Skip to main content

01.12.2012 | Research | Ausgabe 1/2012 Open Access

Malaria Journal 1/2012

Molecular assessment of atpase6 mutations associated with artemisinin resistance among unexposed and exposed Plasmodium falciparum clinical isolates to artemisinin-based combination therapy

Malaria Journal > Ausgabe 1/2012
Sedigheh Zakeri, Samaneh Hemati, Sakineh Pirahmadi, Mandana Afsharpad, Ahmad Raeisi, Navid D Djadid
Wichtige Hinweise

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

SZ designed the study, developed the experimental protocols, supervised field and lab works, finalized the interpretation of the data and wrote down the manuscript. SH, SP and MA performed the lab work and also helped in analysing the data. ND and AR have also contributed to the analysis of the data and critically reading the content of the manuscript. All authors read and approved the final manuscript.



Artemisinin-based combination therapy (ACT) is the mainstay of global efforts for treatment of Plasmodium falciparum malaria, but decline in its efficacy is the most important obstacle towards malaria control and elimination. Therefore, the present molecular analysis provides information on putative mutations associated with artemisinin resistance in P. falciparum clinical population unexposed and exposed to artesunate 4 years after adoption of ACT as the first-line anti-malarial therapy in Iran.


In this study, blood samples (n = 226) were collected from uncomplicated P. falciparum-infected patients from different health centers of Chabahar district in Sistan and Baluchistan province in the south-eastern part of Iran, during 2003 to 2010. All collected isolates were analysed for putative candidate mutations (TTA) L263E (GAA), (GAA) E431K (AAA), (GCA) A623E (GAA) and (AGT) S769N (AAT) of pfatpase6 gene using nested PCR/RFLP, followed by sequencing. Furthermore, the gene copy number was assessed by real-time quantitative PCR (RT-qPCR) in the presence of SYBR green.


Neither the pfatpase6 L263E nor the A623E mutation was detected among all examined isolates. The E431K mutation was found in 23% of the analysed samples unexposed to ACT; however, it was detected in 17.8% (34/191) of P. falciparum isolates exposed to artesunate after 2007. High frequency of this single nucleotide polymorphisms (SNP) (overall 18.6%) among both examined groups (X2 test, P>0.05) indicated that this SNP should be considered as an unrelated mutation to artemisinin resistance. In contrast, S769N mutation was not detected in unexposed isolates; however, it was found in 2.6% (5/191), four years after introduction of ACT in this malaria setting. Also, detected SNPs were not significantly frequent in both unexposed and exposed examined isolates (X2 test, P> 0.05). Investigation in the copy number of pfatpase6 gene revealed a similar number of copy (n = 1) as in an isolate sensitive to artemisinin.


Taken together, the results suggest, in particular, that pfatpase6 S769N gene needs more consideration for its possible association with artesunate resistance among P. falciparum isolates.
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2012

Malaria Journal 1/2012 Zur Ausgabe

Neu im Fachgebiet Innere Medizin

Meistgelesene Bücher aus der Inneren Medizin

2017 | Buch

Rheumatologie aus der Praxis

Entzündliche Gelenkerkrankungen – mit Fallbeispielen

Dieses Fachbuch macht mit den wichtigsten chronisch entzündlichen Gelenk- und Wirbelsäulenerkrankungen vertraut. Anhand von über 40 instruktiven Fallbeispielen werden anschaulich diagnostisches Vorgehen, therapeutisches Ansprechen und der Verlauf …

Rudolf Puchner

2016 | Buch

Ambulant erworbene Pneumonie

Was, wann, warum – Dieses Buch bietet differenzierte Diagnostik und Therapie der ambulant erworbenen Pneumonie zur sofortigen sicheren Anwendung. Entsprechend der neuesten Studien und Leitlinien aller wichtigen Fachgesellschaften.

Santiago Ewig

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Innere Medizin und bleiben Sie gut informiert – ganz bequem per eMail.

© Springer Medizin