Skip to main content
Erschienen in: BMC Complementary Medicine and Therapies 1/2017

Open Access 01.12.2017 | Research article

RETRACTED ARTICLE: Moringa isothiocyanate complexed with α-cyclodextrin: a new perspective in neuroblastoma treatment

verfasst von: Sabrina Giacoppo, Renato Iori, Patrick Rollin, Placido Bramanti, Emanuela Mazzon

Erschienen in: BMC Complementary Medicine and Therapies | Ausgabe 1/2017

Abstract

Background

Several lines of evidence suggest the consume of natural products for cancer prevention or treatment. In particular, isothiocyanates (ITCs) exerting anti-cancer properties, have received great interest as potential chemotherapeutic agents.
This study was designed to assess the anti-proliferative activities of a new preparation of Moringa oleifera-derived 4-(α-L-rhamnopyranosyloxy)benzyl ITC (moringin) complexed with alpha-cyclodextrin (moringin + α-CD; MAC) on SH-SY5Y human neuroblastoma cells. This new formulation arises in the attempt to overcome the poor solubility and stability of moringin alone in aqueous media.

Methods

SH-SY5Y cells were cultured and exposed to increasing concentrations of MAC (1.0, 2.5 and 5.0 μg). Cell proliferation was examined by MTT and cell count assays. The cytotoxic activity of the MAC complex was assessed by lactate dehydrogenase (LDH) assay and trypan blue exclusion test. In addition, western blotting analyses for the main apoptosis-related proteins were performed.

Results

Treatment of SH-SY5Y cells with the MAC complex reduced cell growth in concentration dependent manner. Specifically, MAC exhibited a potent action in inhibiting the PI3K/Akt/mTOR pathway, whose aberrant activation was found in many types of cancer. MAC was also found to induce the nuclear factor-κB (NF-κB) p65 activation by phosphorylation and its translocation into the nucleus. Moreover, treatment with MAC was able to down-regulate MAPK pathway (results focused on JNK and p38 expression). Finally, MAC was found to trigger apoptotic death pathway (based on expression levels of cleaved-caspase 3, Bax/Bcl-2 balance, p53 and p21).

Conclusion

These findings suggest that use of MAC complex may open novel perspectives to improve the poor prognosis of patients with neuroblastoma.
Hinweise
A Retraction Note to this article is available online at https://​doi.​org/​10.​1186/​s12906-023-03908-x.
Abkürzungen
GMG
glucomoringin
ITCs
isothiocyanates
JNK
c-Jun N-terminal protein kinase
LPS
lipopolysaccharide
MAPK
mitogen-activated protein kinase
MTT
thiazolyl blue
NBL
Neuroblastoma
PI3K/AKT/mTOR
phosphatidylinositol 3-kinase (PI3K)/Akt (protein kinase B)/mammalian target of rapamycin (mTOR)
α-CD
α-cyclodextrin

Background

Neuroblastoma (NBL) is the third common pediatric malignancy after leukemia and brain tumors [1]. The global annual incidence is about 1–5 new cases per 100,000 children less than one year of age, of which about 30 new cases are estimated in Italy [2]. Specifically, NBL is an extracranial solid tumor that arises from neural crest precursor cells due to genetic alterations affecting the normal developmental program [3]. Although some history cases are described, the majority of NBL cases appears sporadically [4]. To date, therapeutic approaches available for NBL include surgery, radiation therapy, chemotherapy and stem cell transplantation [5, 6]. Despite the improvements recently obtained, the prognosis of patients with metastatic NBL remains poor [7, 8]. Thus, innovative therapeutic strategies to ameliorate the prognosis of NBL patients need to be developed.
A current trend in the field of pharmacology leads to look at natural compounds as a source of powerful and effective agents to prevent and treat cancer [912].
In this context, isothiocyanates (ITCs) released from their glucosinolate precursors have been shown to inhibit different types of cancer including lung, stomach, colon, liver, bladder, mammary glands, prostate and melanoma [1318].
The ability of ITCs to inhibit carcinogenesis was first recognized more than 30 years ago with α-naphthyl isothiocyanate [19]. Afterwards, numerous evidences have proved the chemopreventive and chemotherapeutic effects of several ITCs, including sulforaphane, benzyl-isothiocyanate, phenethyl-isothiocyanate and allyl-isothiocyanate [2023]. Over the years, several potential molecular mechanisms of chemoprevention by ITCs have been proposed, such as the induction of phase II cellular detoxification and antioxidant enzymes as well as the induction of cell cycle arrest and apoptosis [24, 25].
The glycosylated compound 4 -(α-L-rhamnopyranosyloxy)benzyl ITC, also known as moringin or GMG-ITC, resulting from myrosinase quantitative hydrolysis under neutral condition (Fig. 1) of glucomoringin (GMG), a GL present in a large quantity in Moringa oleifera seeds, was recently characterized [26]. Moringin has been shown to exert an effective antitumor-promoting activity in in vitro and in vivo studies involving a variety of cancer cell lines such as astrocytoma, leukemia and myeloma [2730]. However, the antitumor effect of moringin against pediatric cancers like human NBL is still unclear.
Moringin is a solid, odorless, stable compound that can be purified in gram-amounts mainly from seeds of the most widely distributed Moringa oleifera Lam. [31, 32] However, like most ITCs, moringin is very poorly soluble in water and unstable in buffered solutions, due to the high electrophilic character of the N = C = S function. Therefore, in order to avoid the use of toxic solubilizers and to overcome the poor solubility of the ITC, we formulated a new complex of moringin with α-cyclodextrin (α-CD; MAC). α-cyclodextrin is a cyclic hexamer of D-glucose that can form water-soluble inclusion complexes with small molecules. Besides, α-CD is Generally Recognized As Safe (GRAS) for use in processed foods at a level of up to 3% (w/w) and doses of 10–25 g α-CD were well tolerated by adult human and it is also biocompatible [33, 34]. The formation of a stable MAC complex, with a 1:1 M ratio was initially demonstrated by Roselli et al. [35]. Subsequently, the therapeutic effects of the MAC complex was confirmed by our research group in a recent paper, which examined the anti-inflammatory effects of this new formulation on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells [36].
In light of those previous results, the present work aimed to investigate the in vitro anti-proliferative activity of MAC on SH-SY5Y human NBL cell line and to identify the underlying signaling mechanisms resulting in cell death.

Methods

Purification of moringin and preparation of MAC complex

Moringin was isolated from M. oleifera (fam. Moringaceae) seeds (cake powder PKM2 provided by Indena India Pvt. Ltd.; Bangalore, India) at the Bologna laboratory (CREA-AA; previously CIN) using established methods [26, 28]. Based on the molecular weights and a 1:1 M ratio of the two constituents, a soluble complex was obtained by adding 103 mg of solid moringin to a solution of 300 mg α-CD (Wacker Chemie AG, Germany) in 3.0 mL of water. The resulting aqueous solution was filtered with 0.45 μm filter, then freeze-dried (Edwards model DO1; Milan, Italy). For structural and biochemical studies, three separate preparations of the MAC complex have been performed. Specifically, these preparations were designed to have reproducibility of conjugation between α-CD and ITC through formation of a stable supramolecular structure, to perform structural and biochemical studies and also to have a sufficient amount for all biological evaluations.

Cell culture conditions and drug treatment

The experiments were carried out on the SH-SY5Y human NBL cell line. SH-SY5Y cells were cultured in monolayer using DMEM medium (Carlo Erba, Italy) supplemented with 10% fetal bovine serum (FBS) (Sigma-Aldrich Co. Ltd., USA). The cells were grown in logarithmic phase at 37 °C in a 95% air/5% CO2 humidified incubator. For drug treatment, cells were grown until 70%–80% confluence and incubated for 24, 48 and 72 h (proliferation assays) or for 24 h (for the other assays) with MAC at the following concentration range: 1.0 μg (1.025 nmol/ml), 2.5 μg (2.05 nmol/ml) and 5.0 μg (4.1 nmol/ml).

Cell proliferation and cytotoxicity assays

The anti-proliferative activity of MAC was measured by the quantitative colorimetric MTT (thiazolyl blue tetrazolium bromide) assay and cellular counting. SH-SY5Y cells 1 × 104 cells/ml) were seeded into a 96-well culture plate and treated with MAC at different concentrations (1.0, 2.5 and 5.0 μg) for 24, 48 or 72 h. 5-fluorouracil (5-FU) was considered the positive standard. The cell growth was evaluated both spectrophotometrically (Δ absorbance 570-690 nm %) using a microplate reader (Microplate Photometer iMARK™, Biorad). Differences in cell proliferation were estimated as a percentage of growth rates of treated cells compared to untreated ones. Cell growth was also detected by the cell count assay performed by using a Neubauer hemocytometric chamber and counted by an optical microscope (Leica DM 2000 combined with Leica ICC50 HD camera). All experiments were carried out in triplicate and repeated three times.
In addition, possible drug cytotoxicity was assessed by lactate dehydrogenase (LDH) assay and trypan blue dye (0.4% w/v; TB) exclusion test after 24 h of MAC treatment. LDH concentrations in the medium of treated and untreated cells were measured by a commercial kit (CytiTox 96® Non- Radioactive Cytotoxicity Assay, Promega, Milan, Italy) according to the manufacture’s recommended protocol. The absorbance was quantified spectrophotometrically at 490 nm. LDH levels are extrapolated as the values detected in control cells, which are arbitrarily expressed as 1. The trypan blue dye exclusion assay was used to detect dead cells that were reported as the percentage of stained (non-viable) vs total cells counted. All experiments were performed in triplicate and repeated three times.

Western blot analysis

For western blot analysis, SH-SY5Y cells were harvested following 24 h of incubation. After washing with ice-cold PBS, the cells were lysed using a buffer consists of 320 mM sucrose, 10 mM Tris-HCl, pH 7.4, 1 mM EGTA, 2 mM EDTA, 5 mM NaN3, 50 mM NaF, β-mercaptoethanol, and protease/phosphatase inhibitor mixture (Roche, USA) in ice for 15 min, followed by centrifugation at 1000 g for 10 min at 4 °C. The resulting supernatant was served as cytoplasmic fraction. The pellet was further lysed using a buffer consists of 150 mM NaCl, 10 mM Tris-HCl (pH 7.4), 1 mM EGTA, 1 mM EDTA, Triton X-100, and protease/phosphatase inhibitor mixture (Roche, USA) in ice for 15 min, followed by centrifugation at 15,000 g for 30 min at 4 °C. The resulting supernatant was served as nuclear fraction. Protein concentration was assayed by using the Bradford assay (Bio-Rad, Segrate, Italy). Twenty micrograms of proteins were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis, followed by blotting with PVDF membranes (Immobilon-P Transfer membrane, Millipore). Then, membranes were incubated in blocking solution (5% skimmed milk in 1X phosphate buffered saline) for 45 min at room temperature. After, membranes were incubated with selective primary antibodies for overnight at 4 °C.
The following primary antibodies were used: phospho-PI3Kinase (1:750 Cell Signaling Technology); PI3Kinase (1:1000; Cell Signaling Technology); phospho-Akt (1:750 Cell Signaling Technology); Akt (1:1000; Cell Signaling Technology); phospho-mTOR (1:750 Cell Signaling Technology); mTOR (1:1000; Cell Signaling Technology); NFkBp65 (1:500, Cell Signaling Technology), IkB-alpha (1:500, Cell Signaling Technology); p-JNK (1:750; Santa Cruz Biotechnology Inc); JNK (1:1000; Santa Cruz Biotechnology Inc); p-p38 (1:750; Cell Signaling Technology), p38 (1:1000; Cell Signaling Technology); cleaved-caspase 3 (1:1000, Cell Signaling Technology) Bax (1:500, Cell Signaling Technology), Bcl-2 (1:500, Cell Signaling Technology), p53 (1:500, Millipore) and p21 (1:1000, Millipore), in 1× PBS, 5% (w/v) non-fat dried milk, 0.1% Tween-20). Then, membranes were incubated with HRP-conjugated anti-mouse or rabbit IgG secondary antibody (1:2000; Santa Cruz Biotechnology Inc) for 1 h at room temperature. To assess equal loading of proteins, membranes were stripped and reprobed with HRP-conjugated GAPDH (1:1000; Cell Signaling Technology) and Laminin B1 (1:1000 Cell Signaling Technology). Images of protein bands were visualized using an enhanced chemiluminescence system (Luminata Western HRP Substrates, Millipore) and then acquired and quantified with ChemiDoc™ MP System (Bio-Rad) and a computer program (ImageJ software) respectively. The western blot analysis figure is representative of three separate and reproducible experiments.

Statistical data analysis

Statistical significance of the experimental data was analyzed by one-way ANOVA test, followed by Bonferroni post hoc test for multiple comparisons (GraphPad Software, La Jolla, CA, USA). p less than or equal to 0.05 was considered statistically significant. Results are expressed as mean ± SEM.

Results

Evidences about MAC capability to interfere with SH-SY5Y cells proliferation

The measurement of cell viability and proliferation was performed to assess the SH-SY5Y cell survival following exposure to increasing concentrations of MAC complex (1.0, 2.5 and 5.0 μg) for 24, 48 or 72 h. At the end of the incubation period, cell proliferation by MTT assay (Fig. 1b) and cell counting were performed (Fig. 2a). MAC treatment was found to reduce cell proliferation in a concentration- and time-dependent manner. In the same conditions, the positive standard, 5-FU showed a greater effect on SH-SY5Y cells than MAC. The MTT data were confirmed by the analysis of the growth curve obtained by counting the cells in a Neubauer hemocytometer chamber after MAC administration for 24, 48 and 72 h (Fig. 2b). In addition, the LDH assay and trypan blue dye exclusion test (cell death) were performed to assess whether the reduction of cell proliferation induced by MAC was due to a cytotoxic effect (Fig. 2c). Our results showed that at concentrations ranging from 1.0 to 5.0 μg, MAC complex did not cause significant increase of LDH release and cell death (Fig. 2d). Moreover, in previous evaluations we evaluated the 10 μg dose, which was found to cause significant SH-SY5Y cell death. Therefore, for all subsequent experimental evaluations, we used concentration of MAC not exceeding 5 μg.

Inhibition of PI3K/Akt/mTOR signaling in response to MAC in SH-SY5Y cells

Recent evidence demonstrates that the activation of the phosphatidylinositol 3-kinase (PI3K)/Akt (protein kinase B)/mammalian target of rapamycin (mTOR) pathway, one of the most potent pro-survival pathway, is involved in NBL progression and correlated also with poor prognosis [37, 38]. Thus, western blot analysis was performed to observe the modulation of the PI3K/Akt/mTOR signaling in SH-SY5Y incubated with MAC for 24 h. Specifically, we focused on the phosphorylation status of PI3K/Akt/mTOR as its activation is mediated by phosphorylation of the proteins involved. Our results showed a significant activation of the PI3K/Akt/mTOR pathway in untreated SH-SY5Y cells, as evidenced by increased expression of p-PI3K (Fig. 3a), p-AKT (Fig. 3b), and p-mTOR (Fig. 3c). Conversely, MAC administration induced a significant downregulation of this pathway.

MAC regulates the expression of MAPK pathway in in SH-SY5Y cells

PI3K/Akt/mTOR signaling leads to trigger a variety of intracellular pathways, including the mitogen-activated protein kinase (MAPK) pathway, which plays a pivotal role in regulating many cell functions including survival, proliferation and apoptosis in different cell types [39]. Western blot analysis for c-Jun N-terminal protein kinase (JNK) (Fig. 3d) and p38 (Fig. 3e) revealed that MAPK signaling pathway is intensely activated in SH-SY5Y untreated cells, while MAC administration diminished the expression levels of these markers in a dose-dependent manner.

Effect of MAC on IκB-α degradation and NF-κB activation in SH-SY5Y cells

Having established that MAC counteracts SH-SY5Y cell proliferation, we have evaluated what are the mediators involved in this process. NF-kB is a dimeric transcription factor normally present in the cytoplasm of cells in an inactive form due to its association with a class of inhibitory proteins called IκBs. Once activated, NF-kB translocates from cytosol to nucleus, where it induces gene expression [40]. Western blot analysis of nuclear fraction indicates that NF-kB expression increased in SH-SY5Y cells treated with MAC when compared to untreated ones, showing a concentration-dependent effect (Fig. 4a). IκB-α degradation is an essential step for NF-kB activation. In parallel, we observed a dose-dependently decrease of cytoplasmic IκB-α expression in SH-SY5Y cells treated with MAC compared to untreated cells. (Fig. 4b). These results suggest that treatment with MAC may play an important role in the regulation of cell viability and NF-kB pathway activation in SH-SY5Y cells.

MAC regulates apoptosis pathway in SH-SY5Y cells

In order to examine the intracellular pathways involved in MAC-induced activation of programmed cell death in SH-SY5Y cells, the expression of main proteins regulating apoptosis, such as cleaved caspase-3, Bax, Bcl-2, p53 and p21 was evaluated by western blot analysis. Apoptosis can be triggered by the activation of caspases, and in particular caspase-3, together with other important key regulators of apoptosis. Western blot analysis performed on SH-SY5Y NBL cell line, showed that treatment of SH-SY5Y with MAC for 24 h caused a significant augmentation of cleaved caspase-3 expression, which was very prominent at 5.0 μg dose (Fig. 5a). Moreover, consistent with the cleavage of caspase, MAC was also able to modulate the Bax/Bcl2 ratio (Fig. 5b and c). In parallel, the expression of proteins in the mitochondrial p53 pathway and one of its target genes, p21, were investigated by western blot analysis. SH-SY5Y cell treated with MAC exhibited a significant increase in p53 (Fig. 5d) and p21 (Fig. 5e) expression levels, when compared to untreated cells. Summarizing, our results revealed that MAC probably induced apoptosis in a dose-dependent manner.

Discussion

To date, there are no definitively effective treatments available for NBL patients. Although, some advances in NBL cure have been obtained in the last years, the therapeutic approaches remain very invasive and the prognosis of NBL patients remains poor [3, 6, 41]. The present study introduces a new application of moringin in the form of the α-cyclodextrin complex (moringin + α-CD; MAC) as a promising therapeutic option in NBL treatment. The complexation of moringin by α-CD results in improving the poor solubility of the ITC through formation of a stable supramolecular structure.
It is well-recognized that a malignant cell transformation and tumor development is characterized by an up-regulated cell number: this is a result of either proliferation or a decreasing in apoptosis [42]. For this reason, many target therapies are focused in counteracting abnormalities of cell cycle. The main goal of successful anticancer drug should be to kill or incapacitate cancer cells without causing excessive damage to normal cells. This ideal condition is possible by inducing apoptosis in cancer cells [43]. This study was designed to verify whether cellular apoptotic induction and cytotoxic properties of the MAC complex causing dose-dependent reduction of viability of human SH-SY5Y cells, a commonly used cell line in NBL studies.
Interestingly, our observations showed that treatment of SH-SY5Y with MAC caused a significant decrease of cell proliferation in a concentration- and time-dependent manner. Moreover, the growth inhibitory effects of MAC is not mediated by a cytotoxic effect, because at the concentrations used in this experimental study, we did not observe relevant increase in cell death and LDH release. These observations propose MAC as an effective and safe anti-proliferative agent. Our work is consistent with a previous study [44] where synthetic sulforaphane, another widely examined ITC present in cruciferous vegetables, was proved to inhibit cell proliferation by inducing apoptosis in human SH-SY5Y cells. However, we demonstrated the efficacy of MAC at much lower concentrations in comparison with sulforaphane. Therefore MAC complex resulted in a significantly higher efficacy of the active principle than that obtained using the ITC alone.
In addition, in the effort to identify a new therapy that specifically targets the pathways responsible for malignant transformation and progression, we looked at the involvement of the PI3K/Akt/mTOR pathway in NBL progression.
The PI3K/Akt/mTOR signaling indeed seems to be one of the most potent pro-survival pathways involved in NBL tumorigenesis [21, 45]. Specifically, its aberrant activation is common in NBL and also correlates with poor prognosis [37, 46, 47]. Thus, the inhibition of PI3K/Akt/mTOR pathway might prove clinically effective in NBL treatment [47]. To date, there is no data regarding the effects of MAC in the PI3K/Akt/mTOR activity in NBL. Thus, we investigated the role of MAC in modulating the PI3K/Akt/mTOR pathway in SH-SY5Y cells. Western blot analyses showed a significant up-regulation of the PI3K/Akt/mTOR signaling in untreated SH-SY5Y cells, as proven by enhanced phosphorylation of PI3K, Akt and mTOR. On the contrary, a significant dose-dependent decrease of p-PI3K, p-AKT, and p-mTOR was observed in MAC-treated cells.
A recent study suggested that the anti-cancer activity of indole compounds, resulting from hydrolysis of the corresponding glucosinolates and present in large amounts in cruciferous vegetables, could be ascribed to the crosstalk between PI3K/Akt/mTOR signaling and NF-κB pathway [48].
NF-κB regulates cell growth, differentiation and apoptosis by interacting with several upstream and downstream signaling pathways, like PI3K/Akt/mTOR one [48]. mTOR controls Akt via a feedback mechanism, which causes the downstream phosphorylation of IκB-α, and the consequent translocation of NF-κB into the nucleus [48, 49].
Consistent with these observations, our results showed a significant dose-dependent increase of NF-κB and in parallel a decrease of IκB-α expression levels in MAC-treated cells, compared to untreated ones. Moreover, phosphorylation of the PI3K/Akt/mTOR pathway can lead in turn to triggering a variety of intracellular pathways, like the mitogen-activated protein kinase (MAPK) one [39]. Among the many cell functions in which MAPKs are involved, it has been demonstrated mainly that MAPKs are a pro-survival factor and contribute to the regulation of cell proliferation [50]. Here, in order to investigate whether moringin + α-CD could inhibit MAPKs expression, via PI3K/Akt/mTOR pathway, we looked at the phosphorylation status of JNK and p38 proteins. Our results showed that SH-SY5Y cells treated with MAC exhibited a marked down-regulation in pJNK as well as pp38 expression, suggesting that growth inhibitory activity of MAC is associated with the downregulation of cell proliferation and survival pathway.
Moreover, with a view to confirming that inhibition of survival pathways MAPK lastly leads to SH-SY5Y cell death, we evaluated the expression of main proteins regulating apoptosis. It has been proposed that resistance to extrinsic apoptosis pathway activation is one of the mechanisms that contributes to the aggressive behavior of advanced-stage NBL [51].
Apoptosis is a complex mechanism tightly regulated by several factors. One of the key steps involved in triggering of apoptotic cascade is the leakage of cytochrome C from the mitochondria and subsequent activation of caspases [52]. Several studies reported that phytochemical compounds of M. oleifera were able to induce apoptosis in cancer cells [27, 53, 54]. In particular, moringin, the ITC resulting from myrosinase-catalysed hydrolysis of glucomoringin (GMG-ITC) was found to induce caspase 3-dependent apoptosis in multiple myeloma [28]. Here, we showed that SH-SY5Y cells treated with MAC complex exhibited a significant augmentation of cleaved caspase 3 expression, suggesting its involvement in mitochondria-mediated apoptosis. Therefore, we evaluated also the role of MAC in triggering cell death by looking to the main apoptosis-regulatory genes, such as Bax and Bcl-2. In agreement with previous studies reporting the Bax/Bcl-2 modulation and apoptosis-inducing efficacy of ITCs in various human cancer cells [22, 30], we found dose-dependent upregulation of Bax and a downregulation of Bcl-2 in SH-SY5Y cells treated with MAC.
Furthermore, it is estimated that more than 50% of human tumors contain a mutation or deletion of the p53 gene. [55]. Protein p53 is known to play a key role in the mitochondrial intrinsic apoptosis pathway deciding cell fate choices and the activation of several target genes that control apoptosis [56]. Therefore, we believed important to evaluate the ability of MAC to activate p53 and one of its target genes, p21 to induce apoptosis in SH-SY5Y cells. Our results demonstrated a significant expression of p53 as well as of p21 in SH-SY5Y cells incubated with MAC, indicating yet a concentration-dependent effect. Schematically, it is provided a summary figure about the proposal mechanism of action of MAC complex in inducing SH-SY5Y cell death (Fig. 6).

Conclusion

These findings showed the importance of a new formulation of moringin complexed with α-CD (moringin + α-CD) as a therapeutic target in NBL. Our results revealed that MAC inhibits the proliferation of malignant cell line through activation of apoptosis or programmed cell death in SH-SY5Y cells. In specific, the anti- proliferative efficacy of MAC is ascribed to its ability into inhibiting the survival PI3K/Akt/mTOR and MAPKs pathways, finally resulting in cell death.

Funding

This study was supported by current research funds 2016 of IRCCS “Centro Neurolesi Bonino-Pulejo”, Messina, Italy.

Availability of data and materials

All data generated or analyzed during this study are included in this article. The datasets used and/or analysed during the current study available from the corresponding author on reasonable request.
Not applicable because we did not work with animals or humans.
Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Pedram M, Vafaie M, Fekri K, Haghi S, Rashidi I, Pirooti C. Cerebellar neuroblastoma in 2.5 years old child. Iran J. Cancer Prev. 2013;6:174–6. Pedram M, Vafaie M, Fekri K, Haghi S, Rashidi I, Pirooti C. Cerebellar neuroblastoma in 2.5 years old child. Iran J. Cancer Prev. 2013;6:174–6.
2.
Zurück zum Zitat Gatta G, Botta L, Rossi S, Aareleid T, Bielska-Lasota M, Clavel J, et al. Childhood cancer survival in Europe 1999-2007: results of EUROCARE-5--a population-based study. Lancet Oncol. 2014;15:35–47.PubMedCrossRef Gatta G, Botta L, Rossi S, Aareleid T, Bielska-Lasota M, Clavel J, et al. Childhood cancer survival in Europe 1999-2007: results of EUROCARE-5--a population-based study. Lancet Oncol. 2014;15:35–47.PubMedCrossRef
3.
Zurück zum Zitat Whittle SB, Smith V, Doherty E, Zhao S, McCarty S, Zage PE. Overview and recent advances in the treatment of neuroblastoma. Expert Rev Anticancer Ther. 2017;17:369–86.PubMedCrossRef Whittle SB, Smith V, Doherty E, Zhao S, McCarty S, Zage PE. Overview and recent advances in the treatment of neuroblastoma. Expert Rev Anticancer Ther. 2017;17:369–86.PubMedCrossRef
5.
Zurück zum Zitat Wilson JS, Gains JE, Moroz V, Wheatley K, Gaze MN. A systematic review of 131I-meta iodobenzylguanidine molecular radiotherapy for neuroblastoma. Eur J Cancer. 2014;50:801–15.PubMedCrossRef Wilson JS, Gains JE, Moroz V, Wheatley K, Gaze MN. A systematic review of 131I-meta iodobenzylguanidine molecular radiotherapy for neuroblastoma. Eur J Cancer. 2014;50:801–15.PubMedCrossRef
6.
Zurück zum Zitat Pinto NR, Applebaum MA, Volchenboum SL, Matthay KK, London WB, Ambros PF, et al. Advances in risk classification and treatment strategies for neuroblastoma. J Clin Oncol. 2015;33:3008–17.PubMedPubMedCentralCrossRef Pinto NR, Applebaum MA, Volchenboum SL, Matthay KK, London WB, Ambros PF, et al. Advances in risk classification and treatment strategies for neuroblastoma. J Clin Oncol. 2015;33:3008–17.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Abdel-Baki MS, Hanzlik E, Kieran MW. Multidisciplinary pediatric brain tumor clinics: the key to successful treatment? CNS Oncol. 2015;4:147–55.PubMedPubMedCentralCrossRef Abdel-Baki MS, Hanzlik E, Kieran MW. Multidisciplinary pediatric brain tumor clinics: the key to successful treatment? CNS Oncol. 2015;4:147–55.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Fischer C, Petriccione M, Donzelli M, Pottenger E. Improving Care in Pediatric Neuro-Oncology Patients: an overview of the unique needs of children with brain tumors. J Child Neurol. 2016;31:488–505.PubMedCrossRef Fischer C, Petriccione M, Donzelli M, Pottenger E. Improving Care in Pediatric Neuro-Oncology Patients: an overview of the unique needs of children with brain tumors. J Child Neurol. 2016;31:488–505.PubMedCrossRef
9.
Zurück zum Zitat Cragg GM, Pezzuto JM. Natural products as a vital source for the discovery of cancer chemotherapeutic and Chemopreventive agents. Med Princ Pract. 2016;25(Suppl 2):41–59.PubMedCrossRef Cragg GM, Pezzuto JM. Natural products as a vital source for the discovery of cancer chemotherapeutic and Chemopreventive agents. Med Princ Pract. 2016;25(Suppl 2):41–59.PubMedCrossRef
10.
Zurück zum Zitat Guaman-Ortiz LM, Orellana MIR, Ratovitski EA. Natural compounds as modulators of non-apoptotic cell death in cancer cells. Curr Genomics. 2017;18:132–55.PubMedPubMedCentralCrossRef Guaman-Ortiz LM, Orellana MIR, Ratovitski EA. Natural compounds as modulators of non-apoptotic cell death in cancer cells. Curr Genomics. 2017;18:132–55.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Zaid H, Silbermann M, Amash A, Gincel D, Abdel-Sattar E, Sarikahya NB. Medicinal plants and natural active compounds for cancer chemoprevention/chemotherapy. Evid Based Complement Alternat Med. 2017;2017:7952417.PubMedPubMedCentralCrossRef Zaid H, Silbermann M, Amash A, Gincel D, Abdel-Sattar E, Sarikahya NB. Medicinal plants and natural active compounds for cancer chemoprevention/chemotherapy. Evid Based Complement Alternat Med. 2017;2017:7952417.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Aghajanpour M, Nazer MR, Obeidavi Z, Akbari M, Ezati P, Kor NM. Functional foods and their role in cancer prevention and health promotion: a comprehensive review. Am J Cancer Res. 2017;7:740–69.PubMedPubMedCentral Aghajanpour M, Nazer MR, Obeidavi Z, Akbari M, Ezati P, Kor NM. Functional foods and their role in cancer prevention and health promotion: a comprehensive review. Am J Cancer Res. 2017;7:740–69.PubMedPubMedCentral
13.
Zurück zum Zitat Zhang Q-C, Pan Z-H, Liu B-N, Meng Z-W, Wu X, Zhou Q-H, et al. Benzyl isothiocyanate induces protective autophagy in human lung cancer cells through an endoplasmic reticulum stress-mediated mechanism. Acta Pharmacol Sin. 2017;38:539–50. Zhang Q-C, Pan Z-H, Liu B-N, Meng Z-W, Wu X, Zhou Q-H, et al. Benzyl isothiocyanate induces protective autophagy in human lung cancer cells through an endoplasmic reticulum stress-mediated mechanism. Acta Pharmacol Sin. 2017;38:539–50.
14.
Zurück zum Zitat Mantso T, Sfakianos AP, Atkinson A, Anestopoulos I, Mitsiogianni M, Botaitis S, et al. Development of a novel experimental in vitro model of Isothiocyanate-induced apoptosis in human malignant melanoma cells. Anticancer Res. 2016;36:6303–9.PubMedCrossRef Mantso T, Sfakianos AP, Atkinson A, Anestopoulos I, Mitsiogianni M, Botaitis S, et al. Development of a novel experimental in vitro model of Isothiocyanate-induced apoptosis in human malignant melanoma cells. Anticancer Res. 2016;36:6303–9.PubMedCrossRef
15.
Zurück zum Zitat Liu K-C, Shih T-Y, Kuo C-L, Ma Y-S, Yang J-L, Wu P-P, et al. Sulforaphane induces cell death through G2/M phase arrest and triggers apoptosis in HCT 116 human colon cancer cells. Am J Chin Med. 2016;44:1289–310.PubMedCrossRef Liu K-C, Shih T-Y, Kuo C-L, Ma Y-S, Yang J-L, Wu P-P, et al. Sulforaphane induces cell death through G2/M phase arrest and triggers apoptosis in HCT 116 human colon cancer cells. Am J Chin Med. 2016;44:1289–310.PubMedCrossRef
16.
Zurück zum Zitat Novio S, Cartea ME, Soengas P, Freire-Garabal M, Nunez-Iglesias MJ. Effects of Brassicaceae Isothiocyanates on prostate cancer. Molecules. 2016;21 Novio S, Cartea ME, Soengas P, Freire-Garabal M, Nunez-Iglesias MJ. Effects of Brassicaceae Isothiocyanates on prostate cancer. Molecules. 2016;21
17.
Zurück zum Zitat Abbaoui B, Telu KH, Lucas CR, Thomas-Ahner JM, Schwartz SJ, Clinton SK, et al. The impact of cruciferous vegetable isothiocyanates on histone acetylation and histone phosphorylation in bladder cancer. J Proteome. 2017;156:94–103.CrossRef Abbaoui B, Telu KH, Lucas CR, Thomas-Ahner JM, Schwartz SJ, Clinton SK, et al. The impact of cruciferous vegetable isothiocyanates on histone acetylation and histone phosphorylation in bladder cancer. J Proteome. 2017;156:94–103.CrossRef
18.
Zurück zum Zitat Hanschen FS, Herz C, Schlotz N, Kupke F, Bartolome Rodriguez MM, Schreiner M, et al. The brassica epithionitrile 1-cyano-2,3-epithiopropane triggers cell death in human liver cancer cells in vitro. Mol Nutr Food Res. 2015;59:2178–89.PubMedCrossRef Hanschen FS, Herz C, Schlotz N, Kupke F, Bartolome Rodriguez MM, Schreiner M, et al. The brassica epithionitrile 1-cyano-2,3-epithiopropane triggers cell death in human liver cancer cells in vitro. Mol Nutr Food Res. 2015;59:2178–89.PubMedCrossRef
19.
Zurück zum Zitat Zhang Y, Talalay P. Anticarcinogenic activities of organic isothiocyanates: chemistry and mechanisms. Cancer Res. 1994;54:1976s–81s.PubMed Zhang Y, Talalay P. Anticarcinogenic activities of organic isothiocyanates: chemistry and mechanisms. Cancer Res. 1994;54:1976s–81s.PubMed
20.
Zurück zum Zitat Kumari V, Dyba MA, Holland RJ, Liang Y-H, Singh SV, Ji X. Irreversible inhibition of glutathione S-transferase by Phenethyl Isothiocyanate (PEITC), a dietary cancer Chemopreventive phytochemical. PLoS One. 2016;11:e0163821.PubMedPubMedCentralCrossRef Kumari V, Dyba MA, Holland RJ, Liang Y-H, Singh SV, Ji X. Irreversible inhibition of glutathione S-transferase by Phenethyl Isothiocyanate (PEITC), a dietary cancer Chemopreventive phytochemical. PLoS One. 2016;11:e0163821.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Russo A, Okur MN, Bosland M, O'Bryan JP. Phosphatidylinositol 3-kinase, class 2 beta (PI3KC2beta) isoform contributes to neuroblastoma tumorigenesis. Cancer Lett. 2015;359:262–8.PubMedPubMedCentralCrossRef Russo A, Okur MN, Bosland M, O'Bryan JP. Phosphatidylinositol 3-kinase, class 2 beta (PI3KC2beta) isoform contributes to neuroblastoma tumorigenesis. Cancer Lett. 2015;359:262–8.PubMedPubMedCentralCrossRef
22.
23.
Zurück zum Zitat Fimognari C, Hrelia P. Sulforaphane as a promising molecule for fighting cancer. Mutat Res-Rev Mutat. 2007;635:90–104.CrossRef Fimognari C, Hrelia P. Sulforaphane as a promising molecule for fighting cancer. Mutat Res-Rev Mutat. 2007;635:90–104.CrossRef
24.
Zurück zum Zitat Boddupalli S, Mein JR, Lakkanna S, James DR. Induction of phase 2 antioxidant enzymes by broccoli sulforaphane: perspectives in maintaining the antioxidant activity of vitamins a, C, and e. Front Genet. 2012;3:7.PubMedPubMedCentralCrossRef Boddupalli S, Mein JR, Lakkanna S, James DR. Induction of phase 2 antioxidant enzymes by broccoli sulforaphane: perspectives in maintaining the antioxidant activity of vitamins a, C, and e. Front Genet. 2012;3:7.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Xianjuan Kou MK, Yi Yang, Ning Chen. Natural products for cancer prevention associated with Nrf2–ARE pathway. Food Sci and Hum Wellness.2:22–8. Xianjuan Kou MK, Yi Yang, Ning Chen. Natural products for cancer prevention associated with Nrf2–ARE pathway. Food Sci and Hum Wellness.2:22–8.
26.
Zurück zum Zitat Muller C, van Loon J, Ruschioni S, De Nicola GR, Olsen CE, Iori R, et al. Taste detection of the non-volatile isothiocyanate moringin results in deterrence to glucosinolate-adapted insect larvae. Phytochemistry. 2015;118:139–48.PubMedCrossRef Muller C, van Loon J, Ruschioni S, De Nicola GR, Olsen CE, Iori R, et al. Taste detection of the non-volatile isothiocyanate moringin results in deterrence to glucosinolate-adapted insect larvae. Phytochemistry. 2015;118:139–48.PubMedCrossRef
28.
Zurück zum Zitat Brunelli D, Tavecchio M, Falcioni C, Frapolli R, Erba E, Iori R, et al. The isothiocyanate produced from glucomoringin inhibits NF-kB and reduces myeloma growth in nude mice in vivo. Biochem Pharmacol. 2010;79:1141–8.PubMedCrossRef Brunelli D, Tavecchio M, Falcioni C, Frapolli R, Erba E, Iori R, et al. The isothiocyanate produced from glucomoringin inhibits NF-kB and reduces myeloma growth in nude mice in vivo. Biochem Pharmacol. 2010;79:1141–8.PubMedCrossRef
29.
Zurück zum Zitat Akanni EO, Adedeji AL, Adedosu OT, Olaniran OI, Oloke JK. Chemopreventive and anti-leukemic effects of ethanol extracts of Moringa oleifera leaves on wistar rats bearing benzene induced leukemia. Curr Pharm Biotechnol. 2014;15:563–8.PubMedCrossRef Akanni EO, Adedeji AL, Adedosu OT, Olaniran OI, Oloke JK. Chemopreventive and anti-leukemic effects of ethanol extracts of Moringa oleifera leaves on wistar rats bearing benzene induced leukemia. Curr Pharm Biotechnol. 2014;15:563–8.PubMedCrossRef
30.
Zurück zum Zitat Rajan TS, De Nicola GR, Iori R, Rollin P, Bramanti P, Mazzon E. Anticancer activity of glucomoringin isothiocyanate in human malignant astrocytoma cells. Fitoterapia. 2016;110:1–7.PubMedCrossRef Rajan TS, De Nicola GR, Iori R, Rollin P, Bramanti P, Mazzon E. Anticancer activity of glucomoringin isothiocyanate in human malignant astrocytoma cells. Fitoterapia. 2016;110:1–7.PubMedCrossRef
31.
Zurück zum Zitat Galuppo M, Giacoppo S, De Nicola GR, Iori R, Navarra M, Lombardo GE, et al. Antiinflammatory activity of glucomoringin isothiocyanate in a mouse model of experimental autoimmune encephalomyelitis. Fitoterapia. 2014;95:160–74.PubMedCrossRef Galuppo M, Giacoppo S, De Nicola GR, Iori R, Navarra M, Lombardo GE, et al. Antiinflammatory activity of glucomoringin isothiocyanate in a mouse model of experimental autoimmune encephalomyelitis. Fitoterapia. 2014;95:160–74.PubMedCrossRef
33.
Zurück zum Zitat Davis ME, Brewster ME. Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov. 2004;3:1023–35.PubMedCrossRef Davis ME, Brewster ME. Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov. 2004;3:1023–35.PubMedCrossRef
35.
Zurück zum Zitat P. RCPBR. COMPLEXES FOR IMMOBILIZING ISOTHIOCYANATE NATURAL PRECURSORS IN CYCLODEXTRINS, PREPARATION AND USE. United States Patent; Patent No: US 6,716,827 B1. 2004. P. RCPBR. COMPLEXES FOR IMMOBILIZING ISOTHIOCYANATE NATURAL PRECURSORS IN CYCLODEXTRINS, PREPARATION AND USE. United States Patent; Patent No: US 6,716,827 B1. 2004.
36.
Zurück zum Zitat Giacoppo S, Rajan TS, Iori R, Rollin P, Bramanti P, Mazzon E. The alpha-cyclodextrin complex of the Moringa isothiocyanate suppresses lipopolysaccharide-induced inflammation in RAW 264.7 macrophage cells through Akt and p38 inhibition. Inflamm Res. 2017;66:487–503. Giacoppo S, Rajan TS, Iori R, Rollin P, Bramanti P, Mazzon E. The alpha-cyclodextrin complex of the Moringa isothiocyanate suppresses lipopolysaccharide-induced inflammation in RAW 264.7 macrophage cells through Akt and p38 inhibition. Inflamm Res. 2017;66:487–503.
37.
Zurück zum Zitat King D, Yeomanson D, Bryant HE. PI3King the lock: targeting the PI3K/Akt/mTOR pathway as a novel therapeutic strategy in neuroblastoma. J Pediatr Hematol Oncol. 2015;37:245–51.PubMedCrossRef King D, Yeomanson D, Bryant HE. PI3King the lock: targeting the PI3K/Akt/mTOR pathway as a novel therapeutic strategy in neuroblastoma. J Pediatr Hematol Oncol. 2015;37:245–51.PubMedCrossRef
38.
Zurück zum Zitat Mei H, Wang Y, Lin Z, Tong Q. The mTOR signaling pathway in pediatric neuroblastoma. Pediatr Hematol Oncol. 2013;30:605–15.PubMedCrossRef Mei H, Wang Y, Lin Z, Tong Q. The mTOR signaling pathway in pediatric neuroblastoma. Pediatr Hematol Oncol. 2013;30:605–15.PubMedCrossRef
39.
Zurück zum Zitat Sui X, Kong N, Ye L, Han W, Zhou J, Zhang Q, et al. p38 and JNK MAPK pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents. Cancer Lett. 2014;344:174–9.PubMedCrossRef Sui X, Kong N, Ye L, Han W, Zhou J, Zhang Q, et al. p38 and JNK MAPK pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents. Cancer Lett. 2014;344:174–9.PubMedCrossRef
41.
Zurück zum Zitat Newman EA, Nuchtern JG. Recent biologic and genetic advances in neuroblastoma: implications for diagnostic, risk stratification, and treatment strategies. Semin Pediatr Surg. 2016;25:257–64.PubMedCrossRef Newman EA, Nuchtern JG. Recent biologic and genetic advances in neuroblastoma: implications for diagnostic, risk stratification, and treatment strategies. Semin Pediatr Surg. 2016;25:257–64.PubMedCrossRef
42.
Zurück zum Zitat YLaA N. Apoptotic cell death in neuroblastoma. Cell. 2013;2:432–59.CrossRef YLaA N. Apoptotic cell death in neuroblastoma. Cell. 2013;2:432–59.CrossRef
43.
44.
Zurück zum Zitat Hsu Y-C, Chang S-J, Wang M-Y, Chen Y-L, Huang T-Y. Growth inhibition and apoptosis of neuroblastoma cells through ROS-independent MEK/ERK activation by sulforaphane. Cell Biochem Biophys. 2013;66:765–74.PubMedCrossRef Hsu Y-C, Chang S-J, Wang M-Y, Chen Y-L, Huang T-Y. Growth inhibition and apoptosis of neuroblastoma cells through ROS-independent MEK/ERK activation by sulforaphane. Cell Biochem Biophys. 2013;66:765–74.PubMedCrossRef
46.
Zurück zum Zitat Durbas M, Horwacik I, Boratyn E, Kamycka E, Rokita H. GD2 ganglioside specific antibody treatment downregulates PI3K/Akt/mTOR signaling network in human neuroblastoma cell lines. Int J Oncol. 2015;47:1143–59.PubMedCrossRef Durbas M, Horwacik I, Boratyn E, Kamycka E, Rokita H. GD2 ganglioside specific antibody treatment downregulates PI3K/Akt/mTOR signaling network in human neuroblastoma cell lines. Int J Oncol. 2015;47:1143–59.PubMedCrossRef
47.
Zurück zum Zitat Smith JR, Moreno L, Heaton SP, Chesler L, Pearson ADJ, Garrett MD. Novel pharmacodynamic biomarkers for MYCN protein and PI3K/AKT/mTOR pathway signaling in children with neuroblastoma. Mol Oncol. 2016;10:538–52.PubMedCrossRef Smith JR, Moreno L, Heaton SP, Chesler L, Pearson ADJ, Garrett MD. Novel pharmacodynamic biomarkers for MYCN protein and PI3K/AKT/mTOR pathway signaling in children with neuroblastoma. Mol Oncol. 2016;10:538–52.PubMedCrossRef
48.
Zurück zum Zitat Ahmad A, Biersack B, Li Y, Kong D, Bao B, Schobert R, et al. Targeted regulation of PI3K/Akt/mTOR/NF-kappaB signaling by indole compounds and their derivatives: mechanistic details and biological implications for cancer therapy. Anti Cancer Agents Med Chem. 2013;13:1002–13.CrossRef Ahmad A, Biersack B, Li Y, Kong D, Bao B, Schobert R, et al. Targeted regulation of PI3K/Akt/mTOR/NF-kappaB signaling by indole compounds and their derivatives: mechanistic details and biological implications for cancer therapy. Anti Cancer Agents Med Chem. 2013;13:1002–13.CrossRef
49.
Zurück zum Zitat Bai C, Yang X, Zou K, He H, Wang J, Qin H, et al. Anti-proliferative effect of RCE-4 from Reineckia carnea on human cervical cancer HeLa cells by inhibiting the PI3K/Akt/mTOR signaling pathway and NF-kappaB activation. Naunyn Schmiedeberg's Arch Pharmacol. 2016;389:573–84.CrossRef Bai C, Yang X, Zou K, He H, Wang J, Qin H, et al. Anti-proliferative effect of RCE-4 from Reineckia carnea on human cervical cancer HeLa cells by inhibiting the PI3K/Akt/mTOR signaling pathway and NF-kappaB activation. Naunyn Schmiedeberg's Arch Pharmacol. 2016;389:573–84.CrossRef
50.
Zurück zum Zitat Yang M, Huang CZ. Mitogen-activated protein kinase signaling pathway and invasion and metastasis of gastric cancer. World J Gastroenterol. 2015;21:11673–9.PubMedPubMedCentralCrossRef Yang M, Huang CZ. Mitogen-activated protein kinase signaling pathway and invasion and metastasis of gastric cancer. World J Gastroenterol. 2015;21:11673–9.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat McIlwain DR, Berger T, Mak TW. Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol. 2015;7 McIlwain DR, Berger T, Mak TW. Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol. 2015;7
53.
Zurück zum Zitat Karim NAA, Ibrahim MD, Kntayya SB, Rukayadi Y, Hamid HA, Razis AFA. Moringa oleifera Lam: targeting chemoprevention. Asian Pac J Cancer Prev. 2016;17:3675–86.PubMed Karim NAA, Ibrahim MD, Kntayya SB, Rukayadi Y, Hamid HA, Razis AFA. Moringa oleifera Lam: targeting chemoprevention. Asian Pac J Cancer Prev. 2016;17:3675–86.PubMed
54.
Zurück zum Zitat Adebayo IA, Arsad H, Samian MR. Antiproliferative effect on breast cancer (Mcf7) of Moringa oleifera seed extracts. Afr J Tradit Complement Altern Med. 2017;14:282–7.PubMedPubMedCentralCrossRef Adebayo IA, Arsad H, Samian MR. Antiproliferative effect on breast cancer (Mcf7) of Moringa oleifera seed extracts. Afr J Tradit Complement Altern Med. 2017;14:282–7.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Kundu J, Chun KS, Aruoma OI, Kundu JK. Mechanistic perspectives on cancer chemoprevention/chemotherapeutic effects of thymoquinone. Mutat Res. 2014;768:22–34.PubMedCrossRef Kundu J, Chun KS, Aruoma OI, Kundu JK. Mechanistic perspectives on cancer chemoprevention/chemotherapeutic effects of thymoquinone. Mutat Res. 2014;768:22–34.PubMedCrossRef
56.
Zurück zum Zitat Khoo KH, Hoe KK, Verma CS, Lane DP. Drugging the p53 pathway: understanding the route to clinical efficacy. Nat Rev Drug Discov. 2014;13:217–36.PubMedCrossRef Khoo KH, Hoe KK, Verma CS, Lane DP. Drugging the p53 pathway: understanding the route to clinical efficacy. Nat Rev Drug Discov. 2014;13:217–36.PubMedCrossRef
Metadaten
Titel
RETRACTED ARTICLE: Moringa isothiocyanate complexed with α-cyclodextrin: a new perspective in neuroblastoma treatment
verfasst von
Sabrina Giacoppo
Renato Iori
Patrick Rollin
Placido Bramanti
Emanuela Mazzon
Publikationsdatum
01.12.2017
Verlag
BioMed Central
Erschienen in
BMC Complementary Medicine and Therapies / Ausgabe 1/2017
Elektronische ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-017-1876-z

Weitere Artikel der Ausgabe 1/2017

BMC Complementary Medicine and Therapies 1/2017 Zur Ausgabe