Skip to main content
Erschienen in: Seminars in Immunopathology 5/2019

10.09.2019 | Review

Molecular determinants for the polarization of macrophage and osteoclast

verfasst von: Dengbao Yang, Yihong Wan

Erschienen in: Seminars in Immunopathology | Ausgabe 5/2019

Einloggen, um Zugang zu erhalten

Abstract

Emerging evidence suggest that macrophage and osteoclast are two competing differentiation outcomes from myeloid progenitors. In this review, we summarize recent advances in the understanding of the molecular mechanisms controlling the polarization of macrophage and osteoclast. These include nuclear receptors/transcription factors such as peroxisome proliferator-activated receptor γ (PPARγ) and estrogen-related receptor α (ERRα), their transcription cofactor PPARγ coactivator 1-β (PGC-1β), metabolic factors such as mitochondrial complex I (CI) component NADH:ubiquinone oxidoreductase iron-sulfur protein 4 (Ndufs4), as well as transmembrane receptors such as very-low-density-lipoprotein receptor (VLDLR). These molecular rheostats promote osteoclast differentiation but suppress proinflammatory macrophage activation and inflammation, by acting lineage-intrinsically, systemically or cross generation. These findings provide new insights to the understanding of the interactions between innate immunity and bone remodeling, advancing the field of osteoimmunology.
Literatur
1.
Zurück zum Zitat Clarke B (2008) Normal bone anatomy and physiology, Clinical. J Am Soc Nephrol 3(Supplement 3):S131–S139 Clarke B (2008) Normal bone anatomy and physiology, Clinical. J Am Soc Nephrol 3(Supplement 3):S131–S139
2.
Zurück zum Zitat Manolagas SC (2000) Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis*. Endocr Rev 21(2):115–137PubMed Manolagas SC (2000) Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis*. Endocr Rev 21(2):115–137PubMed
3.
Zurück zum Zitat Harada S-i, Rodan GA (2003) Control of osteoblast function and regulation of bone mass. Nature 423:349PubMed Harada S-i, Rodan GA (2003) Control of osteoblast function and regulation of bone mass. Nature 423:349PubMed
4.
Zurück zum Zitat Seeman E, Delmas PD (2006) Bone quality — the material and structural basis of bone strength and fragility. N Engl J Med 354(21):2250–2261PubMed Seeman E, Delmas PD (2006) Bone quality — the material and structural basis of bone strength and fragility. N Engl J Med 354(21):2250–2261PubMed
5.
Zurück zum Zitat Aubin JE (2001) Regulation of osteoblast formation and function. Rev Endocr Metab Disord 2(1):81–94PubMed Aubin JE (2001) Regulation of osteoblast formation and function. Rev Endocr Metab Disord 2(1):81–94PubMed
6.
Zurück zum Zitat Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289(5484):1504–1508PubMed Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289(5484):1504–1508PubMed
7.
Zurück zum Zitat Zelzer E, Olsen BR (2003) The genetic basis for skeletal diseases. Nature 423:343PubMed Zelzer E, Olsen BR (2003) The genetic basis for skeletal diseases. Nature 423:343PubMed
8.
Zurück zum Zitat Takayanagi H (2007) Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol 7:292PubMed Takayanagi H (2007) Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol 7:292PubMed
9.
Zurück zum Zitat Nakashima T, Hayashi M, Takayanagi H (2012) New insights into osteoclastogenic signaling mechanisms. Trends Endocrinol Metab 23(11):582–590PubMed Nakashima T, Hayashi M, Takayanagi H (2012) New insights into osteoclastogenic signaling mechanisms. Trends Endocrinol Metab 23(11):582–590PubMed
10.
Zurück zum Zitat Tacken PJ, Teusink B, Jong MC, Harats D, Havekes LM, van Dijk KW, Hofker MH (2000) LDL receptor deficiency unmasks altered VLDL triglyceride metabolism in VLDL receptor transgenic and knockout mice. J Lipid Res 41(12):2055–2062PubMed Tacken PJ, Teusink B, Jong MC, Harats D, Havekes LM, van Dijk KW, Hofker MH (2000) LDL receptor deficiency unmasks altered VLDL triglyceride metabolism in VLDL receptor transgenic and knockout mice. J Lipid Res 41(12):2055–2062PubMed
11.
Zurück zum Zitat Teitelbaum SL, Ross FP (2003) Genetic regulation of osteoclast development and function. Nat Rev Genet 4:638PubMed Teitelbaum SL, Ross FP (2003) Genetic regulation of osteoclast development and function. Nat Rev Genet 4:638PubMed
12.
Zurück zum Zitat Theill LE, Boyle WJ, Penninger JM (2002) RANK-L and RANK: T cells, bone loss, and mammalian evolution. Annu Rev Immunol 20(1):795–823PubMed Theill LE, Boyle WJ, Penninger JM (2002) RANK-L and RANK: T cells, bone loss, and mammalian evolution. Annu Rev Immunol 20(1):795–823PubMed
13.
Zurück zum Zitat Tanaka S, Takahashi N, Udagawa N, Tamura T, Akatsu T, Stanley ER, Kurokawa T, Suda T (1993) Macrophage colony-stimulating factor is indispensable for both proliferation and differentiation of osteoclast progenitors. J Clin Invest 91(1):257–263PubMedPubMedCentral Tanaka S, Takahashi N, Udagawa N, Tamura T, Akatsu T, Stanley ER, Kurokawa T, Suda T (1993) Macrophage colony-stimulating factor is indispensable for both proliferation and differentiation of osteoclast progenitors. J Clin Invest 91(1):257–263PubMedPubMedCentral
14.
Zurück zum Zitat Arai F, Miyamoto T, Ohneda O, Inada T, Sudo T, Brasel K, Miyata T, Anderson DM, Suda T (1999) Commitment and differentiation of osteoclast precursor cells by the sequential expression of C-Fms and receptor activator of nuclear factor κb (Rank) receptors. J Exp Med 190(12):1741–1754PubMedPubMedCentral Arai F, Miyamoto T, Ohneda O, Inada T, Sudo T, Brasel K, Miyata T, Anderson DM, Suda T (1999) Commitment and differentiation of osteoclast precursor cells by the sequential expression of C-Fms and receptor activator of nuclear factor κb (Rank) receptors. J Exp Med 190(12):1741–1754PubMedPubMedCentral
15.
Zurück zum Zitat Ross FP, Teitelbaum SL (2005) αvβ3 and macrophage colony-stimulating factor: partners in osteoclast biology. Immunol Rev 208(1):88–105PubMed Ross FP, Teitelbaum SL (2005) αvβ3 and macrophage colony-stimulating factor: partners in osteoclast biology. Immunol Rev 208(1):88–105PubMed
16.
Zurück zum Zitat Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, Teepe MC, DuBose RF, Cosman D, Galibert L (1997) A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390:175PubMed Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, Teepe MC, DuBose RF, Cosman D, Galibert L (1997) A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390:175PubMed
17.
Zurück zum Zitat Fuller K, Wong B, Fox S, Choi Y, Chambers TJ (1998) TRANCE is necessary and sufficient for osteoblast-mediated activation of bone resorption in osteoclasts. J Exp Med 188(5):997–1001PubMedPubMedCentral Fuller K, Wong B, Fox S, Choi Y, Chambers TJ (1998) TRANCE is necessary and sufficient for osteoblast-mediated activation of bone resorption in osteoclasts. J Exp Med 188(5):997–1001PubMedPubMedCentral
18.
Zurück zum Zitat Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93(2):165–176PubMed Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93(2):165–176PubMed
19.
Zurück zum Zitat Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S-i, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci 95(7):3597–3602PubMedPubMedCentral Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S-i, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci 95(7):3597–3602PubMedPubMedCentral
20.
Zurück zum Zitat Wong BR, Josien R, Choi Y (1999) TRANCE is a TNF family member that regulates dendritic cell and osteoclast function. J Leukoc Biol 65(6):715–724PubMed Wong BR, Josien R, Choi Y (1999) TRANCE is a TNF family member that regulates dendritic cell and osteoclast function. J Leukoc Biol 65(6):715–724PubMed
21.
Zurück zum Zitat Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Lüthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Sander S, Van G, Tarpley J, Derby P, Lee R, Boyle WJ (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89(2):309–319PubMed Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Lüthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Sander S, Van G, Tarpley J, Derby P, Lee R, Boyle WJ (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89(2):309–319PubMed
22.
Zurück zum Zitat Tsuda E, Goto M, Mochizuki S-i, Yano K, Kobayashi F, Morinaga T, Higashio K (1997) Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. Biochem Biophys Res Commun 234(1):137–142PubMed Tsuda E, Goto M, Mochizuki S-i, Yano K, Kobayashi F, Morinaga T, Higashio K (1997) Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. Biochem Biophys Res Commun 234(1):137–142PubMed
23.
Zurück zum Zitat Xiong J, Onal M, Jilka RL, Weinstein RS, Manolagas SC, O'Brien CA (2011) Matrix-embedded cells control osteoclast formation. Nat Med 17:1235PubMedPubMedCentral Xiong J, Onal M, Jilka RL, Weinstein RS, Manolagas SC, O'Brien CA (2011) Matrix-embedded cells control osteoclast formation. Nat Med 17:1235PubMedPubMedCentral
24.
Zurück zum Zitat Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-hora M, Feng JQ, Bonewald LF, Kodama T, Wutz A, Wagner EF, Penninger JM, Takayanagi H (2011) Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med 17:1231PubMed Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-hora M, Feng JQ, Bonewald LF, Kodama T, Wutz A, Wagner EF, Penninger JM, Takayanagi H (2011) Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med 17:1231PubMed
25.
Zurück zum Zitat Xiong J, Piemontese M, Thostenson JD, Weinstein RS, Manolagas SC, O'Brien CA (2014) Osteocyte-derived RANKL is a critical mediator of the increased bone resorption caused by dietary calcium deficiency. Bone 66:146–154PubMedPubMedCentral Xiong J, Piemontese M, Thostenson JD, Weinstein RS, Manolagas SC, O'Brien CA (2014) Osteocyte-derived RANKL is a critical mediator of the increased bone resorption caused by dietary calcium deficiency. Bone 66:146–154PubMedPubMedCentral
26.
Zurück zum Zitat Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J-i, Wagner EF, Mak TW, Kodama T, Taniguchi T (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3(6):889–901PubMed Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J-i, Wagner EF, Mak TW, Kodama T, Taniguchi T (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3(6):889–901PubMed
27.
Zurück zum Zitat Arron JR, Choi Y (2000) Bone versus immune system. Nature 408:535PubMed Arron JR, Choi Y (2000) Bone versus immune system. Nature 408:535PubMed
28.
Zurück zum Zitat Takayanagi H, Ogasawara K, Hida S, Chiba T, Murata S, Sato K, Takaoka A, Yokochi T, Oda H, Tanaka K, Nakamura K, Taniguchi T (2000) T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-γ. Nature 408:600PubMed Takayanagi H, Ogasawara K, Hida S, Chiba T, Murata S, Sato K, Takaoka A, Yokochi T, Oda H, Tanaka K, Nakamura K, Taniguchi T (2000) T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-γ. Nature 408:600PubMed
29.
Zurück zum Zitat Kim N, Odgren PR, Kim DK, Marks SC Jr, Choi Y (2000) Diverse roles of the tumor necrosis factor family member TRANCE in skeletal physiology revealed by TRANCE deficiency and partial rescue by a lymphocyte-expressed TRANCE transgene. Proc Natl Acad Sci U S A 97(20):10905–10910PubMedPubMedCentral Kim N, Odgren PR, Kim DK, Marks SC Jr, Choi Y (2000) Diverse roles of the tumor necrosis factor family member TRANCE in skeletal physiology revealed by TRANCE deficiency and partial rescue by a lymphocyte-expressed TRANCE transgene. Proc Natl Acad Sci U S A 97(20):10905–10910PubMedPubMedCentral
30.
Zurück zum Zitat Walsh MC, Kim N, Kadono Y, Rho J, Lee SY, Lorenzo J, Choi Y (2006) Osteoimmunology: interplay between the immune system and bone metabolism. Annu Rev Immunol 24(1):33–63PubMed Walsh MC, Kim N, Kadono Y, Rho J, Lee SY, Lorenzo J, Choi Y (2006) Osteoimmunology: interplay between the immune system and bone metabolism. Annu Rev Immunol 24(1):33–63PubMed
31.
Zurück zum Zitat S.R. Goldring, Pathogenesis of bone and cartilage destruction in rheumatoid arthritis, Rheumatology 42(suppl_2) (2003) ii11-ii16 S.R. Goldring, Pathogenesis of bone and cartilage destruction in rheumatoid arthritis, Rheumatology 42(suppl_2) (2003) ii11-ii16
32.
Zurück zum Zitat Walsh NC, Gravallese EM (2004) Bone loss in inflammatory arthritis: mechanisms and treatment strategies. Curr Opin Rheumatol 16(4):419–427PubMed Walsh NC, Gravallese EM (2004) Bone loss in inflammatory arthritis: mechanisms and treatment strategies. Curr Opin Rheumatol 16(4):419–427PubMed
33.
Zurück zum Zitat Lorenzo J, Horowitz M, Choi Y (2008) Osteoimmunology: interactions of the bone and immune system. Endocr Rev 29(4):403–440PubMedPubMedCentral Lorenzo J, Horowitz M, Choi Y (2008) Osteoimmunology: interactions of the bone and immune system. Endocr Rev 29(4):403–440PubMedPubMedCentral
34.
Zurück zum Zitat Varol C, Mildner A, Jung S (2015) Macrophages: Development and tissue specialization. Annu Rev Immunol 33(1):643–675PubMed Varol C, Mildner A, Jung S (2015) Macrophages: Development and tissue specialization. Annu Rev Immunol 33(1):643–675PubMed
35.
Zurück zum Zitat Chang MK, Raggatt L-J, Alexander KA, Kuliwaba JS, Fazzalari NL, Schroder K, Maylin ER, Ripoll VM, Hume DA, Pettit AR (2008) Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol 181(2):1232–1244PubMed Chang MK, Raggatt L-J, Alexander KA, Kuliwaba JS, Fazzalari NL, Schroder K, Maylin ER, Ripoll VM, Hume DA, Pettit AR (2008) Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol 181(2):1232–1244PubMed
36.
Zurück zum Zitat Sinder BP, Pettit AR, McCauley LK (2015) Macrophages: their emerging roles in bone. J Bone Miner Res 30(12):2140–2149PubMed Sinder BP, Pettit AR, McCauley LK (2015) Macrophages: their emerging roles in bone. J Bone Miner Res 30(12):2140–2149PubMed
37.
Zurück zum Zitat Nicolaidou V, Wong MM, Redpath AN, Ersek A, Baban DF, Williams LM, Cope AP, Horwood NJ (2012) Monocytes induce STAT3 activation in human mesenchymal stem cells to promote osteoblast formation. PLoS One 7(7):e39871PubMedPubMedCentral Nicolaidou V, Wong MM, Redpath AN, Ersek A, Baban DF, Williams LM, Cope AP, Horwood NJ (2012) Monocytes induce STAT3 activation in human mesenchymal stem cells to promote osteoblast formation. PLoS One 7(7):e39871PubMedPubMedCentral
38.
Zurück zum Zitat Athanasou NA, Heryet A, Quinn J, Gatter KC, Mason DY, McGe JOD (1986) Osteoclasts contain macrophage and megakaryocyte antigens. J Pathol 150(4):239–246PubMed Athanasou NA, Heryet A, Quinn J, Gatter KC, Mason DY, McGe JOD (1986) Osteoclasts contain macrophage and megakaryocyte antigens. J Pathol 150(4):239–246PubMed
39.
Zurück zum Zitat Athanasou NA, Quinn J (1990) Immunophenotypic differences between osteoclasts and macrophage polykaryons: immunohistological distinction and implications for osteoclast ontogeny and function. J Clin Pathol 43(12):997–1003PubMedPubMedCentral Athanasou NA, Quinn J (1990) Immunophenotypic differences between osteoclasts and macrophage polykaryons: immunohistological distinction and implications for osteoclast ontogeny and function. J Clin Pathol 43(12):997–1003PubMedPubMedCentral
40.
Zurück zum Zitat Kersten S, Desvergne B, Wahli W (2000) Roles of PPARs in health and disease. Nature 405:421PubMed Kersten S, Desvergne B, Wahli W (2000) Roles of PPARs in health and disease. Nature 405:421PubMed
41.
Zurück zum Zitat Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schütz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evans RM (1995) The nuclear receptor superfamily: the second decade. Cell 83(6):835–839PubMedPubMedCentral Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schütz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evans RM (1995) The nuclear receptor superfamily: the second decade. Cell 83(6):835–839PubMedPubMedCentral
42.
Zurück zum Zitat T. Lemberger, BD and, W. Wahli, Peroxisome proliferator-activated receptors: a nuclear receptor signaling pathway in lipid physiology, Annu Rev Cell Dev Biol 12(1) (1996) 335–363PubMed T. Lemberger, BD and, W. Wahli, Peroxisome proliferator-activated receptors: a nuclear receptor signaling pathway in lipid physiology, Annu Rev Cell Dev Biol 12(1) (1996) 335–363PubMed
43.
Zurück zum Zitat Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA (1995) An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPARγ). J Biol Chem 270(22):12953–12956 Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA (1995) An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPARγ). J Biol Chem 270(22):12953–12956
44.
Zurück zum Zitat Kliewer SA, Lenhard JM, Willson TM, Patel I, Morris DC, Lehmann JM (1995) A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor γ and promotes adipocyte differentiation. Cell 83(5):813–819PubMed Kliewer SA, Lenhard JM, Willson TM, Patel I, Morris DC, Lehmann JM (1995) A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor γ and promotes adipocyte differentiation. Cell 83(5):813–819PubMed
45.
Zurück zum Zitat Rosen ED, Sarraf P, Troy AE, Bradwin G, Moore K, Milstone DS, Spiegelman BM, Mortensen RM (1999) PPARγ is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell 4(4):611–617PubMed Rosen ED, Sarraf P, Troy AE, Bradwin G, Moore K, Milstone DS, Spiegelman BM, Mortensen RM (1999) PPARγ is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell 4(4):611–617PubMed
46.
Zurück zum Zitat Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK (1998) The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation. Nature 391:79PubMed Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK (1998) The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation. Nature 391:79PubMed
47.
Zurück zum Zitat Rangwala SM, Lazar MA (2004) Peroxisome proliferator-activated receptor γ in diabetes and metabolism. Trends Pharmacol Sci 25(6):331–336PubMed Rangwala SM, Lazar MA (2004) Peroxisome proliferator-activated receptor γ in diabetes and metabolism. Trends Pharmacol Sci 25(6):331–336PubMed
48.
Zurück zum Zitat Moore KJ, Rosen ED, Fitzgerald ML, Randow F, Andersson LP, Altshuler D, Milstone DS, Mortensen RM, Spiegelman BM, Freeman MW (2001) The role of PPAR-γ in macrophage differentiation and cholesterol uptake. Nat Med 7:41PubMed Moore KJ, Rosen ED, Fitzgerald ML, Randow F, Andersson LP, Altshuler D, Milstone DS, Mortensen RM, Spiegelman BM, Freeman MW (2001) The role of PPAR-γ in macrophage differentiation and cholesterol uptake. Nat Med 7:41PubMed
49.
Zurück zum Zitat Tontonoz P, Nagy L, Alvarez JGA, Thomazy VA, Evans RM (1998) PPARγ promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 93(2):241–252PubMed Tontonoz P, Nagy L, Alvarez JGA, Thomazy VA, Evans RM (1998) PPARγ promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 93(2):241–252PubMed
50.
Zurück zum Zitat Heming M, Gran S, Jauch S-L, Fischer-Riepe L, Russo A, Klotz L, Hermann S, Schäfers M, Roth J, Barczyk-Kahlert K (2018) Peroxisome proliferator-activated receptor-γ modulates the response of macrophages to lipopolysaccharide and glucocorticoids. Front Immunol 9(893) Heming M, Gran S, Jauch S-L, Fischer-Riepe L, Russo A, Klotz L, Hermann S, Schäfers M, Roth J, Barczyk-Kahlert K (2018) Peroxisome proliferator-activated receptor-γ modulates the response of macrophages to lipopolysaccharide and glucocorticoids. Front Immunol 9(893)
51.
Zurück zum Zitat Chawla A, Barak Y, Nagy L, Liao D, Tontonoz P, Evans RM (2001) PPAR-γ dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nat Med 7:48PubMed Chawla A, Barak Y, Nagy L, Liao D, Tontonoz P, Evans RM (2001) PPAR-γ dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nat Med 7:48PubMed
52.
Zurück zum Zitat Schneider C, Nobs SP, Kurrer M, Rehrauer H, Thiele C, Kopf M (2014) Induction of the nuclear receptor PPAR-γ by the cytokine GM-CSF is critical for the differentiation of fetal monocytes into alveolar macrophages. Nat Immunol 15:1026PubMed Schneider C, Nobs SP, Kurrer M, Rehrauer H, Thiele C, Kopf M (2014) Induction of the nuclear receptor PPAR-γ by the cytokine GM-CSF is critical for the differentiation of fetal monocytes into alveolar macrophages. Nat Immunol 15:1026PubMed
53.
Zurück zum Zitat Jiang C, Ting AT, Seed B (1998) PPAR-γ agonists inhibit production of monocyte inflammatory cytokines. Nature 391:82PubMed Jiang C, Ting AT, Seed B (1998) PPAR-γ agonists inhibit production of monocyte inflammatory cytokines. Nature 391:82PubMed
54.
Zurück zum Zitat Wan Y, Evans RM (2010) Rosiglitazone activation of PPARγ suppresses fractalkine signaling. J Mol Endocrinol 44(2):135–142PubMedPubMedCentral Wan Y, Evans RM (2010) Rosiglitazone activation of PPARγ suppresses fractalkine signaling. J Mol Endocrinol 44(2):135–142PubMedPubMedCentral
55.
Zurück zum Zitat Wu L, Yan C, Czader M, Foreman O, Blum JS, Kapur R, Du H (2012) Inhibition of PPARγ in myeloid-lineage cells induces systemic inflammation, immunosuppression, and tumorigenesis. Blood 119(1):115–126PubMedPubMedCentral Wu L, Yan C, Czader M, Foreman O, Blum JS, Kapur R, Du H (2012) Inhibition of PPARγ in myeloid-lineage cells induces systemic inflammation, immunosuppression, and tumorigenesis. Blood 119(1):115–126PubMedPubMedCentral
56.
Zurück zum Zitat Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L, Eagle AR, Vats D, Brombacher F, Ferrante AW, Chawla A (2007) Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature 447:1116PubMedPubMedCentral Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L, Eagle AR, Vats D, Brombacher F, Ferrante AW, Chawla A (2007) Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature 447:1116PubMedPubMedCentral
57.
Zurück zum Zitat Bouhlel MA, Derudas B, Rigamonti E, Dièvart R, Brozek J, Haulon S, Zawadzki C, Jude B, Torpier G, Marx N, Staels B, Chinetti-Gbaguidi G (2007) PPARγ activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab 6(2):137–143PubMed Bouhlel MA, Derudas B, Rigamonti E, Dièvart R, Brozek J, Haulon S, Zawadzki C, Jude B, Torpier G, Marx N, Staels B, Chinetti-Gbaguidi G (2007) PPARγ activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab 6(2):137–143PubMed
58.
Zurück zum Zitat Chinetti G, Griglio S, Antonucci M, Torra IP, Delerive P, Majd Z, Fruchart J-C, Chapman J, Najib J, Staels B (1998) Activation of proliferator-activated receptors α and γ induces apoptosis of human monocyte-derived macrophages. J Biol Chem 273(40):25573–25580PubMed Chinetti G, Griglio S, Antonucci M, Torra IP, Delerive P, Majd Z, Fruchart J-C, Chapman J, Najib J, Staels B (1998) Activation of proliferator-activated receptors α and γ induces apoptosis of human monocyte-derived macrophages. J Biol Chem 273(40):25573–25580PubMed
59.
Zurück zum Zitat Bodles AM, Varma V, Yao-Borengasser A, Phanavanh B, Peterson CA, McGehee RE, Rasouli N, Wabitsch M, Kern PA (2006) Pioglitazone induces apoptosis of macrophages in human adipose tissue. J Lipid Res 47(9):2080–2088PubMed Bodles AM, Varma V, Yao-Borengasser A, Phanavanh B, Peterson CA, McGehee RE, Rasouli N, Wabitsch M, Kern PA (2006) Pioglitazone induces apoptosis of macrophages in human adipose tissue. J Lipid Res 47(9):2080–2088PubMed
60.
Zurück zum Zitat Saltiel AR, Olefsky JM (1996) Thiazolidinediones in the treatment of insulin resistance and type ii diabetes. Diabetes 45(12):1661–1669PubMed Saltiel AR, Olefsky JM (1996) Thiazolidinediones in the treatment of insulin resistance and type ii diabetes. Diabetes 45(12):1661–1669PubMed
61.
Zurück zum Zitat Soccio RE, Chen ER, Lazar MA (2014) Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes. Cell Metab 20(4):573–591PubMedPubMedCentral Soccio RE, Chen ER, Lazar MA (2014) Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes. Cell Metab 20(4):573–591PubMedPubMedCentral
62.
Zurück zum Zitat Grey A, Horne A, Wattie D, Reid IR, Bolland M, Gamble G, Davidson J (2007) The peroxisome proliferator-activated receptor-γ agonist rosiglitazone decreases bone formation and bone mineral density in healthy postmenopausal women: a randomized, controlled trial. J Clin Endocrinol Metab 92(4):1305–1310PubMed Grey A, Horne A, Wattie D, Reid IR, Bolland M, Gamble G, Davidson J (2007) The peroxisome proliferator-activated receptor-γ agonist rosiglitazone decreases bone formation and bone mineral density in healthy postmenopausal women: a randomized, controlled trial. J Clin Endocrinol Metab 92(4):1305–1310PubMed
63.
Zurück zum Zitat Kahn SE, Haffner SM, Heise MA, Herman WH, Holman RR, Jones NP, Kravitz BG, Lachin JM, O'Neill MC, Zinman B, Viberti G (2006) Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 355(23):2427–2443PubMed Kahn SE, Haffner SM, Heise MA, Herman WH, Holman RR, Jones NP, Kravitz BG, Lachin JM, O'Neill MC, Zinman B, Viberti G (2006) Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 355(23):2427–2443PubMed
64.
Zurück zum Zitat Kahn SE, Zinman B, Lachin JM, Haffner SM, Herman WH, Holman RR, Kravitz BG, Yu DH, Heise MA, Aftring RP, Viberti G, for the A Diabetes Outcome Progression Trial (ADOPT) study group (2008) Rosiglitazone-Associated Fractures in Type 2 Diabetes An analysis from A Diabetes Outcome Progression Trial (ADOPT). Diabetes Care 31(5):845–851PubMed Kahn SE, Zinman B, Lachin JM, Haffner SM, Herman WH, Holman RR, Kravitz BG, Yu DH, Heise MA, Aftring RP, Viberti G, for the A Diabetes Outcome Progression Trial (ADOPT) study group (2008) Rosiglitazone-Associated Fractures in Type 2 Diabetes An analysis from A Diabetes Outcome Progression Trial (ADOPT). Diabetes Care 31(5):845–851PubMed
65.
Zurück zum Zitat Rzonca SO, Lecka-Czernik B, Gaddy D, Montague DC, Suva LJ (2004) Bone is a target for the antidiabetic compound rosiglitazone. Endocrinology 145(1):401–406PubMed Rzonca SO, Lecka-Czernik B, Gaddy D, Montague DC, Suva LJ (2004) Bone is a target for the antidiabetic compound rosiglitazone. Endocrinology 145(1):401–406PubMed
66.
Zurück zum Zitat Sottile V, Seuwen K, Kneissel M (2004) Enhanced marrow adipogenesis and bone resorption in estrogen-deprived rats treated with the PPARgamma agonist BRL49653 (rosiglitazone). Calcif Tissue Int 75(4):329–337PubMed Sottile V, Seuwen K, Kneissel M (2004) Enhanced marrow adipogenesis and bone resorption in estrogen-deprived rats treated with the PPARgamma agonist BRL49653 (rosiglitazone). Calcif Tissue Int 75(4):329–337PubMed
67.
Zurück zum Zitat Wan Y, Chong L-W, Evans RM (2007) PPAR-γ regulates osteoclastogenesis in mice. Nat Med 13:1496PubMed Wan Y, Chong L-W, Evans RM (2007) PPAR-γ regulates osteoclastogenesis in mice. Nat Med 13:1496PubMed
68.
Zurück zum Zitat Grigoriadis A, Wang Z, Cecchini M, Hofstetter W, Felix R, Fleisch H, Wagner E (1994) c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 266(5184):443–448PubMed Grigoriadis A, Wang Z, Cecchini M, Hofstetter W, Felix R, Fleisch H, Wagner E (1994) c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 266(5184):443–448PubMed
69.
Zurück zum Zitat Wei W, Zeve D, Wang X, Du Y, Tang W, Dechow PC, Graff JM, Wan Y (2011) Osteoclast progenitors reside in the peroxisome proliferator-activated receptor γ-expressing bone marrow cell population. Mol Cell Biol 31(23):4692–4705PubMedPubMedCentral Wei W, Zeve D, Wang X, Du Y, Tang W, Dechow PC, Graff JM, Wan Y (2011) Osteoclast progenitors reside in the peroxisome proliferator-activated receptor γ-expressing bone marrow cell population. Mol Cell Biol 31(23):4692–4705PubMedPubMedCentral
70.
Zurück zum Zitat Akune T, Ohba S, Kamekura S, Yamaguchi M, Chung U-i, Kubota N, Terauchi Y, Harada Y, Azuma Y, Nakamura K, Kadowaki T, Kawaguchi H (2004) PPAR γ insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Invest 113(6):846–855PubMedPubMedCentral Akune T, Ohba S, Kamekura S, Yamaguchi M, Chung U-i, Kubota N, Terauchi Y, Harada Y, Azuma Y, Nakamura K, Kadowaki T, Kawaguchi H (2004) PPAR γ insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Invest 113(6):846–855PubMedPubMedCentral
71.
Zurück zum Zitat Lazarenko OP, Rzonca SO, Lecka-Czernik B, Swain FL, Suva LJ, Hogue WR (2007) Rosiglitazone induces decreases in bone mass and strength that are reminiscent of aged bone. Endocrinology 148(6):2669–2680PubMed Lazarenko OP, Rzonca SO, Lecka-Czernik B, Swain FL, Suva LJ, Hogue WR (2007) Rosiglitazone induces decreases in bone mass and strength that are reminiscent of aged bone. Endocrinology 148(6):2669–2680PubMed
72.
Zurück zum Zitat Wan Y (2010) PPARγ in bone homeostasis. Trends Endocrinol Metab 21(12):722–728PubMed Wan Y (2010) PPARγ in bone homeostasis. Trends Endocrinol Metab 21(12):722–728PubMed
73.
Zurück zum Zitat Stechschulte LA, Czernik PJ, Rotter ZC, Tausif FN, Corzo CA, Marciano DP, Asteian A, Zheng J, Bruning JB, Kamenecka TM, Rosen CJ, Griffin PR, Lecka-Czernik B (2016) PPARG post-translational modifications regulate bone formation and bone resorption. EBioMedicine 10:174–184PubMedPubMedCentral Stechschulte LA, Czernik PJ, Rotter ZC, Tausif FN, Corzo CA, Marciano DP, Asteian A, Zheng J, Bruning JB, Kamenecka TM, Rosen CJ, Griffin PR, Lecka-Czernik B (2016) PPARG post-translational modifications regulate bone formation and bone resorption. EBioMedicine 10:174–184PubMedPubMedCentral
74.
Zurück zum Zitat Choi S, Chung S, Park K (2018) Re-highlighting the action of PPAR? in treating metabolic diseases [version 1; referees: 2 approved]. F1000Research 7(1127) Choi S, Chung S, Park K (2018) Re-highlighting the action of PPAR? in treating metabolic diseases [version 1; referees: 2 approved]. F1000Research 7(1127)
75.
Zurück zum Zitat Wei W, Wang X, Yang M, Smith LC, Dechow PC, Sonoda J, Evans RM, Wan Y (2010) PGC1β mediates pparγ activation of osteoclastogenesis and rosiglitazone-induced bone loss. Cell Metab 12(2):202 Wei W, Wang X, Yang M, Smith LC, Dechow PC, Sonoda J, Evans RM, Wan Y (2010) PGC1β mediates pparγ activation of osteoclastogenesis and rosiglitazone-induced bone loss. Cell Metab 12(2):202
76.
Zurück zum Zitat Wei W, Schwaid AG, Wang X, Wang X, Chen S, Chu Q, Saghatelian A, Wan Y (2016) Ligand activation of ERRα by cholesterol mediates statin and bisphosphonate effects. Cell Metab 23(3):479–491PubMedPubMedCentral Wei W, Schwaid AG, Wang X, Wang X, Chen S, Chu Q, Saghatelian A, Wan Y (2016) Ligand activation of ERRα by cholesterol mediates statin and bisphosphonate effects. Cell Metab 23(3):479–491PubMedPubMedCentral
77.
Zurück zum Zitat Giguère V, Yang N, Segui P, Evans RM (1988) Identification of a new class of steroid hormone receptors. Nature 331(6151):91–94PubMed Giguère V, Yang N, Segui P, Evans RM (1988) Identification of a new class of steroid hormone receptors. Nature 331(6151):91–94PubMed
78.
Zurück zum Zitat Hong H, Yang L, Stallcup MR (1999) Hormone-independent transcriptional activation and coactivator binding by novel orphan nuclear receptor ERR3. J Biol Chem 274(32):22618–22626PubMed Hong H, Yang L, Stallcup MR (1999) Hormone-independent transcriptional activation and coactivator binding by novel orphan nuclear receptor ERR3. J Biol Chem 274(32):22618–22626PubMed
79.
Zurück zum Zitat Heard DJ, Vissing H, Norby PL, Holloway J (2000) Human ERRγ, a third member of the estrogen receptor-related receptor (ERR) subfamily of orphan nuclear receptors: tissue-specific isoforms are expressed during development and in the adult. Mol Endocrinol 14(3):382–392PubMed Heard DJ, Vissing H, Norby PL, Holloway J (2000) Human ERRγ, a third member of the estrogen receptor-related receptor (ERR) subfamily of orphan nuclear receptors: tissue-specific isoforms are expressed during development and in the adult. Mol Endocrinol 14(3):382–392PubMed
80.
Zurück zum Zitat Giguére V (2002) To ERR in the estrogen pathway. Trends Endocrinol Metab 13(5):220–225PubMed Giguére V (2002) To ERR in the estrogen pathway. Trends Endocrinol Metab 13(5):220–225PubMed
81.
Zurück zum Zitat Kallen J, Schlaeppi J-M, Bitsch F, Filipuzzi I, Schilb A, Riou V, Graham A, Strauss A, Geiser M, Fournier B (2004) Evidence for ligand-independent transcriptional activation of the human estrogen-related receptor α (ERRα): crystal structure of ERRα ligand binding domain in complex with peroxisome proliferator-activated receptor coactivator-1α. J Biol Chem 279(47):49330–49337PubMed Kallen J, Schlaeppi J-M, Bitsch F, Filipuzzi I, Schilb A, Riou V, Graham A, Strauss A, Geiser M, Fournier B (2004) Evidence for ligand-independent transcriptional activation of the human estrogen-related receptor α (ERRα): crystal structure of ERRα ligand binding domain in complex with peroxisome proliferator-activated receptor coactivator-1α. J Biol Chem 279(47):49330–49337PubMed
82.
Zurück zum Zitat Bonnelye E, Vanacker JM, Spruyt N, Alric S, Fournier B, Desbiens X, Laudet V (1997) Expression of the estrogen-related receptor 1 (ERR-1) orphan receptor during mouse development. Mech Dev 65(1):71–85PubMed Bonnelye E, Vanacker JM, Spruyt N, Alric S, Fournier B, Desbiens X, Laudet V (1997) Expression of the estrogen-related receptor 1 (ERR-1) orphan receptor during mouse development. Mech Dev 65(1):71–85PubMed
83.
Zurück zum Zitat Giguère V (2008) Transcriptional control of energy homeostasis by the estrogen-related receptors. Endocr Rev 29(6):677–696PubMed Giguère V (2008) Transcriptional control of energy homeostasis by the estrogen-related receptors. Endocr Rev 29(6):677–696PubMed
84.
Zurück zum Zitat Audet-walsh É, Giguére V (2014) The multiple universes of estrogen-related receptor α and γ in metabolic control and related diseases. Acta Pharmacol Sin 36:51PubMedPubMedCentral Audet-walsh É, Giguére V (2014) The multiple universes of estrogen-related receptor α and γ in metabolic control and related diseases. Acta Pharmacol Sin 36:51PubMedPubMedCentral
85.
Zurück zum Zitat Luo J, Sladek R, Carrier J, Bader J-A, Richard D, Giguère V (2003) Reduced fat mass in mice lacking orphan nuclear receptor estrogen-related receptor α. Mol Cell Biol 23(22):7947–7956PubMedPubMedCentral Luo J, Sladek R, Carrier J, Bader J-A, Richard D, Giguère V (2003) Reduced fat mass in mice lacking orphan nuclear receptor estrogen-related receptor α. Mol Cell Biol 23(22):7947–7956PubMedPubMedCentral
86.
Zurück zum Zitat Huss JM, Imahashi K-i, Dufour CR, Weinheimer CJ, Courtois M, Kovacs A, Giguère V, Murphy E, Kelly DP (2007) The nuclear receptor ERRα is required for the bioenergetic and functional adaptation to cardiac pressure overload. Cell Metab 6(1):25–37PubMed Huss JM, Imahashi K-i, Dufour CR, Weinheimer CJ, Courtois M, Kovacs A, Giguère V, Murphy E, Kelly DP (2007) The nuclear receptor ERRα is required for the bioenergetic and functional adaptation to cardiac pressure overload. Cell Metab 6(1):25–37PubMed
87.
Zurück zum Zitat Vanacker JM, Pettersson K, Gustafsson JÅ, Laudet V (1999) Transcriptional targets shared by estrogen receptor-related receptors (ERRs) and estrogen receptor (ER) α, but not by ERβ. EMBO J 18(15):4270–4279PubMedPubMedCentral Vanacker JM, Pettersson K, Gustafsson JÅ, Laudet V (1999) Transcriptional targets shared by estrogen receptor-related receptors (ERRs) and estrogen receptor (ER) α, but not by ERβ. EMBO J 18(15):4270–4279PubMedPubMedCentral
88.
Zurück zum Zitat Sladek R, Bader JA, Giguère V (1997) The orphan nuclear receptor estrogen-related receptor alpha is a transcriptional regulator of the human medium-chain acyl coenzyme A dehydrogenase gene. Mol Cell Biol 17(9):5400–5409PubMedPubMedCentral Sladek R, Bader JA, Giguère V (1997) The orphan nuclear receptor estrogen-related receptor alpha is a transcriptional regulator of the human medium-chain acyl coenzyme A dehydrogenase gene. Mol Cell Biol 17(9):5400–5409PubMedPubMedCentral
89.
Zurück zum Zitat Vega R, Kelly D (1997) A role for estrogen-related receptor α in the control of mitochondrial fatty acid β-oxidation during brown adipocyte differentiation. J Biol Chem 272:31693–31699PubMed Vega R, Kelly D (1997) A role for estrogen-related receptor α in the control of mitochondrial fatty acid β-oxidation during brown adipocyte differentiation. J Biol Chem 272:31693–31699PubMed
90.
Zurück zum Zitat Huss JM, Kopp RP, Kelly DP (2002) Peroxisome proliferator-activated receptor coactivator-1α (PGC-1α) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-α and -γ: identification of novel leucine-rich interaction motif within PGC-1α. J Biol Chem 277(43):40265–40274PubMed Huss JM, Kopp RP, Kelly DP (2002) Peroxisome proliferator-activated receptor coactivator-1α (PGC-1α) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-α and -γ: identification of novel leucine-rich interaction motif within PGC-1α. J Biol Chem 277(43):40265–40274PubMed
91.
Zurück zum Zitat Kamei Y, Ohizumi H, Fujitani Y, Nemoto T, Tanaka T, Takahashi N, Kawada T, Miyoshi M, Ezaki O, Kakizuka A (2003) PPARγ coactivator 1β/ERR ligand 1 is an ERR protein ligand, whose expression induces a high-energy expenditure and antagonizes obesity. Proc Natl Acad Sci 100(21):12378–12383PubMedPubMedCentral Kamei Y, Ohizumi H, Fujitani Y, Nemoto T, Tanaka T, Takahashi N, Kawada T, Miyoshi M, Ezaki O, Kakizuka A (2003) PPARγ coactivator 1β/ERR ligand 1 is an ERR protein ligand, whose expression induces a high-energy expenditure and antagonizes obesity. Proc Natl Acad Sci 100(21):12378–12383PubMedPubMedCentral
92.
Zurück zum Zitat Schreiber SN, Knutti D, Brogli K, Uhlmann T, Kralli A (2003) The transcriptional coactivator PGC-1 regulates the expression and activity of the orphan nuclear receptor estrogen-related receptor α (ERRα). J Biol Chem 278(11):9013–9018PubMed Schreiber SN, Knutti D, Brogli K, Uhlmann T, Kralli A (2003) The transcriptional coactivator PGC-1 regulates the expression and activity of the orphan nuclear receptor estrogen-related receptor α (ERRα). J Biol Chem 278(11):9013–9018PubMed
93.
Zurück zum Zitat Wende AR, Huss JM, Schaeffer PJ, Giguère V, Kelly DP (2005) PGC-1α coactivates PDK4 gene expression via the orphan nuclear receptor ERRα: a mechanism for transcriptional control of muscle glucose metabolism. Mol Cell Biol 25(24):10684–10694PubMedPubMedCentral Wende AR, Huss JM, Schaeffer PJ, Giguère V, Kelly DP (2005) PGC-1α coactivates PDK4 gene expression via the orphan nuclear receptor ERRα: a mechanism for transcriptional control of muscle glucose metabolism. Mol Cell Biol 25(24):10684–10694PubMedPubMedCentral
94.
Zurück zum Zitat Sonoda J, Laganière J, Mehl IR, Barish GD, Chong L-W, Li X, Scheffler IE, Mock DC, Bataille AR, Robert F (2007) Nuclear receptor ERRα and coactivator PGC-1β are effectors of IFN-γ-induced host defense. Genes Dev 21(15):1909–1920PubMedPubMedCentral Sonoda J, Laganière J, Mehl IR, Barish GD, Chong L-W, Li X, Scheffler IE, Mock DC, Bataille AR, Robert F (2007) Nuclear receptor ERRα and coactivator PGC-1β are effectors of IFN-γ-induced host defense. Genes Dev 21(15):1909–1920PubMedPubMedCentral
95.
Zurück zum Zitat Yuk J-M, Kim TS, Kim SY, Lee H-M, Han J, Dufour CR, Kim JK, Jin HS, Yang C-S, Park K-S, Lee C-H, Kim J-M, Kweon GR, Choi H-S, Vanacker J-M, Moore DD, Giguère V, Jo E-K (2015) Orphan nuclear receptor ERRα controls macrophage metabolic signaling and A20 expression to negatively regulate TLR-induced inflammation. Immunity 43(1):80–91PubMed Yuk J-M, Kim TS, Kim SY, Lee H-M, Han J, Dufour CR, Kim JK, Jin HS, Yang C-S, Park K-S, Lee C-H, Kim J-M, Kweon GR, Choi H-S, Vanacker J-M, Moore DD, Giguère V, Jo E-K (2015) Orphan nuclear receptor ERRα controls macrophage metabolic signaling and A20 expression to negatively regulate TLR-induced inflammation. Immunity 43(1):80–91PubMed
96.
Zurück zum Zitat He X, Ma S, Tian Y, Wei C, Zhu Y, Li F, Zhang P, Wang P, Zhang Y, Zhong H (2017) ERRα negatively regulates type I interferon induction by inhibiting TBK1-IRF3 interaction. PLoS Pathog 13(6):e1006347PubMedPubMedCentral He X, Ma S, Tian Y, Wei C, Zhu Y, Li F, Zhang P, Wang P, Zhang Y, Zhong H (2017) ERRα negatively regulates type I interferon induction by inhibiting TBK1-IRF3 interaction. PLoS Pathog 13(6):e1006347PubMedPubMedCentral
97.
Zurück zum Zitat Kim SY, Yang C-S, Lee H-M, Kim JK, Kim Y-S, Kim Y-R, Kim J-S, Kim TS, Yuk J-M, Dufour CR, Lee S-H, Kim J-M, Choi H-S, Giguère V, Jo E-K (2018) ESRRA (estrogen-related receptor α) is a key coordinator of transcriptional and post-translational activation of autophagy to promote innate host defense. Autophagy 14(1):152–168PubMed Kim SY, Yang C-S, Lee H-M, Kim JK, Kim Y-S, Kim Y-R, Kim J-S, Kim TS, Yuk J-M, Dufour CR, Lee S-H, Kim J-M, Choi H-S, Giguère V, Jo E-K (2018) ESRRA (estrogen-related receptor α) is a key coordinator of transcriptional and post-translational activation of autophagy to promote innate host defense. Autophagy 14(1):152–168PubMed
98.
Zurück zum Zitat Bae S, Lee MJ, Mun SH, Giannopoulou EG, Yong-Gonzalez V, Cross JR, Murata K, Giguère V, van der Meulen M, Park-Min K-H (2017) MYC-dependent oxidative metabolism regulates osteoclastogenesis via nuclear receptor ERRα. J Clin Invest 127(7):2555–2568PubMedPubMedCentral Bae S, Lee MJ, Mun SH, Giannopoulou EG, Yong-Gonzalez V, Cross JR, Murata K, Giguère V, van der Meulen M, Park-Min K-H (2017) MYC-dependent oxidative metabolism regulates osteoclastogenesis via nuclear receptor ERRα. J Clin Invest 127(7):2555–2568PubMedPubMedCentral
99.
Zurück zum Zitat Ocampo CB, Downes M, Yu RT, Evans RM, Barish GD, Alaynick WA, Bookout AL, Mangelsdorf DJ (2005) A nuclear receptor atlas: macrophage activation. Mol Endocrinol 19(10):2466–2477PubMed Ocampo CB, Downes M, Yu RT, Evans RM, Barish GD, Alaynick WA, Bookout AL, Mangelsdorf DJ (2005) A nuclear receptor atlas: macrophage activation. Mol Endocrinol 19(10):2466–2477PubMed
100.
Zurück zum Zitat Bonnelye E, Kung V, Aubin JE, Laplace C, Galson DL (2002) Estrogen receptor-related receptor α impinges on the estrogen axis in bone: potential function in osteoporosis. Endocrinology 143(9):3658–3670PubMed Bonnelye E, Kung V, Aubin JE, Laplace C, Galson DL (2002) Estrogen receptor-related receptor α impinges on the estrogen axis in bone: potential function in osteoporosis. Endocrinology 143(9):3658–3670PubMed
101.
Zurück zum Zitat Bonnelye E, Saltel F, Chabadel A, Zirngibl RA, Aubin JE, Jurdic P (2010) Involvement of the orphan nuclear estrogen receptor-related receptor α in osteoclast adhesion and transmigration. J Mol Endocrinol 45(6):365–377PubMedPubMedCentral Bonnelye E, Saltel F, Chabadel A, Zirngibl RA, Aubin JE, Jurdic P (2010) Involvement of the orphan nuclear estrogen receptor-related receptor α in osteoclast adhesion and transmigration. J Mol Endocrinol 45(6):365–377PubMedPubMedCentral
102.
Zurück zum Zitat Studer A, Morvan F, Evans G, Delhon I, Wyder L, Kneissel M, Gutzwiller S, Fournier B, Rangwala S (2009) Absence of estrogen receptor-related-α increases osteoblastic differentiation and cancellous bone mineral density. Endocrinology 150(10):4463–4472PubMed Studer A, Morvan F, Evans G, Delhon I, Wyder L, Kneissel M, Gutzwiller S, Fournier B, Rangwala S (2009) Absence of estrogen receptor-related-α increases osteoblastic differentiation and cancellous bone mineral density. Endocrinology 150(10):4463–4472PubMed
103.
Zurück zum Zitat Teyssier C, Gallet M, Rabier B, Monfoulet L, Dine J, Macari C, Espallergues J, Horard B, Giguère V, Cohen-Solal M, Chassande O, Vanacker J-M (2009) Absence of ERRα in female mice confers resistance to bone loss induced by age or estrogen-deficiency. PLoS One 4(11):e7942PubMedPubMedCentral Teyssier C, Gallet M, Rabier B, Monfoulet L, Dine J, Macari C, Espallergues J, Horard B, Giguère V, Cohen-Solal M, Chassande O, Vanacker J-M (2009) Absence of ERRα in female mice confers resistance to bone loss induced by age or estrogen-deficiency. PLoS One 4(11):e7942PubMedPubMedCentral
104.
Zurück zum Zitat Lin J, Puigserver P, Donovan J, Tarr P, Spiegelman BM (2002) Peroxisome proliferator-activated receptor γ coactivator 1β (PGC-1β), a novel PGC-1-related transcription coactivator associated with host cell factor. J Biol Chem 277(3):1645–1648PubMed Lin J, Puigserver P, Donovan J, Tarr P, Spiegelman BM (2002) Peroxisome proliferator-activated receptor γ coactivator 1β (PGC-1β), a novel PGC-1-related transcription coactivator associated with host cell factor. J Biol Chem 277(3):1645–1648PubMed
105.
Zurück zum Zitat Lin J, Tarr PT, Yang R, Rhee J, Puigserver P, Newgard CB, Spiegelman BM (2003) PGC-1β in the regulation of hepatic glucose and energy metabolism. J Biol Chem 278(33):30843–30848PubMed Lin J, Tarr PT, Yang R, Rhee J, Puigserver P, Newgard CB, Spiegelman BM (2003) PGC-1β in the regulation of hepatic glucose and energy metabolism. J Biol Chem 278(33):30843–30848PubMed
106.
Zurück zum Zitat St-Pierre J, Lin J, Krauss S, Tarr PT, Yang R, Newgard CB, Spiegelman BM (2003) Bioenergetic analysis of peroxisome proliferator-activated receptor γ coactivators 1α and 1β (PGC-1α and PGC-1β) in muscle cells. J Biol Chem 278(29):26597–26603PubMed St-Pierre J, Lin J, Krauss S, Tarr PT, Yang R, Newgard CB, Spiegelman BM (2003) Bioenergetic analysis of peroxisome proliferator-activated receptor γ coactivators 1α and 1β (PGC-1α and PGC-1β) in muscle cells. J Biol Chem 278(29):26597–26603PubMed
107.
Zurück zum Zitat Sonoda J, Mehl IR, Chong L-W, Nofsinger RR, Evans RM (2007) PGC-1β controls mitochondrial metabolism to modulate circadian activity, adaptive thermogenesis, and hepatic steatosis. Proc Natl Acad Sci 104(12):5223–5228PubMedPubMedCentral Sonoda J, Mehl IR, Chong L-W, Nofsinger RR, Evans RM (2007) PGC-1β controls mitochondrial metabolism to modulate circadian activity, adaptive thermogenesis, and hepatic steatosis. Proc Natl Acad Sci 104(12):5223–5228PubMedPubMedCentral
108.
Zurück zum Zitat Lai L, Leone TC, Zechner C, Schaeffer PJ, Kelly SM, Flanagan DP, Medeiros DM, Kovacs A, Kelly DP (2008) Transcriptional coactivators PGC-1α and PGC-lβ control overlapping programs required for perinatal maturation of the heart. Genes Dev 22(14):1948–1961PubMedPubMedCentral Lai L, Leone TC, Zechner C, Schaeffer PJ, Kelly SM, Flanagan DP, Medeiros DM, Kovacs A, Kelly DP (2008) Transcriptional coactivators PGC-1α and PGC-lβ control overlapping programs required for perinatal maturation of the heart. Genes Dev 22(14):1948–1961PubMedPubMedCentral
109.
Zurück zum Zitat Vianna CR, Huntgeburth M, Coppari R, Choi CS, Lin J, Krauss S, Barbatelli G, Tzameli I, Kim Y-B, Cinti S, Shulman GI, Spiegelman BM, Lowell BB (2006) Hypomorphic mutation of PGC-1β causes mitochondrial dysfunction and liver insulin resistance. Cell Metab 4(6):453–464PubMedPubMedCentral Vianna CR, Huntgeburth M, Coppari R, Choi CS, Lin J, Krauss S, Barbatelli G, Tzameli I, Kim Y-B, Cinti S, Shulman GI, Spiegelman BM, Lowell BB (2006) Hypomorphic mutation of PGC-1β causes mitochondrial dysfunction and liver insulin resistance. Cell Metab 4(6):453–464PubMedPubMedCentral
110.
Zurück zum Zitat Lelliott CJ, Medina-Gomez G, Petrovic N, Kis A, Feldmann HM, Bjursell M, Parker N, Curtis K, Campbell M, Hu P, Zhang D, Litwin SE, Zaha VG, Fountain KT, Boudina S, Jimenez-Linan M, Blount M, Lopez M, Meirhaeghe A, Bohlooly-Y M, Storlien L, Strömstedt M, Snaith M, Orešič M, Abel ED, Cannon B, Vidal-Puig A (2006) Ablation of PGC-1β results in defective mitochondrial activity, thermogenesis, hepatic function, and cardiac performance. PLoS Biol 4(11):e369PubMedPubMedCentral Lelliott CJ, Medina-Gomez G, Petrovic N, Kis A, Feldmann HM, Bjursell M, Parker N, Curtis K, Campbell M, Hu P, Zhang D, Litwin SE, Zaha VG, Fountain KT, Boudina S, Jimenez-Linan M, Blount M, Lopez M, Meirhaeghe A, Bohlooly-Y M, Storlien L, Strömstedt M, Snaith M, Orešič M, Abel ED, Cannon B, Vidal-Puig A (2006) Ablation of PGC-1β results in defective mitochondrial activity, thermogenesis, hepatic function, and cardiac performance. PLoS Biol 4(11):e369PubMedPubMedCentral
111.
Zurück zum Zitat Gali Ramamoorthy T, Laverny G, Schlagowski A-I, Zoll J, Messaddeq N, Bornert J-M, Panza S, Ferry A, Geny B, Metzger D (2015) The transcriptional coregulator PGC-1β controls mitochondrial function and anti-oxidant defence in skeletal muscles. Nat Commun 6:10210PubMed Gali Ramamoorthy T, Laverny G, Schlagowski A-I, Zoll J, Messaddeq N, Bornert J-M, Panza S, Ferry A, Geny B, Metzger D (2015) The transcriptional coregulator PGC-1β controls mitochondrial function and anti-oxidant defence in skeletal muscles. Nat Commun 6:10210PubMed
112.
Zurück zum Zitat Arany Z, Lebrasseur N, Morris C, Smith E, Yang W, Ma Y, Chin S, Spiegelman BM (2007) The transcriptional coactivator PGC-1β drives the formation of oxidative type IIX fibers in skeletal muscle. Cell Metab 5(1):35–46PubMed Arany Z, Lebrasseur N, Morris C, Smith E, Yang W, Ma Y, Chin S, Spiegelman BM (2007) The transcriptional coactivator PGC-1β drives the formation of oxidative type IIX fibers in skeletal muscle. Cell Metab 5(1):35–46PubMed
113.
Zurück zum Zitat Bellafante E, Murzilli S, Salvatore L, Latorre D, Villani G, Moschetta A (2013) Hepatic-specific activation of peroxisome proliferator-activated receptor γ coactivator-1β protects against steatohepatitis. Hepatology 57(4):1343–1356PubMed Bellafante E, Murzilli S, Salvatore L, Latorre D, Villani G, Moschetta A (2013) Hepatic-specific activation of peroxisome proliferator-activated receptor γ coactivator-1β protects against steatohepatitis. Hepatology 57(4):1343–1356PubMed
114.
Zurück zum Zitat Enguix N, Pardo R, González A, López VM, Simó R, Kralli A, Villena JA (2013) Mice lacking PGC-1β in adipose tissues reveal a dissociation between mitochondrial dysfunction and insulin resistance. Mol Metab 2(3):215–226PubMedPubMedCentral Enguix N, Pardo R, González A, López VM, Simó R, Kralli A, Villena JA (2013) Mice lacking PGC-1β in adipose tissues reveal a dissociation between mitochondrial dysfunction and insulin resistance. Mol Metab 2(3):215–226PubMedPubMedCentral
115.
Zurück zum Zitat Chambers KT, Chen Z, Crawford PA, Fu X, Burgess SC, Lai L, Leone TC, Kelly DP, Finck BN (2012) Liver-specific PGC-1beta deficiency leads to impaired mitochondrial function and lipogenic response to fasting-refeeding. PLoS One 7(12):e52645PubMedPubMedCentral Chambers KT, Chen Z, Crawford PA, Fu X, Burgess SC, Lai L, Leone TC, Kelly DP, Finck BN (2012) Liver-specific PGC-1beta deficiency leads to impaired mitochondrial function and lipogenic response to fasting-refeeding. PLoS One 7(12):e52645PubMedPubMedCentral
116.
Zurück zum Zitat Vats D, Mukundan L, Odegaard JI, Zhang L, Smith KL, Morel CR, Greaves DR, Murray PJ, Chawla A (2006) Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation. Cell Metab 4(1):13–24PubMedPubMedCentral Vats D, Mukundan L, Odegaard JI, Zhang L, Smith KL, Morel CR, Greaves DR, Murray PJ, Chawla A (2006) Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation. Cell Metab 4(1):13–24PubMedPubMedCentral
117.
Zurück zum Zitat Van den Bossche J, Baardman J, Otto NA, van der Velden S, Neele AE, van den Berg SM, Luque-Martin R, Chen H-J, Boshuizen MCS, Ahmed M, Hoeksema MA, de Vos AF, de Winther MPJ (2016) Mitochondrial dysfunction prevents repolarization of inflammatory macrophages. Cell Rep 17(3):684–696PubMed Van den Bossche J, Baardman J, Otto NA, van der Velden S, Neele AE, van den Berg SM, Luque-Martin R, Chen H-J, Boshuizen MCS, Ahmed M, Hoeksema MA, de Vos AF, de Winther MPJ (2016) Mitochondrial dysfunction prevents repolarization of inflammatory macrophages. Cell Rep 17(3):684–696PubMed
118.
Zurück zum Zitat Byles V, Covarrubias AJ, Ben-Sahra I, Lamming DW, Sabatini DM, Manning BD, Horng T (2013) The TSC-mTOR pathway regulates macrophage polarization. Nat Commun 4:2834PubMed Byles V, Covarrubias AJ, Ben-Sahra I, Lamming DW, Sabatini DM, Manning BD, Horng T (2013) The TSC-mTOR pathway regulates macrophage polarization. Nat Commun 4:2834PubMed
119.
Zurück zum Zitat Chen H, Liu Y, Li D, Song J, Xia M (2016) PGC-1β suppresses saturated fatty acid-induced macrophage inflammation by inhibiting TAK1 activation. IUBMB Life 68(2):145–155PubMed Chen H, Liu Y, Li D, Song J, Xia M (2016) PGC-1β suppresses saturated fatty acid-induced macrophage inflammation by inhibiting TAK1 activation. IUBMB Life 68(2):145–155PubMed
120.
Zurück zum Zitat Eisele PS, Furrer R, Beer M, Handschin C (2015) The PGC-1 coactivators promote an anti-inflammatory environment in skeletal muscle in vivo. Biochem Biophys Res Commun 464(3):692–697PubMedPubMedCentral Eisele PS, Furrer R, Beer M, Handschin C (2015) The PGC-1 coactivators promote an anti-inflammatory environment in skeletal muscle in vivo. Biochem Biophys Res Commun 464(3):692–697PubMedPubMedCentral
121.
Zurück zum Zitat Ishii K-a, Fumoto T, Iwai K, Takeshita S, Ito M, Shimohata N, Aburatani H, Taketani S, Lelliott CJ, Vidal-Puig A, Ikeda K (2009) Coordination of PGC-1β and iron uptake in mitochondrial biogenesis and osteoclast activation. Nat Med 15:259PubMed Ishii K-a, Fumoto T, Iwai K, Takeshita S, Ito M, Shimohata N, Aburatani H, Taketani S, Lelliott CJ, Vidal-Puig A, Ikeda K (2009) Coordination of PGC-1β and iron uptake in mitochondrial biogenesis and osteoclast activation. Nat Med 15:259PubMed
122.
Zurück zum Zitat Carroll J, Fearnley IM, Shannon RJ, Hirst J, Walker JE (2003) Analysis of the subunit composition of complex I from bovine heart mitochondria. Mol Cell Proteomics 2(2):117–126PubMed Carroll J, Fearnley IM, Shannon RJ, Hirst J, Walker JE (2003) Analysis of the subunit composition of complex I from bovine heart mitochondria. Mol Cell Proteomics 2(2):117–126PubMed
123.
Zurück zum Zitat Carroll J, Fearnley IM, Skehel JM, Shannon RJ, Hirst J, Walker JE (2006) Bovine complex I is a complex of 45 different subunits. J Biol Chem 281(43):32724–32727PubMed Carroll J, Fearnley IM, Skehel JM, Shannon RJ, Hirst J, Walker JE (2006) Bovine complex I is a complex of 45 different subunits. J Biol Chem 281(43):32724–32727PubMed
124.
Zurück zum Zitat D.M. Kirby, M. Crawford, M.A. Cleary, H.-H.M. Dahl, X. Dennett, D.R. Thorburn, Respiratory chain complex I deficiency: an underdiagnosed energy generation disorder 52(6) (1999) 1255–1255 D.M. Kirby, M. Crawford, M.A. Cleary, H.-H.M. Dahl, X. Dennett, D.R. Thorburn, Respiratory chain complex I deficiency: an underdiagnosed energy generation disorder 52(6) (1999) 1255–1255
125.
Zurück zum Zitat Mimaki M, Wang X, McKenzie M, Thorburn DR, Ryan MT (2012) Understanding mitochondrial complex I assembly in health and disease. Biochim Biophys Acta, Bioenerg 1817(6):851–862 Mimaki M, Wang X, McKenzie M, Thorburn DR, Ryan MT (2012) Understanding mitochondrial complex I assembly in health and disease. Biochim Biophys Acta, Bioenerg 1817(6):851–862
126.
Zurück zum Zitat Finsterer J (2006) Central nervous system manifestations of mitochondrial disorders. Acta Neurol Scand 114(4):217–238PubMed Finsterer J (2006) Central nervous system manifestations of mitochondrial disorders. Acta Neurol Scand 114(4):217–238PubMed
127.
Zurück zum Zitat Coskun P, Wyrembak J, Schriner SE, Chen H-W, Marciniack C, LaFerla F, Wallace DC (2012) A mitochondrial etiology of Alzheimer and Parkinson disease. Biochim Biophys Acta Gen Subj 1820(5):553–564 Coskun P, Wyrembak J, Schriner SE, Chen H-W, Marciniack C, LaFerla F, Wallace DC (2012) A mitochondrial etiology of Alzheimer and Parkinson disease. Biochim Biophys Acta Gen Subj 1820(5):553–564
128.
Zurück zum Zitat Kruse SE, Watt WC, Marcinek DJ, Kapur RP, Schenkman KA, Palmiter RD (2008) Mice with mitochondrial complex I deficiency develop a fatal encephalomyopathy. Cell Metab 7(4):312–320PubMedPubMedCentral Kruse SE, Watt WC, Marcinek DJ, Kapur RP, Schenkman KA, Palmiter RD (2008) Mice with mitochondrial complex I deficiency develop a fatal encephalomyopathy. Cell Metab 7(4):312–320PubMedPubMedCentral
129.
Zurück zum Zitat Scacco S, Petruzzella V, Budde S, Vergari R, Tamborra R, Panelli D, van den Heuvel LP, Smeitink JA, Papa S (2003) Pathological mutations of the human NDUFS4 gene of the 18-kDa (AQDQ) subunit of complex I affect the expression of the protein and the assembly and function of the complex. J Biol Chem 278(45):44161–44167PubMed Scacco S, Petruzzella V, Budde S, Vergari R, Tamborra R, Panelli D, van den Heuvel LP, Smeitink JA, Papa S (2003) Pathological mutations of the human NDUFS4 gene of the 18-kDa (AQDQ) subunit of complex I affect the expression of the protein and the assembly and function of the complex. J Biol Chem 278(45):44161–44167PubMed
130.
Zurück zum Zitat Petruzzella V, Papa S (2002) Mutations in human nuclear genes encoding for subunits of mitochondrial respiratory complex I: the NDUFS4 gene. Gene 286(1):149–154PubMed Petruzzella V, Papa S (2002) Mutations in human nuclear genes encoding for subunits of mitochondrial respiratory complex I: the NDUFS4 gene. Gene 286(1):149–154PubMed
131.
Zurück zum Zitat Budde SMS, van den Heuvel LPWJ, Smeets RJP, Skladal D, Mayr JA, Boelen C, Petruzzella V, Papa S, Smeitink JAM (2003) Clinical heterogeneity in patients with mutations in the NDUFS4 gene of mitochondrial complex I. J Inherit Metab Dis 26(8):813–815PubMed Budde SMS, van den Heuvel LPWJ, Smeets RJP, Skladal D, Mayr JA, Boelen C, Petruzzella V, Papa S, Smeitink JAM (2003) Clinical heterogeneity in patients with mutations in the NDUFS4 gene of mitochondrial complex I. J Inherit Metab Dis 26(8):813–815PubMed
132.
Zurück zum Zitat Ugalde C, Smeitink JAM, van den Heuvel LP, Nijtmans LGJ, Janssen RJRJ (2004) Differences in assembly or stability of complex I and other mitochondrial OXPHOS complexes in inherited complex I deficiency. Hum Mol Genet 13(6):659–667PubMed Ugalde C, Smeitink JAM, van den Heuvel LP, Nijtmans LGJ, Janssen RJRJ (2004) Differences in assembly or stability of complex I and other mitochondrial OXPHOS complexes in inherited complex I deficiency. Hum Mol Genet 13(6):659–667PubMed
133.
Zurück zum Zitat van den Heuvel L, Ruitenbeek W, Smeets R, Gelman-Kohan Z, Elpeleg O, Loeffen J, Trijbels F, Mariman E, de Bruijn D, Smeitink J (1998) Demonstration of a new pathogenic mutation in human complex I deficiency: a 5-bp duplication in the nuclear gene encoding the 18-kD (AQDQ) subunit. Am J Hum Genet 62(2):262–268PubMedPubMedCentral van den Heuvel L, Ruitenbeek W, Smeets R, Gelman-Kohan Z, Elpeleg O, Loeffen J, Trijbels F, Mariman E, de Bruijn D, Smeitink J (1998) Demonstration of a new pathogenic mutation in human complex I deficiency: a 5-bp duplication in the nuclear gene encoding the 18-kD (AQDQ) subunit. Am J Hum Genet 62(2):262–268PubMedPubMedCentral
134.
Zurück zum Zitat Iuso A, Scacco S, Piccoli C, Bellomo F, Petruzzella V, Trentadue R, Minuto M, Ripoli M, Capitanio N, Zeviani M, Papa S (2006) Dysfunctions of cellular oxidative metabolism in patients with mutations in the NDUFS1 and NDUFS4 genes of complex I. J Biol Chem 281(15):10374–10380PubMed Iuso A, Scacco S, Piccoli C, Bellomo F, Petruzzella V, Trentadue R, Minuto M, Ripoli M, Capitanio N, Zeviani M, Papa S (2006) Dysfunctions of cellular oxidative metabolism in patients with mutations in the NDUFS1 and NDUFS4 genes of complex I. J Biol Chem 281(15):10374–10380PubMed
135.
Zurück zum Zitat Quintana A, Kruse SE, Kapur RP, Sanz E, Palmiter RD (2010) Complex I deficiency due to loss of Ndufs4 in the brain results in progressive encephalopathy resembling Leigh syndrome. Proc Natl Acad Sci 107(24):10996–11001PubMedPubMedCentral Quintana A, Kruse SE, Kapur RP, Sanz E, Palmiter RD (2010) Complex I deficiency due to loss of Ndufs4 in the brain results in progressive encephalopathy resembling Leigh syndrome. Proc Natl Acad Sci 107(24):10996–11001PubMedPubMedCentral
136.
Zurück zum Zitat Jin Z, Wei W, Yang M, Du Y, Wan Y (2014) Mitochondrial complex I activity suppresses inflammation and enhances bone resorption by shifting macrophage-osteoclast polarization. Cell Metab 20(3):483–498PubMedPubMedCentral Jin Z, Wei W, Yang M, Du Y, Wan Y (2014) Mitochondrial complex I activity suppresses inflammation and enhances bone resorption by shifting macrophage-osteoclast polarization. Cell Metab 20(3):483–498PubMedPubMedCentral
137.
Zurück zum Zitat Oka K, Ishimura-Oka K, Chu M-j, Sullivan M, Krushkal J, Li W-H, Chan L (1994) Mouse very-low-density-lipoprotein receptor (VLDLR) cDNA cloning, tissue-specific expression and evolutionary relationship with the low-density-lipoprotein receptor. Eur J Biochem 224(3):975–982PubMed Oka K, Ishimura-Oka K, Chu M-j, Sullivan M, Krushkal J, Li W-H, Chan L (1994) Mouse very-low-density-lipoprotein receptor (VLDLR) cDNA cloning, tissue-specific expression and evolutionary relationship with the low-density-lipoprotein receptor. Eur J Biochem 224(3):975–982PubMed
138.
Zurück zum Zitat Webb JC, Patel DD, Jones MD, Knight BL, Soutar AK (1994) Characterization and tissue-specific expression of the human ‘very low density lipoprotein (VLDL) receptor’mRNA. Hum Mol Genet 3(4):531–537PubMed Webb JC, Patel DD, Jones MD, Knight BL, Soutar AK (1994) Characterization and tissue-specific expression of the human ‘very low density lipoprotein (VLDL) receptor’mRNA. Hum Mol Genet 3(4):531–537PubMed
139.
Zurück zum Zitat Tacken PJ, Hofker MH, Havekes LM, van Dijk KW (2001) Living up to a name: the role of the VLDL receptor in lipid metabolism. Curr Opin Lipidol 12(3):275–279PubMed Tacken PJ, Hofker MH, Havekes LM, van Dijk KW (2001) Living up to a name: the role of the VLDL receptor in lipid metabolism. Curr Opin Lipidol 12(3):275–279PubMed
140.
Zurück zum Zitat Takahashi S, Sakai J, Fujino T, Hattori H, Zenimaru Y, Suzuki J, Miyamori I, Yamamoto TT (2004) The very low-density lipoprotein (VLDL) receptor: characterization and functions as a peripheral lipoprotein receptor. J Atheroscler Thromb 11(4):200–208PubMed Takahashi S, Sakai J, Fujino T, Hattori H, Zenimaru Y, Suzuki J, Miyamori I, Yamamoto TT (2004) The very low-density lipoprotein (VLDL) receptor: characterization and functions as a peripheral lipoprotein receptor. J Atheroscler Thromb 11(4):200–208PubMed
141.
Zurück zum Zitat Trommsdorff M, Gotthardt M, Hiesberger T, Shelton J, Stockinger W, Nimpf J, Hammer RE, Richardson JA, Herz J (1999) Reeler/disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97(6):689–701PubMed Trommsdorff M, Gotthardt M, Hiesberger T, Shelton J, Stockinger W, Nimpf J, Hammer RE, Richardson JA, Herz J (1999) Reeler/disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97(6):689–701PubMed
142.
Zurück zum Zitat D'Arcangelo G, Homayouni R, Keshvara L, Rice DS, Sheldon M, Curran T (1999) Reelin is a ligand for lipoprotein receptors. Neuron 24(2):471–479PubMed D'Arcangelo G, Homayouni R, Keshvara L, Rice DS, Sheldon M, Curran T (1999) Reelin is a ligand for lipoprotein receptors. Neuron 24(2):471–479PubMed
143.
Zurück zum Zitat Goudriaan JR, Tacken PJ, Dahlmans VE, Gijbels MJ, van Dijk KW, Havekes LM, Jong MC (2001) Protection from obesity in mice lacking the VLDL receptor. Arterioscler Thromb Vasc Biol 21(9):1488–1493PubMed Goudriaan JR, Tacken PJ, Dahlmans VE, Gijbels MJ, van Dijk KW, Havekes LM, Jong MC (2001) Protection from obesity in mice lacking the VLDL receptor. Arterioscler Thromb Vasc Biol 21(9):1488–1493PubMed
144.
Zurück zum Zitat Nguyen A, Tao H, Metrione M, Hajri T (2014) Very low density lipoprotein receptor (VLDLR) expression is a determinant factor in adipose tissue inflammation and adipocyte-macrophage interaction. J Biol Chem 289(3):1688–1703PubMed Nguyen A, Tao H, Metrione M, Hajri T (2014) Very low density lipoprotein receptor (VLDLR) expression is a determinant factor in adipose tissue inflammation and adipocyte-macrophage interaction. J Biol Chem 289(3):1688–1703PubMed
145.
Zurück zum Zitat Eck MV, Oost J, Goudriaan JR, Hoekstra M, Hildebrand RB, Bos IST, van Dijk KW, Van Berkel TJC (2005) Role of the macrophage very-low-density lipoprotein receptor in atherosclerotic lesion development. Atherosclerosis 183(2):230–237PubMed Eck MV, Oost J, Goudriaan JR, Hoekstra M, Hildebrand RB, Bos IST, van Dijk KW, Van Berkel TJC (2005) Role of the macrophage very-low-density lipoprotein receptor in atherosclerotic lesion development. Atherosclerosis 183(2):230–237PubMed
146.
Zurück zum Zitat Frykman PK, Brown MS, Yamamoto T, Goldstein JL, Herz J (1995) Normal plasma lipoproteins and fertility in gene-targeted mice homozygous for a disruption in the gene encoding very low density lipoprotein receptor. Proc Natl Acad Sci 92(18):8453–8457PubMedPubMedCentral Frykman PK, Brown MS, Yamamoto T, Goldstein JL, Herz J (1995) Normal plasma lipoproteins and fertility in gene-targeted mice homozygous for a disruption in the gene encoding very low density lipoprotein receptor. Proc Natl Acad Sci 92(18):8453–8457PubMedPubMedCentral
147.
Zurück zum Zitat Miyamoto T, Arai F, Ohneda O, Takagi K, Anderson DM, Suda T (2000) An adherent condition is required for formation of multinuclear osteoclasts in the presence of macrophage colony-stimulating factor and receptor activator of nuclear factor κB ligand. Blood 96(13):4335–4343PubMed Miyamoto T, Arai F, Ohneda O, Takagi K, Anderson DM, Suda T (2000) An adherent condition is required for formation of multinuclear osteoclasts in the presence of macrophage colony-stimulating factor and receptor activator of nuclear factor κB ligand. Blood 96(13):4335–4343PubMed
148.
Zurück zum Zitat Du Y, Yang M, Wei W, Huynh HD, Herz J, Saghatelian A, Wan Y (2012) Macrophage VLDL receptor promotes PAFAH secretion in mother’s milk and suppresses systemic inflammation in nursing neonates. Nat Commun 3:1008–1008PubMed Du Y, Yang M, Wei W, Huynh HD, Herz J, Saghatelian A, Wan Y (2012) Macrophage VLDL receptor promotes PAFAH secretion in mother’s milk and suppresses systemic inflammation in nursing neonates. Nat Commun 3:1008–1008PubMed
149.
Zurück zum Zitat Huynh H, Wei W, Wan Y (2017) mTOR inhibition subdues milk disorder caused by maternal VLDLR loss. Cell Rep 19(10):2014–2025PubMedPubMedCentral Huynh H, Wei W, Wan Y (2017) mTOR inhibition subdues milk disorder caused by maternal VLDLR loss. Cell Rep 19(10):2014–2025PubMedPubMedCentral
150.
Zurück zum Zitat Yang D, Huynh H, Wan Y (2018) Milk lipid regulation at the maternal-offspring interface. Semin Cell Dev Biol 81:141–148PubMed Yang D, Huynh H, Wan Y (2018) Milk lipid regulation at the maternal-offspring interface. Semin Cell Dev Biol 81:141–148PubMed
151.
Zurück zum Zitat Caplan MS, Sun X-M, Hsueh W, Hageman JR (1990) Role of platelet activating factor and tumor necrosis factor-alpha in neonatal necrotizing enterocolitis. J Pediatr 116(6):960–964PubMed Caplan MS, Sun X-M, Hsueh W, Hageman JR (1990) Role of platelet activating factor and tumor necrosis factor-alpha in neonatal necrotizing enterocolitis. J Pediatr 116(6):960–964PubMed
152.
Zurück zum Zitat Walker A (2010) Breast milk as the gold standard for protective nutrients. J Pediatr 156(2, Supplement):S3–S7PubMed Walker A (2010) Breast milk as the gold standard for protective nutrients. J Pediatr 156(2, Supplement):S3–S7PubMed
153.
Zurück zum Zitat Furukawa M, Narahara H, Yasuda K, Johnston JM (1993) Presence of platelet-activating factor-acetylhydrolase in milk. J Lipid Res 34(9):1603–1609 Furukawa M, Narahara H, Yasuda K, Johnston JM (1993) Presence of platelet-activating factor-acetylhydrolase in milk. J Lipid Res 34(9):1603–1609
154.
Zurück zum Zitat Moya FR, Eguchi H, Zhao B, Furukawa M, Sfeir J, Osorio M, Ogawa Y, Johnston JM (1994) Platelet-activating factor acetylhydrolase in term and preterm human milk: a preliminary report. J Pediatr Gastroenterol Nutr 19(2):236–239PubMed Moya FR, Eguchi H, Zhao B, Furukawa M, Sfeir J, Osorio M, Ogawa Y, Johnston JM (1994) Platelet-activating factor acetylhydrolase in term and preterm human milk: a preliminary report. J Pediatr Gastroenterol Nutr 19(2):236–239PubMed
155.
Zurück zum Zitat Shin KC, Hwang I, Choe SS, Park J, Ji Y, Kim JI, Lee GY, Choi SH, Ching J, Kovalik J-P, Kim JB (2017) Macrophage VLDLR mediates obesity-induced insulin resistance with adipose tissue inflammation. Nat Commun 8(1):1087PubMedPubMedCentral Shin KC, Hwang I, Choe SS, Park J, Ji Y, Kim JI, Lee GY, Choi SH, Ching J, Kovalik J-P, Kim JB (2017) Macrophage VLDLR mediates obesity-induced insulin resistance with adipose tissue inflammation. Nat Commun 8(1):1087PubMedPubMedCentral
156.
Zurück zum Zitat Huang SC-C, Smith AM, Everts B, Colonna M, Pearce EL, Schilling JD, Pearce EJ (2016) Metabolic reprogramming mediated by the mTORC2-IRF4 signaling axis is essential for macrophage alternative activation. Immunity 45(4):817–830PubMedPubMedCentral Huang SC-C, Smith AM, Everts B, Colonna M, Pearce EL, Schilling JD, Pearce EJ (2016) Metabolic reprogramming mediated by the mTORC2-IRF4 signaling axis is essential for macrophage alternative activation. Immunity 45(4):817–830PubMedPubMedCentral
157.
Zurück zum Zitat Mills EL, Kelly B, Logan A, Costa ASH, Varma M, Bryant CE, Tourlomousis P, Däbritz JHM, Gottlieb E, Latorre I, Corr SC, McManus G, Ryan D, Jacobs HT, Szibor M, Xavier RJ, Braun T, Frezza C, Murphy MP, O’Neill LA (2016) Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167(2):457–470.e13PubMedPubMedCentral Mills EL, Kelly B, Logan A, Costa ASH, Varma M, Bryant CE, Tourlomousis P, Däbritz JHM, Gottlieb E, Latorre I, Corr SC, McManus G, Ryan D, Jacobs HT, Szibor M, Xavier RJ, Braun T, Frezza C, Murphy MP, O’Neill LA (2016) Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167(2):457–470.e13PubMedPubMedCentral
Metadaten
Titel
Molecular determinants for the polarization of macrophage and osteoclast
verfasst von
Dengbao Yang
Yihong Wan
Publikationsdatum
10.09.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Seminars in Immunopathology / Ausgabe 5/2019
Print ISSN: 1863-2297
Elektronische ISSN: 1863-2300
DOI
https://doi.org/10.1007/s00281-019-00754-3

Weitere Artikel der Ausgabe 5/2019

Seminars in Immunopathology 5/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.