Skip to main content
Erschienen in: Investigational New Drugs 5/2019

13.12.2018 | PRECLINICAL STUDIES

Modulator of the PI3K/Akt oncogenic pathway affects mTOR complex 2 in human adenocarcinoma cells

verfasst von: Blair P. Curless, Nne E. Uko, Diane F. Matesic

Erschienen in: Investigational New Drugs | Ausgabe 5/2019

Einloggen, um Zugang zu erhalten

Summary

Chaetoglobosin K (ChK) is a natural product that has been shown to promote F-actin capping, inhibit growth, arrest cell cycle G2 phase, and induce apoptosis. ChK also has been shown to downregulate two important kinases involved in oncogenic pathways, Akt and JNK. This report investigates how ChK is involved in the receptor tyrosine kinase pathway (RTK/PI3K/mTORC2/Akt) to the centrally located protein kinase, Akt. Studies have reported that ChK does not inhibit PI3K comparable to wortmannin and does not affect PDK1 activation. PDK1 is responsible for phosphorylation on Akt T308, while mTORC2 phosphorylates Akt S473. Yet, Akt’s two activation sites, T308 and S473, are known to be affected by ChK treatment. It was our hypothesis that ChK acts on the mTORC2 complex to inhibit the phosphorylation seen at Akt S473. This inhibition at mTORC2 should decrease phosphorylation at both these proteins, Akt and mTORC2 complex, compared to a known mTOR specific inhibitor, Torin1. Human lung adenocarcinoma H1299 and H2009 cells were treated with IGF-1 or calyculin A to increase phosphorylation at complex mTORC2 and Akt. Pretreatment with ChK was able to significantly decrease phosphorylation at Akt S473 similarly to Torin1 with either IGF-1 or calyculin A treatment. Moreover, the autophosphorylation site on complex mTORC2, S2481, was also significantly reduced with ChK pretreatment, similar to Torin1. This is the first report to illustrate that ChK has a significant effect at mTORC2 S2481 and Akt S473 comparable to Torin1, indicating that it may be a mTOR inhibitor.
Literatur
1.
Zurück zum Zitat Wang Y, Schmid-Bindert G, Zhou C (2012) Erlotinib in the treatment of advanced non-small cell lung cancer: an update for clinicians. Ther Adv Med Oncol 4:19–29CrossRefPubMedPubMedCentral Wang Y, Schmid-Bindert G, Zhou C (2012) Erlotinib in the treatment of advanced non-small cell lung cancer: an update for clinicians. Ther Adv Med Oncol 4:19–29CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Blanco R, Iwakawa R, Tang M, Kohno T, Angulo B, Pio R, Montuenga LM, Minna JD, Yokota J, Sanchez-Cespedes M (2009) A gene-alteration profile of human lung Cancer cell lines. Hum Mutat 30:1199–1206CrossRefPubMedPubMedCentral Blanco R, Iwakawa R, Tang M, Kohno T, Angulo B, Pio R, Montuenga LM, Minna JD, Yokota J, Sanchez-Cespedes M (2009) A gene-alteration profile of human lung Cancer cell lines. Hum Mutat 30:1199–1206CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Shah A, Mangaonkar A (2015) Idelalisib: a novel PI3Kδ inhibitor for chronic lymphocytic leukemia. Ann Pharmacother 49:1162–1170CrossRefPubMed Shah A, Mangaonkar A (2015) Idelalisib: a novel PI3Kδ inhibitor for chronic lymphocytic leukemia. Ann Pharmacother 49:1162–1170CrossRefPubMed
7.
Zurück zum Zitat Yang W-L, Wu C-Y, Wu J, Lin H-K (2010) Regulation of Akt signaling activation by ubiquitination. Cell Cycle 9:486–497CrossRef Yang W-L, Wu C-Y, Wu J, Lin H-K (2010) Regulation of Akt signaling activation by ubiquitination. Cell Cycle 9:486–497CrossRef
8.
Zurück zum Zitat Facchinetti V, Ouyang W, Wei H, Soto N, Lazorchak A, Gould C, Lowry C, Newton AC, Mao Y, Miao RQ, Sessa WC, Qin J, Zhang P, Su B, Jacinto E (2008) The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO J 27:1932–1943CrossRefPubMedPubMedCentral Facchinetti V, Ouyang W, Wei H, Soto N, Lazorchak A, Gould C, Lowry C, Newton AC, Mao Y, Miao RQ, Sessa WC, Qin J, Zhang P, Su B, Jacinto E (2008) The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO J 27:1932–1943CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Mora A, Komander D, van Aalten DMF, Alessi DR (2004) PDK1, the master regulator of AGC kinase signal transduction. Semin Cell Dev Biol 15:161–170CrossRefPubMed Mora A, Komander D, van Aalten DMF, Alessi DR (2004) PDK1, the master regulator of AGC kinase signal transduction. Semin Cell Dev Biol 15:161–170CrossRefPubMed
10.
Zurück zum Zitat Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and Regulation of Akt/PKB by the Rictor-mTOR complex. Science 307:1098–1101CrossRef Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and Regulation of Akt/PKB by the Rictor-mTOR complex. Science 307:1098–1101CrossRef
11.
Zurück zum Zitat Jordan NJ, Dutkowski CM, Barrow D, Mottram HJ, Hutcheson IR, Nicholson RI et al (2014) Impact of dual mTORC1/2 mTOR kinase inhibitor AZD8055 on acquired endocrine resistance in breast cancer in vitro. Breast Cancer Res 16:3370CrossRef Jordan NJ, Dutkowski CM, Barrow D, Mottram HJ, Hutcheson IR, Nicholson RI et al (2014) Impact of dual mTORC1/2 mTOR kinase inhibitor AZD8055 on acquired endocrine resistance in breast cancer in vitro. Breast Cancer Res 16:3370CrossRef
12.
Zurück zum Zitat Liu Q, Xu C, Kirubakaran S, Zhang X, Hur W, Liu Y, Kwiatkowski NP, Wang J, Westover KD, Gao P, Ercan D, Niepel M, Thoreen CC, Kang SA, Patricelli MP, Wang Y, Tupper T, Altabef A, Kawamura H, Held KD, Chou DM, Elledge SJ, Janne PA, Wong KK, Sabatini DM, Gray NS (2013) Characterization of Torin2, an ATP-competitive inhibitor of mTOR, ATM, and ATR. Cancer Res 73:2574–2586CrossRefPubMedPubMedCentral Liu Q, Xu C, Kirubakaran S, Zhang X, Hur W, Liu Y, Kwiatkowski NP, Wang J, Westover KD, Gao P, Ercan D, Niepel M, Thoreen CC, Kang SA, Patricelli MP, Wang Y, Tupper T, Altabef A, Kawamura H, Held KD, Chou DM, Elledge SJ, Janne PA, Wong KK, Sabatini DM, Gray NS (2013) Characterization of Torin2, an ATP-competitive inhibitor of mTOR, ATM, and ATR. Cancer Res 73:2574–2586CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Brunn GJ, Williams J, Sabers C, Wiederrecht G, Lawrence JC, Abraham RT (1996) Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002. EMBO J 15:5256–5267CrossRefPubMedPubMedCentral Brunn GJ, Williams J, Sabers C, Wiederrecht G, Lawrence JC, Abraham RT (1996) Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002. EMBO J 15:5256–5267CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Soliman GA, Acosta-Jaquez HA, Dunlop EA, Ekim B, Maj NE, Tee AR, Fingar DC (2010) mTOR Ser-2481 autophosphorylation monitors mTORC-specific catalytic activity and clarifies rapamycin mechanism of action. J Biol Chem 285:7866–7879CrossRefPubMed Soliman GA, Acosta-Jaquez HA, Dunlop EA, Ekim B, Maj NE, Tee AR, Fingar DC (2010) mTOR Ser-2481 autophosphorylation monitors mTORC-specific catalytic activity and clarifies rapamycin mechanism of action. J Biol Chem 285:7866–7879CrossRefPubMed
15.
Zurück zum Zitat Hart S, Novotny-Diermayr V, Goh KC, Williams M, Tan YC, Ong LC, Cheong A, Ng BK, Amalini C, Madan B, Nagaraj H, Jayaraman R, Pasha KM, Ethirajulu K, Chng WJ, Mustafa N, Goh BC, Benes C, McDermott U, Garnett M, Dymock B, Wood JM (2013) VS-5584, a novel and highly selective PI3K/mTOR kinase inhibitor for the treatment of Cancer. Mol Cancer Ther 12:151–161CrossRefPubMed Hart S, Novotny-Diermayr V, Goh KC, Williams M, Tan YC, Ong LC, Cheong A, Ng BK, Amalini C, Madan B, Nagaraj H, Jayaraman R, Pasha KM, Ethirajulu K, Chng WJ, Mustafa N, Goh BC, Benes C, McDermott U, Garnett M, Dymock B, Wood JM (2013) VS-5584, a novel and highly selective PI3K/mTOR kinase inhibitor for the treatment of Cancer. Mol Cancer Ther 12:151–161CrossRefPubMed
16.
Zurück zum Zitat Yuan J, Mehta PP, Yin M-J, Sun S, Zou A, Chen J, Rafidi K, Feng Z, Nickel J, Engebretsen J, Hallin J, Blasina A, Zhang E, Nguyen L, Sun M, Vogt PK, McHarg A, Cheng H, Christensen JG, Kan JLC, Bagrodia S (2011) PF-04691502, a potent and selective Oral inhibitor of PI3K and mTOR kinases with antitumor activity. Mol Cancer Ther 10:2189–2199CrossRefPubMed Yuan J, Mehta PP, Yin M-J, Sun S, Zou A, Chen J, Rafidi K, Feng Z, Nickel J, Engebretsen J, Hallin J, Blasina A, Zhang E, Nguyen L, Sun M, Vogt PK, McHarg A, Cheng H, Christensen JG, Kan JLC, Bagrodia S (2011) PF-04691502, a potent and selective Oral inhibitor of PI3K and mTOR kinases with antitumor activity. Mol Cancer Ther 10:2189–2199CrossRefPubMed
17.
Zurück zum Zitat del CJM, Birrer M, Davis C, Fujiwara K, Gollerkeri A, Gore M et al (2016) A randomized phase II non-comparative study of PF-04691502 and gedatolisib (PF-05212384) in patients with recurrent endometrial cancer. Gynecol Oncol 142:62–69CrossRef del CJM, Birrer M, Davis C, Fujiwara K, Gollerkeri A, Gore M et al (2016) A randomized phase II non-comparative study of PF-04691502 and gedatolisib (PF-05212384) in patients with recurrent endometrial cancer. Gynecol Oncol 142:62–69CrossRef
18.
Zurück zum Zitat Ali A, Sidorova TS, Matesic DF (2013) Dual modulation of JNK and Akt signaling pathways by chaetoglobosin K in human lung carcinoma and ras-transformed epithelial cells. Investig New Drugs 31:525–534CrossRef Ali A, Sidorova TS, Matesic DF (2013) Dual modulation of JNK and Akt signaling pathways by chaetoglobosin K in human lung carcinoma and ras-transformed epithelial cells. Investig New Drugs 31:525–534CrossRef
19.
Zurück zum Zitat Matesic DF, Villio KN, Folse SL, Garcia EL, Cutler SJ, Cutler HG (2006) Inhibition of cytokinesis and akt phosphorylation by chaetoglobosin K in ras-transformed epithelial cells. Cancer Chemother Pharmacol 57:741–754CrossRefPubMed Matesic DF, Villio KN, Folse SL, Garcia EL, Cutler SJ, Cutler HG (2006) Inhibition of cytokinesis and akt phosphorylation by chaetoglobosin K in ras-transformed epithelial cells. Cancer Chemother Pharmacol 57:741–754CrossRefPubMed
20.
Zurück zum Zitat Li B, Gao Y, Rankin GO, Rojanasakul Y, Cutler SJ, Tu Y, Chen YC (2015) Chaetoglobosin K induces apoptosis and G2 cell cycle arrest through p53-dependent pathway in cisplatin-resistant ovarian cancer cells. Cancer Lett 356:418–433CrossRefPubMed Li B, Gao Y, Rankin GO, Rojanasakul Y, Cutler SJ, Tu Y, Chen YC (2015) Chaetoglobosin K induces apoptosis and G2 cell cycle arrest through p53-dependent pathway in cisplatin-resistant ovarian cancer cells. Cancer Lett 356:418–433CrossRefPubMed
21.
Zurück zum Zitat Tikoo A, Cutler H, Lo SH, Chen LB, Maruta H (1999) Treatment of Ras-induced cancers by the F-actin cappers tensin and chaetoglobosin K, in combination with the caspase-1 inhibitor N1445. Cancer J Sci Am 5:293–300PubMed Tikoo A, Cutler H, Lo SH, Chen LB, Maruta H (1999) Treatment of Ras-induced cancers by the F-actin cappers tensin and chaetoglobosin K, in combination with the caspase-1 inhibitor N1445. Cancer J Sci Am 5:293–300PubMed
22.
Zurück zum Zitat Luo H, Li B, Li Z, Cutler SJ, Rankin GO, Chen YC (2013) Chaetoglobosin K inhibits tumor angiogenesis through downregulation of vascular epithelial growth factor-binding hypoxia-inducible factor 1α. Anti-Cancer Drugs 24:715–724CrossRefPubMed Luo H, Li B, Li Z, Cutler SJ, Rankin GO, Chen YC (2013) Chaetoglobosin K inhibits tumor angiogenesis through downregulation of vascular epithelial growth factor-binding hypoxia-inducible factor 1α. Anti-Cancer Drugs 24:715–724CrossRefPubMed
23.
Zurück zum Zitat Matesic D, Ali A, Sidorova T, Burns T (2014) A cell-cell communication marker for identifying targeted tumor therapies. Curr Bioact Compd 9:255–262CrossRef Matesic D, Ali A, Sidorova T, Burns T (2014) A cell-cell communication marker for identifying targeted tumor therapies. Curr Bioact Compd 9:255–262CrossRef
24.
Zurück zum Zitat Ikenoue T, Inoki K, Yang Q, Zhou X, Guan K-L (2008) Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO J 27:1919–1931CrossRefPubMedPubMedCentral Ikenoue T, Inoki K, Yang Q, Zhou X, Guan K-L (2008) Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO J 27:1919–1931CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Feldman ME, Shokat KM (2010) New inhibitors of the PI3K-Akt-mTOR pathway: insights into mTOR signaling from a new generation of Tor kinase domain inhibitors (TORKinibs). Curr Top Microbiol Immunol 347:241–262PubMed Feldman ME, Shokat KM (2010) New inhibitors of the PI3K-Akt-mTOR pathway: insights into mTOR signaling from a new generation of Tor kinase domain inhibitors (TORKinibs). Curr Top Microbiol Immunol 347:241–262PubMed
28.
Zurück zum Zitat Copp J, Manning G, Hunter T (2009) TORC-specific Phosphorylation of mammalian target of rapamycin (mTOR): Phospho-Ser2481 is a marker for intact mTOR Signaling complex 2. Cancer Res 69:1821–1827CrossRefPubMedPubMedCentral Copp J, Manning G, Hunter T (2009) TORC-specific Phosphorylation of mammalian target of rapamycin (mTOR): Phospho-Ser2481 is a marker for intact mTOR Signaling complex 2. Cancer Res 69:1821–1827CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Rosner M, Siegel N, Valli A, Fuchs C, Hengstschläger M (2010) mTOR phosphorylated at S2448 binds to raptor and rictor. Amino Acids 38:223–228CrossRefPubMed Rosner M, Siegel N, Valli A, Fuchs C, Hengstschläger M (2010) mTOR phosphorylated at S2448 binds to raptor and rictor. Amino Acids 38:223–228CrossRefPubMed
30.
Zurück zum Zitat Peterson RT, Beal PA, Comb MJ, Schreiber SL (2000) FKBP12-rapamycin-associated protein (FRAP) autophosphorylates at serine 2481 under translationally repressive conditions. J Biol Chem 275:7416–7423CrossRefPubMed Peterson RT, Beal PA, Comb MJ, Schreiber SL (2000) FKBP12-rapamycin-associated protein (FRAP) autophosphorylates at serine 2481 under translationally repressive conditions. J Biol Chem 275:7416–7423CrossRefPubMed
31.
Zurück zum Zitat Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y, Reichling LJ, Sim T, Sabatini DM, Gray NS (2009) An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 284:8023–8032CrossRefPubMedPubMedCentral Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y, Reichling LJ, Sim T, Sabatini DM, Gray NS (2009) An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 284:8023–8032CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Rodrik-Outmezguine VS, Chandarlapaty S, Pagano NC, Poulikakos PI, Scaltriti M, Moskatel E, Baselga J, Guichard S, Rosen N (2011) mTOR kinase inhibition causes feedback-dependent biphasic regulation of AKT Signaling. Cancer Discov 1:248–259CrossRefPubMedPubMedCentral Rodrik-Outmezguine VS, Chandarlapaty S, Pagano NC, Poulikakos PI, Scaltriti M, Moskatel E, Baselga J, Guichard S, Rosen N (2011) mTOR kinase inhibition causes feedback-dependent biphasic regulation of AKT Signaling. Cancer Discov 1:248–259CrossRefPubMedPubMedCentral
33.
34.
Zurück zum Zitat Cutler HG, Crumley FG, Cox RH, Cole RJ, Dorner JW, Springer JP, Latterell FM, Thean JE, Rossi AE (1980) Chaetoglobosin K: a new plant growth inhibitor and toxin from Diplodia macrospora. J Agric Food Chem 28:139–142CrossRefPubMed Cutler HG, Crumley FG, Cox RH, Cole RJ, Dorner JW, Springer JP, Latterell FM, Thean JE, Rossi AE (1980) Chaetoglobosin K: a new plant growth inhibitor and toxin from Diplodia macrospora. J Agric Food Chem 28:139–142CrossRefPubMed
35.
Zurück zum Zitat Moore SF, Hunter RW, Hers I (2011) mTORC2 protein-mediated protein kinase B (Akt) serine 473 Phosphorylation is not required for Akt1 activity in human platelets. J Biol Chem 286:24553–24560CrossRefPubMedPubMedCentral Moore SF, Hunter RW, Hers I (2011) mTORC2 protein-mediated protein kinase B (Akt) serine 473 Phosphorylation is not required for Akt1 activity in human platelets. J Biol Chem 286:24553–24560CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Peterson TR, Laplante M, Thoreen CC, Sancak Y, Kang SA, Kuehl WM, Gray NS, Sabatini DM (2009) DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137:873–886CrossRefPubMedPubMedCentral Peterson TR, Laplante M, Thoreen CC, Sancak Y, Kang SA, Kuehl WM, Gray NS, Sabatini DM (2009) DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137:873–886CrossRefPubMedPubMedCentral
37.
38.
Zurück zum Zitat Pozuelo-Rubio M, Leslie NR, Murphy J, MacKintosh C (2010) Mechanism of activation of PKB/Akt by the protein phosphatase inhibitor Calyculin a. Cell Biochem Biophys 58:147–156CrossRefPubMedPubMedCentral Pozuelo-Rubio M, Leslie NR, Murphy J, MacKintosh C (2010) Mechanism of activation of PKB/Akt by the protein phosphatase inhibitor Calyculin a. Cell Biochem Biophys 58:147–156CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Wander SA, Hennessy BT, Slingerland JM (2011) Next-generation mTOR inhibitors in clinical oncology: how pathway complexity informs therapeutic strategy. J Clin Invest 121:1231–1241CrossRefPubMedPubMedCentral Wander SA, Hennessy BT, Slingerland JM (2011) Next-generation mTOR inhibitors in clinical oncology: how pathway complexity informs therapeutic strategy. J Clin Invest 121:1231–1241CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Liu Q, Chang JW, Wang J, Kang SA, Thoreen CC, Markhard A, Hur W, Zhang J, Sim T, Sabatini DM, Gray NS (2010) Discovery of 1-(4-(4-propionylpiperazin-1-yl)-3-(trifluoromethyl)phenyl)-9-(quinolin-3-yl)benzo[h][1,6]naphthyridin-2(1H)-one as a highly potent, selective mammalian target of rapamycin (mTOR) inhibitor for the treatment of cancer. J Med Chem 53:7146–7155CrossRefPubMedPubMedCentral Liu Q, Chang JW, Wang J, Kang SA, Thoreen CC, Markhard A, Hur W, Zhang J, Sim T, Sabatini DM, Gray NS (2010) Discovery of 1-(4-(4-propionylpiperazin-1-yl)-3-(trifluoromethyl)phenyl)-9-(quinolin-3-yl)benzo[h][1,6]naphthyridin-2(1H)-one as a highly potent, selective mammalian target of rapamycin (mTOR) inhibitor for the treatment of cancer. J Med Chem 53:7146–7155CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Barlow AD, Xie J, Moore CE, Campbell SC, Shaw JAM, Nicholson ML, Herbert TP (2012) Rapamycin toxicity in MIN6 cells and rat and human islets is mediated by the inhibition of mTOR complex 2 (mTORC2). Diabetologia 55:1355–1365CrossRefPubMedPubMedCentral Barlow AD, Xie J, Moore CE, Campbell SC, Shaw JAM, Nicholson ML, Herbert TP (2012) Rapamycin toxicity in MIN6 cells and rat and human islets is mediated by the inhibition of mTOR complex 2 (mTORC2). Diabetologia 55:1355–1365CrossRefPubMedPubMedCentral
Metadaten
Titel
Modulator of the PI3K/Akt oncogenic pathway affects mTOR complex 2 in human adenocarcinoma cells
verfasst von
Blair P. Curless
Nne E. Uko
Diane F. Matesic
Publikationsdatum
13.12.2018
Verlag
Springer US
Erschienen in
Investigational New Drugs / Ausgabe 5/2019
Print ISSN: 0167-6997
Elektronische ISSN: 1573-0646
DOI
https://doi.org/10.1007/s10637-018-0705-7

Weitere Artikel der Ausgabe 5/2019

Investigational New Drugs 5/2019 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.