1):56–64CrossRefPubMed Vujosevic S et al (2016) Proteome analysis of retinal glia cells-related inflammatory cytokines in the aqueous humour of diabetic patients. Acta Ophthalmol 94(1):56–64CrossRefPubMed
22.
Zurück zum Zitat Davalos D et al (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8(6):752–758CrossRefPubMed Davalos D et al (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8(6):752–758CrossRefPubMed
23.
Zurück zum Zitat Lynch MA (2009) The multifaceted profile of activated microglia. Mol Neurobiol 40(2):139–156CrossRefPubMed Lynch MA (2009) The multifaceted profile of activated microglia. Mol Neurobiol 40(2):139–156CrossRefPubMed
24.
Zurück zum Zitat Salter MW, Beggs S (2014) Sublime microglia: expanding roles for the guardians of the CNS. Cell 158(1):15–24CrossRefPubMed Salter MW, Beggs S (2014) Sublime microglia: expanding roles for the guardians of the CNS. Cell 158(1):15–24CrossRefPubMed
25.
Zurück zum Zitat Arroba AI et al (2016) Modulation of microglia polarization dynamics during diabetic retinopathy in db/db mice. Biochim Biophys Acta 1862(9):1663–1674CrossRefPubMed Arroba AI et al (2016) Modulation of microglia polarization dynamics during diabetic retinopathy in db/db mice. Biochim Biophys Acta 1862(9):1663–1674CrossRefPubMed
26.
Zurück zum Zitat Su F et al (2015) Fluoxetine and S-citalopram inhibit M1 activation and promote M2 activation of microglia in vitro. Neuroscience 294:60–68CrossRefPubMed Su F et al (2015) Fluoxetine and S-citalopram inhibit M1 activation and promote M2 activation of microglia in vitro. Neuroscience 294:60–68CrossRefPubMed
27.
Zurück zum Zitat Lampron A, Elali A, Rivest S (2013) Innate immunity in the CNS: redefining the relationship between the CNS and Its environment. Neuron 78(2):214–232CrossRefPubMed Lampron A, Elali A, Rivest S (2013) Innate immunity in the CNS: redefining the relationship between the CNS and Its environment. Neuron 78(2):214–232CrossRefPubMed
28.
Zurück zum Zitat Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451–483CrossRefPubMed Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451–483CrossRefPubMed
29.
Zurück zum Zitat Ajami B et al (2011) Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci 14(9):1142–1149CrossRefPubMed Ajami B et al (2011) Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci 14(9):1142–1149CrossRefPubMed
30.
31.
Zurück zum Zitat Ouchi Y et al (2005) Microglial activation and dopamine terminal loss in early Parkinson’s disease. Ann Neurol 57(2):168–175CrossRefPubMed Ouchi Y et al (2005) Microglial activation and dopamine terminal loss in early Parkinson’s disease. Ann Neurol 57(2):168–175CrossRefPubMed
32.
Zurück zum Zitat Bosco A et al (2015) Neurodegeneration severity can be predicted from early microglia alterations monitored in vivo in a mouse model of chronic glaucoma. Dis Model Mech 8(5):443–455CrossRefPubMedPubMedCentral Bosco A et al (2015) Neurodegeneration severity can be predicted from early microglia alterations monitored in vivo in a mouse model of chronic glaucoma. Dis Model Mech 8(5):443–455CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Vujosevic S et al (2013) Hyperreflective intraretinal spots in diabetics without and with nonproliferative diabetic retinopathy: an in vivo study using spectral domain OCT. J Diabetes Res 2013:491835PubMedPubMedCentral Vujosevic S et al (2013) Hyperreflective intraretinal spots in diabetics without and with nonproliferative diabetic retinopathy: an in vivo study using spectral domain OCT. J Diabetes Res 2013:491835PubMedPubMedCentral
34.
Zurück zum Zitat Robinson R et al (2012) Update on animal models of diabetic retinopathy: from molecular approaches to mice and higher mammals. Dis Model Mech 5(4):444–456CrossRefPubMedPubMedCentral Robinson R et al (2012) Update on animal models of diabetic retinopathy: from molecular approaches to mice and higher mammals. Dis Model Mech 5(4):444–456CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Holopigian K et al (1992) A comparison of photopic and scotopic electroretinographic changes in early diabetic retinopathy. Invest Ophthalmol Vis Sci 33(10):2773–2780PubMed Holopigian K et al (1992) A comparison of photopic and scotopic electroretinographic changes in early diabetic retinopathy. Invest Ophthalmol Vis Sci 33(10):2773–2780PubMed
37.
Zurück zum Zitat Shirao Y, Kawasaki K (1998) Electrical responses from diabetic retina. Prog Retin Eye Res 17(1):59–76CrossRefPubMed Shirao Y, Kawasaki K (1998) Electrical responses from diabetic retina. Prog Retin Eye Res 17(1):59–76CrossRefPubMed
38.
Zurück zum Zitat Kinoshita J et al (2015) Sildenafil-induced reversible impairment of rod and cone phototransduction in monkeys. Invest Ophthalmol Vis Sci 56(1):664–673CrossRefPubMed Kinoshita J et al (2015) Sildenafil-induced reversible impairment of rod and cone phototransduction in monkeys. Invest Ophthalmol Vis Sci 56(1):664–673CrossRefPubMed
40.
Zurück zum Zitat Klemp K et al (2005) The multifocal ERG in diabetic patients without retinopathy during euglycemic clamping. Invest Ophthalmol Vis Sci 46(7):2620–2626CrossRefPubMed Klemp K et al (2005) The multifocal ERG in diabetic patients without retinopathy during euglycemic clamping. Invest Ophthalmol Vis Sci 46(7):2620–2626CrossRefPubMed
41.
Zurück zum Zitat Kahn SE et al (2006) Obesity is a major determinant of the association of C-reactive protein levels and the metabolic syndrome in type 2 diabetes. Diabetes 55(8):2357–2364CrossRefPubMed Kahn SE et al (2006) Obesity is a major determinant of the association of C-reactive protein levels and the metabolic syndrome in type 2 diabetes. Diabetes 55(8):2357–2364CrossRefPubMed
42.
Zurück zum Zitat Kim CS et al (2006) Circulating levels of MCP-1 and IL-8 are elevated in human obese subjects and associated with obesity-related parameters. Int J Obes (Lond) 30(9):1347–1355CrossRef Kim CS et al (2006) Circulating levels of MCP-1 and IL-8 are elevated in human obese subjects and associated with obesity-related parameters. Int J Obes (Lond) 30(9):1347–1355CrossRef
43.
Zurück zum Zitat Bruewer M et al (2003) Proinflammatory cytokines disrupt epithelial barrier function by apoptosis-independent mechanisms. J Immunol 171(11):6164–6172CrossRefPubMed Bruewer M et al (2003) Proinflammatory cytokines disrupt epithelial barrier function by apoptosis-independent mechanisms. J Immunol 171(11):6164–6172CrossRefPubMed
44.
Zurück zum Zitat Brun P et al (2007) Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol 292(2):G518–G525CrossRefPubMed Brun P et al (2007) Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol 292(2):G518–G525CrossRefPubMed
45.
Zurück zum Zitat Wada T et al (2013) Cilostazol ameliorates systemic insulin resistance in diabetic db/db mice by suppressing chronic inflammation in adipose tissue via modulation of both adipocyte and macrophage functions. Eur J Pharmacol 707(1–3):120–129CrossRefPubMed Wada T et al (2013) Cilostazol ameliorates systemic insulin resistance in diabetic db/db mice by suppressing chronic inflammation in adipose tissue via modulation of both adipocyte and macrophage functions. Eur J Pharmacol 707(1–3):120–129CrossRefPubMed
47.
Zurück zum Zitat Xu Y et al (2015) Decreased expression levels of Nurr1 are associated with chronic inflammation in patients with type 2 diabetes. Mol Med Rep 12(4):5487–5493PubMed Xu Y et al (2015) Decreased expression levels of Nurr1 are associated with chronic inflammation in patients with type 2 diabetes. Mol Med Rep 12(4):5487–5493PubMed
48.
Zurück zum Zitat Dong N et al (2014) Retinal neuronal MCP-1 induced by AGEs stimulates TNF-alpha expression in rat microglia via p38, ERK, and NF-kappaB pathways. Mol Vis 20:616–628PubMedPubMedCentral Dong N et al (2014) Retinal neuronal MCP-1 induced by AGEs stimulates TNF-alpha expression in rat microglia via p38, ERK, and NF-kappaB pathways. Mol Vis 20:616–628PubMedPubMedCentral
49.
Zurück zum Zitat Legacy J et al (2013) Granulocyte macrophage colony-stimulating factor promotes regeneration of retinal ganglion cells in vitro through a mammalian target of rapamycin-dependent mechanism. J Neurosci Res 91(6):771–779CrossRefPubMed Legacy J et al (2013) Granulocyte macrophage colony-stimulating factor promotes regeneration of retinal ganglion cells in vitro through a mammalian target of rapamycin-dependent mechanism. J Neurosci Res 91(6):771–779CrossRefPubMed
50.
Zurück zum Zitat Sappington RM, Chan M, Calkins DJ (2006) Interleukin-6 protects retinal ganglion cells from pressure-induced death. Invest Ophthalmol Vis Sci 47(7):2932–2942CrossRefPubMed Sappington RM, Chan M, Calkins DJ (2006) Interleukin-6 protects retinal ganglion cells from pressure-induced death. Invest Ophthalmol Vis Sci 47(7):2932–2942CrossRefPubMed
51.
Zurück zum Zitat Li Q et al (2002) Early retinal damage in experimental diabetes: electroretinographical and morphological observations. Exp Eye Res 74(5):615–625CrossRefPubMed Li Q et al (2002) Early retinal damage in experimental diabetes: electroretinographical and morphological observations. Exp Eye Res 74(5):615–625CrossRefPubMed
52.
Zurück zum Zitat Engerman RL, Kern TS (1995) Retinopathy in animal models of diabetes. Diabetes Metab Rev 11(2):109–120CrossRefPubMed Engerman RL, Kern TS (1995) Retinopathy in animal models of diabetes. Diabetes Metab Rev 11(2):109–120CrossRefPubMed
53.
Zurück zum Zitat Obrosova IG et al (2003) Aldose reductase inhibitor fidarestat prevents retinal oxidative stress and vascular endothelial growth factor overexpression in streptozotocin-diabetic rats. Diabetes 52(3):864–871CrossRefPubMed Obrosova IG et al (2003) Aldose reductase inhibitor fidarestat prevents retinal oxidative stress and vascular endothelial growth factor overexpression in streptozotocin-diabetic rats. Diabetes 52(3):864–871CrossRefPubMed
54.
Zurück zum Zitat Kato N et al (2003) Long-term treatment with fidarestat suppresses the development of diabetic retinopathy in STZ-induced diabetic rats. J Diabetes Complications 17(6):374–379CrossRefPubMed Kato N et al (2003) Long-term treatment with fidarestat suppresses the development of diabetic retinopathy in STZ-induced diabetic rats. J Diabetes Complications 17(6):374–379CrossRefPubMed
55.
Zurück zum Zitat Hernandez C et al (2016) Topical administration of GLP-1 receptor agonists prevents retinal neurodegeneration in experimental diabetes. Diabetes 65(1):172–187PubMed Hernandez C et al (2016) Topical administration of GLP-1 receptor agonists prevents retinal neurodegeneration in experimental diabetes. Diabetes 65(1):172–187PubMed
56.
Zurück zum Zitat Park KW et al (2007) Interleukin-10 endogenously expressed in microglia prevents lipopolysaccharide-induced neurodegeneration in the rat cerebral cortex in vivo. Exp Mol Med 39(6):812–819CrossRefPubMed Park KW et al (2007) Interleukin-10 endogenously expressed in microglia prevents lipopolysaccharide-induced neurodegeneration in the rat cerebral cortex in vivo. Exp Mol Med 39(6):812–819CrossRefPubMed
58.
59.
Zurück zum Zitat Arroba AI et al (2011) Microglia-mediated IGF-I neuroprotection in the rd10 mouse model of retinitis pigmentosa. Invest Ophthalmol Vis Sci 52(12):9124–9130CrossRefPubMed Arroba AI et al (2011) Microglia-mediated IGF-I neuroprotection in the rd10 mouse model of retinitis pigmentosa. Invest Ophthalmol Vis Sci 52(12):9124–9130CrossRefPubMed
60.
Zurück zum Zitat Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8(1):57–69CrossRefPubMed Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8(1):57–69CrossRefPubMed
61.
Zurück zum Zitat O’Koren EG, Mathew R, Saban DR (2016) Fate mapping reveals that microglia and recruited monocyte-derived macrophages are definitively distinguishable by phenotype in the retina. Sci Rep 6:20636CrossRefPubMedPubMedCentral O’Koren EG, Mathew R, Saban DR (2016) Fate mapping reveals that microglia and recruited monocyte-derived macrophages are definitively distinguishable by phenotype in the retina. Sci Rep 6:20636CrossRefPubMedPubMedCentral
62.
Zurück zum Zitat Wang Y et al (2012) Autoantibody against transient receptor potential M1 cation channels of retinal ON bipolar cells in paraneoplastic vitelliform retinopathy. BMC Ophthalmol 12:56CrossRefPubMedPubMedCentral Wang Y et al (2012) Autoantibody against transient receptor potential M1 cation channels of retinal ON bipolar cells in paraneoplastic vitelliform retinopathy. BMC Ophthalmol 12:56CrossRefPubMedPubMedCentral
63.
Zurück zum Zitat Cai Y et al (2016) Procyanidins alleviates morphine tolerance by inhibiting activation of NLRP3 inflammasome in microglia. J Neuroinflammation 13(1):53CrossRefPubMedPubMedCentral Cai Y et al (2016) Procyanidins alleviates morphine tolerance by inhibiting activation of NLRP3 inflammasome in microglia. J Neuroinflammation 13(1):53CrossRefPubMedPubMedCentral
64.
Zurück zum Zitat Mittal K, Katare DP (2016) Shared links between type 2 diabetes mellitus and Alzheimer’s disease: a review. Diabetes Metab Syndr 10(2 Suppl 1):S144–S149CrossRefPubMed Mittal K, Katare DP (2016) Shared links between type 2 diabetes mellitus and Alzheimer’s disease: a review. Diabetes Metab Syndr 10(2 Suppl 1):S144–S149CrossRefPubMed
65.
Zurück zum Zitat Verdile G et al (2015) Inflammation and oxidative stress: the molecular connectivity between insulin resistance, obesity, and Alzheimer’s disease. Mediators Inflamm 2015:105828CrossRefPubMedPubMedCentral Verdile G et al (2015) Inflammation and oxidative stress: the molecular connectivity between insulin resistance, obesity, and Alzheimer’s disease. Mediators Inflamm 2015:105828CrossRefPubMedPubMedCentral
67.
Zurück zum Zitat Reed BT, Behar-Cohen F, Krantic S (2016) Seeing early signs of Alzheimer’s disease through the lens of the eye. Curr Alzheimer Res 14(1):6–17CrossRef Reed BT, Behar-Cohen F, Krantic S (2016) Seeing early signs of Alzheimer’s disease through the lens of the eye. Curr Alzheimer Res 14(1):6–17CrossRef
68.
Zurück zum Zitat Serini S, Calviello G (2016) Reduction of oxidative/nitrosative stress in brain and its involvement in the neuroprotective effect of n-3 PUFA in Alzheimer’s disease. Curr Alzheimer Res 13(2):123–134CrossRefPubMed Serini S, Calviello G (2016) Reduction of oxidative/nitrosative stress in brain and its involvement in the neuroprotective effect of n-3 PUFA in Alzheimer’s disease. Curr Alzheimer Res 13(2):123–134CrossRefPubMed
69.
Zurück zum Zitat Roche SL et al (2016) Progesterone attenuates microglial-driven retinal degeneration and stimulates protective fractalkine-CX3CR1 signaling. PLoS ONE 11(11):e0165197CrossRefPubMedPubMedCentral Roche SL et al (2016) Progesterone attenuates microglial-driven retinal degeneration and stimulates protective fractalkine-CX3CR1 signaling. PLoS ONE 11(11):e0165197CrossRefPubMedPubMedCentral
Metadaten
Titel
Modulation of microglia in the retina: new insights into diabetic retinopathy
verfasst von
Ana I. Arroba
Ángela M. Valverde
Publikationsdatum
27.03.2017
Verlag
Springer Milan
Erschienen in
Acta Diabetologica / Ausgabe 6/2017
Print ISSN: 0940-5429
Elektronische ISSN: 1432-5233
DOI
https://doi.org/10.1007/s00592-017-0984-z

Weitere Artikel der Ausgabe 6/2017

Acta Diabetologica 6/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.