Skip to main content
Erschienen in: Lasers in Medical Science 3/2014

01.05.2014 | Original Article

Monitoring of chemotherapy leukemia treatment using Raman spectroscopy and principal component analysis

verfasst von: José Luis González-Solís, Juan Carlos Martínez-Espinosa, Juan Manuel Salgado-Román, Pascual Palomares-Anda

Erschienen in: Lasers in Medical Science | Ausgabe 3/2014

Einloggen, um Zugang zu erhalten

Abstract

In this research, we used the Raman spectroscopy to distinguish between normal and leukemia blood serum and identify the different types of leukemia based on serum biochemistry. In addition, monitoring of patients under chemotherapy leukemia treatment (CHLT) was studied. Blood samples were obtained from seven patients who were clinically diagnosed with three leukemia types and 21 healthy volunteers. In addition, other five leukemia patients were monitored during the CHLT, two patients were declared healthy, one patient suspended it; the health of the other two patients worsened, and no improvement was observed along CHLT. The serum samples were put under an Olympus microscope integrated to the Raman system, and several points were chosen for the Raman measurement. The Horiba Jobin Yvon LabRAM HR800 Raman system is equipped with a liquid nitrogen-cooled detector and a laser of 830 nm with a power irradiation of 17 mW. It is shown that the serum samples from patient with leukemia and from the control group can be discriminated when multivariate statistical methods of principal component analysis (PCA) and linear discriminant analysis (LDA) are applied to their Raman spectra obtaining two large clusters corresponding to the control and leukemia serum samples and three clusters inside the leukemia group associated with the three leukemia types. The major differences between leukemia and control spectra were at 1,338 (Trp, α-helix, phospholipids), 1,447 (lipids), 1,523 (β-carotene), 1,556 (Trp), 1,587 (protein, Tyr), 1,603 (Tyr, Phe), and 1,654 (proteins, amide I, α-helix, phospholipids) cm−1, where these peaks were less intense in the leukemia spectrum. Minor differences occurred at 661 (glutathione), 890 (glutathione), 973 (glucosamine), 1,126 (protein, phospholipid C–C str), 1,160 (β-carotene), 1,174 (Trp, Phe), 1,208 (Trp), 1,246 (amide III), 1,380 (glucosamine), and 1,404 (glutathione) cm−1. Leukemia spectrum showed a peak at 917 cm−1 associated with glutathione, but it was absent in the control spectrum. The results suggest that the Raman spectroscopy and PCA could be a technique with a strong potential of support for current techniques to detect and identify the different leukemia types by using a serum sample. Nevertheless, with the construction of a data library integrated with a large number of leukemia and control Raman spectra obtained from a wide range of healthy and leukemic population, the Raman-PCA technique could be converted into a new technique for minimally invasive real-time diagnosis of leukemia from serum samples. In addition, complementary results suggest that using these techniques is possible to monitor CHLT.
Literatur
1.
Zurück zum Zitat National Cancer Institute (2008) What you need to know about leukemia. NIH publication no. 08-3775. National Cancer Institute, Bethesda National Cancer Institute (2008) What you need to know about leukemia. NIH publication no. 08-3775. National Cancer Institute, Bethesda
2.
Zurück zum Zitat Freireich EJ, Lemak NA (1991) Milestones in leukemia research and therapy. Johns Hopkins University Press, Baltimore Freireich EJ, Lemak NA (1991) Milestones in leukemia research and therapy. Johns Hopkins University Press, Baltimore
3.
Zurück zum Zitat Choo-Smith LP, Edward MHG, Endtz HP, et al (2002) Medical applications of Raman spectroscopy: from proof of principle to clinical implementation. Biopolymers 67:1–9PubMedCrossRef Choo-Smith LP, Edward MHG, Endtz HP, et al (2002) Medical applications of Raman spectroscopy: from proof of principle to clinical implementation. Biopolymers 67:1–9PubMedCrossRef
4.
Zurück zum Zitat Haka AS, Volynskaya Z, Gardecki J, et al (2006) In vivo margin assessment during partial mastectomy breast surgery using Raman spectroscopy. Cancer Res 66:3317–3322PubMedCrossRef Haka AS, Volynskaya Z, Gardecki J, et al (2006) In vivo margin assessment during partial mastectomy breast surgery using Raman spectroscopy. Cancer Res 66:3317–3322PubMedCrossRef
5.
Zurück zum Zitat Bohorfoush AG (2006) Tissue spectroscopy for gastrointestinal diseases. Endoscopy 28:372–380CrossRef Bohorfoush AG (2006) Tissue spectroscopy for gastrointestinal diseases. Endoscopy 28:372–380CrossRef
6.
Zurück zum Zitat Pichardo-Molina JL, Frausto-Reyes C, Barbosa-Garca O, Huerta-Franco R, Gonzl̈ez-Trujillo JL, Ramrez-Alvarado CA, Gutirrez-Jur̈ez G, Medina-Gutirrez C (2006) Raman spectroscopy and multivariate analysis of serum simples from breast cancer patients. Laser Med Sci 10103:432–438 Pichardo-Molina JL, Frausto-Reyes C, Barbosa-Garca O, Huerta-Franco R, Gonzl̈ez-Trujillo JL, Ramrez-Alvarado CA, Gutirrez-Jur̈ez G, Medina-Gutirrez C (2006) Raman spectroscopy and multivariate analysis of serum simples from breast cancer patients. Laser Med Sci 10103:432–438
7.
Zurück zum Zitat González-Solís JL, Martínez-Espinosa JC, Frausto-Reyes C, Miranda-Beltrán ML, Soria-Fregoso C, Medina-Valtierra J (2009) Detection of leukemia with blood samples using Raman spectroscopy and multivariate analysis. AIP Conf Proc 1142:99–103 González-Solís JL, Martínez-Espinosa JC, Frausto-Reyes C, Miranda-Beltrán ML, Soria-Fregoso C, Medina-Valtierra J (2009) Detection of leukemia with blood samples using Raman spectroscopy and multivariate analysis. AIP Conf Proc 1142:99–103
8.
Zurück zum Zitat Frank CJ, McCreery LR, Redd DCB (1995) Raman spectroscopy of normal and diseased human breast tissues. Anal Chem 67:777–783PubMedCrossRef Frank CJ, McCreery LR, Redd DCB (1995) Raman spectroscopy of normal and diseased human breast tissues. Anal Chem 67:777–783PubMedCrossRef
9.
Zurück zum Zitat Mahadevan-Jansen A, Richards-Kortum RR (1996) Raman spectroscopy for the detection of cancers and precancers. J Biomed Opt 1(1):31–70PubMedCrossRef Mahadevan-Jansen A, Richards-Kortum RR (1996) Raman spectroscopy for the detection of cancers and precancers. J Biomed Opt 1(1):31–70PubMedCrossRef
10.
Zurück zum Zitat Stone N, Kendall C, et al (2002) Near-infrared Raman spectroscopy for the classification of epithelial pre-cancers and cancers. J Raman Spectrosc 33:564–573CrossRef Stone N, Kendall C, et al (2002) Near-infrared Raman spectroscopy for the classification of epithelial pre-cancers and cancers. J Raman Spectrosc 33:564–573CrossRef
11.
Zurück zum Zitat Qiong Z, Yingsha Z (2006) Hierarchical clustering of gene expression profiles with graphics hardware. J Pattern Recogn Lett 27:676–681CrossRef Qiong Z, Yingsha Z (2006) Hierarchical clustering of gene expression profiles with graphics hardware. J Pattern Recogn Lett 27:676–681CrossRef
12.
Zurück zum Zitat Dhaeseleer P (2005) How does gene expression clustering workNat Biotechnol 23:1499–1501CrossRef Dhaeseleer P (2005) How does gene expression clustering workNat Biotechnol 23:1499–1501CrossRef
13.
Zurück zum Zitat Kullmann L, Kertesz J, Mantegna RN (2000) Identification of clusters of companies in stock indices via Potts super-paramagnetic transitions. Phys A 287:412–419CrossRef Kullmann L, Kertesz J, Mantegna RN (2000) Identification of clusters of companies in stock indices via Potts super-paramagnetic transitions. Phys A 287:412–419CrossRef
14.
Zurück zum Zitat Dekel A, West MJ (1985) On percolation as a cosmological test. Astrophys J 288:411CrossRef Dekel A, West MJ (1985) On percolation as a cosmological test. Astrophys J 288:411CrossRef
15.
Zurück zum Zitat Boelens HF, Eiler PH, Hankemeier T (2005) Sing constrains improve the detection of differences between complex spectral data sets: LC-IR as an example. Anal Chem 77(24):7998–8007PubMedCrossRef Boelens HF, Eiler PH, Hankemeier T (2005) Sing constrains improve the detection of differences between complex spectral data sets: LC-IR as an example. Anal Chem 77(24):7998–8007PubMedCrossRef
16.
Zurück zum Zitat Nogueira VG, Silveira L (2005) Raman spectroscopy study of atherosclerosis in human carotid artery. J Biomed Opt 10(3):031117PubMedCrossRef Nogueira VG, Silveira L (2005) Raman spectroscopy study of atherosclerosis in human carotid artery. J Biomed Opt 10(3):031117PubMedCrossRef
17.
Zurück zum Zitat Stone N, Kendall C, Smith J, et al (2004) Raman spectroscopy for identification of epithelial cancers. Faraday Discuss 126:141–157PubMedCrossRef Stone N, Kendall C, Smith J, et al (2004) Raman spectroscopy for identification of epithelial cancers. Faraday Discuss 126:141–157PubMedCrossRef
18.
Zurück zum Zitat De Gelder J, De Gussem K, Vandenabeele P, Moens L (2007) Reference database of Raman spectra of biological molecules. J. Raman Spectrosc 38:1133–1147CrossRef De Gelder J, De Gussem K, Vandenabeele P, Moens L (2007) Reference database of Raman spectra of biological molecules. J. Raman Spectrosc 38:1133–1147CrossRef
19.
Zurück zum Zitat Schultz H, Baranska M, Baranski R (2005) Potential of NIR-FT-Raman spectroscopy in natural carotenoid analysis. Biopolymers 77:212–221CrossRef Schultz H, Baranska M, Baranski R (2005) Potential of NIR-FT-Raman spectroscopy in natural carotenoid analysis. Biopolymers 77:212–221CrossRef
20.
Zurück zum Zitat Hata TR, Schlz TA, Ermakov IV, et al (2000) Non-invasive Raman spectroscopic detection of carotenoids in human skin. J Invest Dermatol 115:441–448PubMedCrossRef Hata TR, Schlz TA, Ermakov IV, et al (2000) Non-invasive Raman spectroscopic detection of carotenoids in human skin. J Invest Dermatol 115:441–448PubMedCrossRef
21.
Zurück zum Zitat Alfano RR, Liu CH, et al (1991) Human breast tissue studied by IR Fourier transform Raman spectroscopy. Lasers Life Sci 4:23–28 Alfano RR, Liu CH, et al (1991) Human breast tissue studied by IR Fourier transform Raman spectroscopy. Lasers Life Sci 4:23–28
22.
Zurück zum Zitat Hanlon EB, Manoharan R, et al (2000) Prospects for in vivo Raman spectroscopy. Phys Med Biol 45:R1–R59PubMedCrossRef Hanlon EB, Manoharan R, et al (2000) Prospects for in vivo Raman spectroscopy. Phys Med Biol 45:R1–R59PubMedCrossRef
23.
Zurück zum Zitat Krafft C, Sobottka SB, Schackert G, Salzer R (2005) Near infrared Raman spectroscopy mapping of native brain tissue and intracranial tumors. Analyst 130:1070–1077PubMedCrossRef Krafft C, Sobottka SB, Schackert G, Salzer R (2005) Near infrared Raman spectroscopy mapping of native brain tissue and intracranial tumors. Analyst 130:1070–1077PubMedCrossRef
24.
Zurück zum Zitat Wang Z, Qiao Y, Huang GS, Wang AQ, Zhang YQ, Feng JL, Yang GR, Guo Y, Liang R (2003) Glucosamine and glucosamine hydrochloride induced leukemia cell line K562 differentiation into macrophage. Chin Pharmacol Bull 19(3):290–293 Wang Z, Qiao Y, Huang GS, Wang AQ, Zhang YQ, Feng JL, Yang GR, Guo Y, Liang R (2003) Glucosamine and glucosamine hydrochloride induced leukemia cell line K562 differentiation into macrophage. Chin Pharmacol Bull 19(3):290–293
25.
Zurück zum Zitat Wang Z, Qiao Y, Huang GS, Wang AQ, Zhang YQ, Feng JL, Yang GR, Guo Y, Liang R (2003) Induction of macrophagic differentiation of leukemia cell line K562 by N-acetyl-D-glucosamine. J Fourth Mil Med Univ 24(1):46–48 Wang Z, Qiao Y, Huang GS, Wang AQ, Zhang YQ, Feng JL, Yang GR, Guo Y, Liang R (2003) Induction of macrophagic differentiation of leukemia cell line K562 by N-acetyl-D-glucosamine. J Fourth Mil Med Univ 24(1):46–48
26.
Metadaten
Titel
Monitoring of chemotherapy leukemia treatment using Raman spectroscopy and principal component analysis
verfasst von
José Luis González-Solís
Juan Carlos Martínez-Espinosa
Juan Manuel Salgado-Román
Pascual Palomares-Anda
Publikationsdatum
01.05.2014
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 3/2014
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-013-1515-y

Weitere Artikel der Ausgabe 3/2014

Lasers in Medical Science 3/2014 Zur Ausgabe