Skip to main content
Erschienen in: Brain Structure and Function 6/2017

01.02.2017 | Original Article

Morphological, structural, and functional alterations of the prefrontal cortex and the basolateral amygdala after early lesion of the rat mediodorsal thalamus

verfasst von: Zakaria Ouhaz, Saadia Ba-M’hamed, Mohamed Bennis

Erschienen in: Brain Structure and Function | Ausgabe 6/2017

Einloggen, um Zugang zu erhalten

Abstract

Early postnatal damage to the mediodorsal thalamus (MD) produces deficits in cognition and behavior believed to be associated with early prefrontal cortical maldevelopment. We assessed the role of MD afferents during development on the morphological and functional maturation of the prefrontal cortex (PFC) and the basolateral amygdala (BLA). Sprague—Dawley rat pups (n = 56) received a bilateral electrolytic lesion of the MD or a MD Sham lesion on postnatal day 4. 7 weeks later, all rats were tested in anxiety-related and cognitive paradigms using the elevated plus maze and novel object recognition tests. Following behavioral testing (P70), rats were killed and the baseline expression of C-Fos protein and the number of GABAergic neurons were evaluated in the PFC and the BLA. The dendritic morphology and spine density in the PFC using Golgi-Cox staining was also evaluated. Adult rats with early postnatal bilateral MD damage exhibited disrupted recognition memory and increased anxiety-like behaviors. The lesion also caused a significant diminution of C-Fos immunolabeling and an increase of the number of GABAergic neurons in the PFC. In the BLA, the number of GABAergic neurons was significantly reduced, associated with an increase in C-Fos immunolabeling. Furthermore, in the PFC the lesion induced a significant reduction in dendritic branching and spine density. Our data are consistent with the hypothesis that the MD plays a role in the development of the PFC and, therefore, may be a good animal model to investigate cognitive symptoms associated with schizophrenia.
Literatur
Zurück zum Zitat Abercrombie M, Johnson ML (1946) Quantitative histology of Wallerian degeneration I. Nuclear population in rabbit sciatic nerve. J Anat Lond 80:37–50 Abercrombie M, Johnson ML (1946) Quantitative histology of Wallerian degeneration I. Nuclear population in rabbit sciatic nerve. J Anat Lond 80:37–50
Zurück zum Zitat Akbarian S, Kim JJ, Potkin SG, Hagman JO, Tafazzoli A, Bunney WE, Jones EG (1995) Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch Gen Psychiatry 52:258–266CrossRefPubMed Akbarian S, Kim JJ, Potkin SG, Hagman JO, Tafazzoli A, Bunney WE, Jones EG (1995) Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch Gen Psychiatry 52:258–266CrossRefPubMed
Zurück zum Zitat Alcantara S, Ferrer I, Soriano E (1993) Postnatal development of parvalbumin and calbindin D28K immunoreactivities in the cerebral cortex of the rat. Anat Embryol (Berl.) 188: 63–73CrossRef Alcantara S, Ferrer I, Soriano E (1993) Postnatal development of parvalbumin and calbindin D28K immunoreactivities in the cerebral cortex of the rat. Anat Embryol (Berl.) 188: 63–73CrossRef
Zurück zum Zitat Altman J, Bayer SA (1995) Atlas of prenatal rat brain development. CRC, Boca Raton Altman J, Bayer SA (1995) Atlas of prenatal rat brain development. CRC, Boca Raton
Zurück zum Zitat Armstrong E, Parker B (1986) A new Golgi method for adult human brains. J Neurosci Methods 17:247–254CrossRefPubMed Armstrong E, Parker B (1986) A new Golgi method for adult human brains. J Neurosci Methods 17:247–254CrossRefPubMed
Zurück zum Zitat Barker GRI, Bird F, Alexander V, Warburton EC (2007) Recognition memory for objects, place, and temporal order: A disconnection analysis of the role of the medial prefrontal cortex and perirhinal cortex. J Neurosci 27:2948–2957CrossRefPubMed Barker GRI, Bird F, Alexander V, Warburton EC (2007) Recognition memory for objects, place, and temporal order: A disconnection analysis of the role of the medial prefrontal cortex and perirhinal cortex. J Neurosci 27:2948–2957CrossRefPubMed
Zurück zum Zitat Benes FM (1989) Myelination of cortical-hippocampal relays during late adolescence. Schizophr Bull 15:585–593CrossRefPubMed Benes FM (1989) Myelination of cortical-hippocampal relays during late adolescence. Schizophr Bull 15:585–593CrossRefPubMed
Zurück zum Zitat Berdel B, Morys J (2000) Expression of calbindin-D28k and parvalbumin during development of rat’s basolateral amygdaloid complex. Int J Dev Neurosci 18:501–513CrossRefPubMed Berdel B, Morys J (2000) Expression of calbindin-D28k and parvalbumin during development of rat’s basolateral amygdaloid complex. Int J Dev Neurosci 18:501–513CrossRefPubMed
Zurück zum Zitat Berendse HW, Galis de Graaf Y, Groenewegen HJ (1992) Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat. J Comp Neurol 316:314–347CrossRefPubMed Berendse HW, Galis de Graaf Y, Groenewegen HJ (1992) Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat. J Comp Neurol 316:314–347CrossRefPubMed
Zurück zum Zitat Berry M (1974) Development of the cerebral neocortex of the rat; in Gottlieb G (ed): Aspects of Neurogenesis. Academic Press, New York, 2:7–67 Berry M (1974) Development of the cerebral neocortex of the rat; in Gottlieb G (ed): Aspects of Neurogenesis. Academic Press, New York, 2:7–67
Zurück zum Zitat Bishop S, Duncan J, Brett M, Lawrence AD (2004) Prefrontal cortical function and anxiety: controlling attention to threat-related stimuli. Nat Neurosci 7:184–188CrossRefPubMed Bishop S, Duncan J, Brett M, Lawrence AD (2004) Prefrontal cortical function and anxiety: controlling attention to threat-related stimuli. Nat Neurosci 7:184–188CrossRefPubMed
Zurück zum Zitat Bouwmeester H, Wolterink G, van Ree JM (2002) Neonatal development of projections from the basolateral amygdala to prefrontal, striatal, and thalamic structures in the rat. J Comp Neurol 442:239–249CrossRefPubMed Bouwmeester H, Wolterink G, van Ree JM (2002) Neonatal development of projections from the basolateral amygdala to prefrontal, striatal, and thalamic structures in the rat. J Comp Neurol 442:239–249CrossRefPubMed
Zurück zum Zitat Broadbelt K, Byne WB, Jones LB (2002) Evidence for a decrease in primary and secondary basilar dendrites on pyramidal cells in area 32 of schizophrenic prefrontal cortex. Schizophr Res 58:75–81CrossRefPubMed Broadbelt K, Byne WB, Jones LB (2002) Evidence for a decrease in primary and secondary basilar dendrites on pyramidal cells in area 32 of schizophrenic prefrontal cortex. Schizophr Res 58:75–81CrossRefPubMed
Zurück zum Zitat Brummelte S, Neddens J, Teuchert-Noodt G (2007) Alteration in the GABAergic network of the prefrontal cortex in a potential animal model of psychosis. J Neural Transm 114(5):539–547CrossRefPubMed Brummelte S, Neddens J, Teuchert-Noodt G (2007) Alteration in the GABAergic network of the prefrontal cortex in a potential animal model of psychosis. J Neural Transm 114(5):539–547CrossRefPubMed
Zurück zum Zitat Callaway JC, Lasser-Ross N, Ross WN (1995) IPSPs strongly inhibit climbing fiber-activated [Ca 2+]i increases in the dendrites of cerebellar Purkinje neurons. J Neurosci 15:2777–2787PubMed Callaway JC, Lasser-Ross N, Ross WN (1995) IPSPs strongly inhibit climbing fiber-activated [Ca 2+]i increases in the dendrites of cerebellar Purkinje neurons. J Neurosci 15:2777–2787PubMed
Zurück zum Zitat Cassell MD, Chittick CA, Siegel MA, Wright DJ (1989) Collateralization of the amygdaloid projections of the rat prelimbic and infralimbic cortices. J Comp Neurol 279:235–248CrossRefPubMed Cassell MD, Chittick CA, Siegel MA, Wright DJ (1989) Collateralization of the amygdaloid projections of the rat prelimbic and infralimbic cortices. J Comp Neurol 279:235–248CrossRefPubMed
Zurück zum Zitat Celio MR (1990) Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 35:375–475CrossRefPubMed Celio MR (1990) Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 35:375–475CrossRefPubMed
Zurück zum Zitat Chauveau F, Celerier A, Ognard R, Pierard C, Beracochea D (2005) Effects of ibotenic acid lesions of the mediodorsal thalamus on memory: relationship with emotional processes in mice. Behav Brain Res 156:215–223CrossRefPubMed Chauveau F, Celerier A, Ognard R, Pierard C, Beracochea D (2005) Effects of ibotenic acid lesions of the mediodorsal thalamus on memory: relationship with emotional processes in mice. Behav Brain Res 156:215–223CrossRefPubMed
Zurück zum Zitat Chiba T, Kayahara T, Nakano K (2001) Efferent projections of infralimbic and prelimbic areas of the medial prefrontal cortex in the Japanese monkey, Macaca fuscata. Brain Res 888:83–101CrossRefPubMed Chiba T, Kayahara T, Nakano K (2001) Efferent projections of infralimbic and prelimbic areas of the medial prefrontal cortex in the Japanese monkey, Macaca fuscata. Brain Res 888:83–101CrossRefPubMed
Zurück zum Zitat Chronwall B, Wolff JR (1980) Prenatal and postnatal development of GABA accumulating cells in the occipital neocortex of rat. J Comp Neurol 190:187–208CrossRefPubMed Chronwall B, Wolff JR (1980) Prenatal and postnatal development of GABA accumulating cells in the occipital neocortex of rat. J Comp Neurol 190:187–208CrossRefPubMed
Zurück zum Zitat Cohen S, Greenberg ME (2008) Communication between the synapse and the nucleus in neuronal development, plasticity, and disease. Annu. Rev Cell. Dev Biol 24:183–209 Cohen S, Greenberg ME (2008) Communication between the synapse and the nucleus in neuronal development, plasticity, and disease. Annu. Rev Cell. Dev Biol 24:183–209
Zurück zum Zitat Cotman CW, Nieto-Sampedro M (1984) Cell biology of synaptic plasticity. Science 225:1287–1294CrossRefPubMed Cotman CW, Nieto-Sampedro M (1984) Cell biology of synaptic plasticity. Science 225:1287–1294CrossRefPubMed
Zurück zum Zitat Cross L, Brown MW, Aggleton JP, Warburton EC (2012) The medial dorsal thalamic nucleus and the medial prefrontal cortex of the rat function together to support associative recognition and recency but not item recognition. Learn Mem 20:41–50CrossRefPubMed Cross L, Brown MW, Aggleton JP, Warburton EC (2012) The medial dorsal thalamic nucleus and the medial prefrontal cortex of the rat function together to support associative recognition and recency but not item recognition. Learn Mem 20:41–50CrossRefPubMed
Zurück zum Zitat Dammasch IE, Wagner GP, Wolff JR (1986) Self-stabilization of neuronal networks. I. The compensation algorithm for synaptogenesis. Biol Cybern 54(4–5):211–222CrossRefPubMed Dammasch IE, Wagner GP, Wolff JR (1986) Self-stabilization of neuronal networks. I. The compensation algorithm for synaptogenesis. Biol Cybern 54(4–5):211–222CrossRefPubMed
Zurück zum Zitat Davis M, Rainnie D, Cassell M (1994) Neurotransmission in the rat amygdala related to fear and anxiety. Trends Neurosci 17:208–214CrossRefPubMed Davis M, Rainnie D, Cassell M (1994) Neurotransmission in the rat amygdala related to fear and anxiety. Trends Neurosci 17:208–214CrossRefPubMed
Zurück zum Zitat Dawirs RR, Teuchert-Noodt G, Czaniera R (1993a) Maturation of the dopamine innervation during postnatal development of the prefrontal cortex in gerbils (Meriones unguiculatus). A quantitative immunocytochemical study. J Hirnforsch 34:281–290 Dawirs RR, Teuchert-Noodt G, Czaniera R (1993a) Maturation of the dopamine innervation during postnatal development of the prefrontal cortex in gerbils (Meriones unguiculatus). A quantitative immunocytochemical study. J Hirnforsch 34:281–290
Zurück zum Zitat Dawirs RR, Teuchert-Noodt G, Molthagen M (1993b) Indication of methamphetamine-induced reactive synaptogenesis in the prefrontal cortex of gerbils Meriones unguiculatus. Eur J Pharmacol 421:89–97 Dawirs RR, Teuchert-Noodt G, Molthagen M (1993b) Indication of methamphetamine-induced reactive synaptogenesis in the prefrontal cortex of gerbils Meriones unguiculatus. Eur J Pharmacol 421:89–97
Zurück zum Zitat Del Rio JA, Soriano E, Ferrer I (1992) Development of GABA-immunoreactivity in the neocortex of the mouse. J Comp Neurol 326:501–526CrossRefPubMed Del Rio JA, Soriano E, Ferrer I (1992) Development of GABA-immunoreactivity in the neocortex of the mouse. J Comp Neurol 326:501–526CrossRefPubMed
Zurück zum Zitat Ennaceur A, Aggleton JP (1994) Spontaneous recognition of object configurations in rats: effects of fornix lesions. Exp Brain Res 100(1):85–92CrossRefPubMed Ennaceur A, Aggleton JP (1994) Spontaneous recognition of object configurations in rats: effects of fornix lesions. Exp Brain Res 100(1):85–92CrossRefPubMed
Zurück zum Zitat Etkin A, Wager TD (2007) Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am J Psychiatry 164:1476–1488PubMedCentralCrossRefPubMed Etkin A, Wager TD (2007) Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am J Psychiatry 164:1476–1488PubMedCentralCrossRefPubMed
Zurück zum Zitat Fahy FL, Riches IP, Brown MW (1993) Neuronal signals of importance to the performance of visual recognition memory tasks: Evidence from recordings of single neurons in the medial thalamus of primates. Progr Brain Res 95:401–416CrossRef Fahy FL, Riches IP, Brown MW (1993) Neuronal signals of importance to the performance of visual recognition memory tasks: Evidence from recordings of single neurons in the medial thalamus of primates. Progr Brain Res 95:401–416CrossRef
Zurück zum Zitat File SE, Gonzalez LE, Gallant R (1998) Role of the basolateral nucleus of the amygdala in the formation of a phobia. Neuropsychopharmacology 19:397–405CrossRefPubMed File SE, Gonzalez LE, Gallant R (1998) Role of the basolateral nucleus of the amygdala in the formation of a phobia. Neuropsychopharmacology 19:397–405CrossRefPubMed
Zurück zum Zitat Flores G, Alquicer G, Silva-Gomez AB, Zaldivar G, Stewart J, Quirion R, Srivastava LK (2005) Alterations in dendritic morphology of prefrontal cortical and nucleus accumbens neurons in post-pubertal rats after neonatal excitotoxic lesions of the ventral hippocampus. Neuroscience 133:463–470CrossRefPubMed Flores G, Alquicer G, Silva-Gomez AB, Zaldivar G, Stewart J, Quirion R, Srivastava LK (2005) Alterations in dendritic morphology of prefrontal cortical and nucleus accumbens neurons in post-pubertal rats after neonatal excitotoxic lesions of the ventral hippocampus. Neuroscience 133:463–470CrossRefPubMed
Zurück zum Zitat Floresco SB, Braaksma DN, Phillips AG (1999) Thalamic–cortical–striatal circuitry subserves working memory during delayed responding on a radial arm maze. J Neurosci 19:11061–11071PubMed Floresco SB, Braaksma DN, Phillips AG (1999) Thalamic–cortical–striatal circuitry subserves working memory during delayed responding on a radial arm maze. J Neurosci 19:11061–11071PubMed
Zurück zum Zitat Gabbott PL, Warner TA, Jays PR, Bacon SJ (2003) Areal and synaptic interconnectivity of prelimbic (area 32), infralimbic (area 25) and insular cortices in the rat. Brain Res 993:59–71CrossRefPubMed Gabbott PL, Warner TA, Jays PR, Bacon SJ (2003) Areal and synaptic interconnectivity of prelimbic (area 32), infralimbic (area 25) and insular cortices in the rat. Brain Res 993:59–71CrossRefPubMed
Zurück zum Zitat Garey LJ, Ong WY, Patel TS et al (1998) Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J Neurol Neurosurg Psychiatry 65:446–453PubMedCentralCrossRefPubMed Garey LJ, Ong WY, Patel TS et al (1998) Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J Neurol Neurosurg Psychiatry 65:446–453PubMedCentralCrossRefPubMed
Zurück zum Zitat Ghashghaei HT, Barbas H (2002) Pathways for emotion: interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey. Neuroscience 115(1261):1279 Ghashghaei HT, Barbas H (2002) Pathways for emotion: interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey. Neuroscience 115(1261):1279
Zurück zum Zitat Giguere M, Goldman-Rakic PS (1988) Mediodorsal nucleus: areal, laminar and tangential distribution of afferents and efferents in the frontal lobe of rhesus monkeys. J Comp Neurol 277:195–213CrossRefPubMed Giguere M, Goldman-Rakic PS (1988) Mediodorsal nucleus: areal, laminar and tangential distribution of afferents and efferents in the frontal lobe of rhesus monkeys. J Comp Neurol 277:195–213CrossRefPubMed
Zurück zum Zitat Gillessen T, Alzheimer C (1997) Amplification of EPSPs by low Ni 2 + and amiloride-sensitive Ca 2+ channels in apical dendrites of rat CA1 pyramidal neurons. J Neurosci 77:1639–1643 Gillessen T, Alzheimer C (1997) Amplification of EPSPs by low Ni 2 + and amiloride-sensitive Ca 2+ channels in apical dendrites of rat CA1 pyramidal neurons. J Neurosci 77:1639–1643
Zurück zum Zitat Glantz LA, Lewis DA (2000) Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 57:65–67CrossRefPubMed Glantz LA, Lewis DA (2000) Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 57:65–67CrossRefPubMed
Zurück zum Zitat Goldman-Rakic PS, Porrino LJ (1985) The primate mediodorsal (MD) nucleus and its projection to the frontal lobe. J Comp Neurol 242:535–560CrossRefPubMed Goldman-Rakic PS, Porrino LJ (1985) The primate mediodorsal (MD) nucleus and its projection to the frontal lobe. J Comp Neurol 242:535–560CrossRefPubMed
Zurück zum Zitat Gonzalez-Burgos G, Lewis DA (2008) NMDA receptor hypofunction, parvalbumin-positive neurons, and cortical gamma oscillations in schizophrenia. Schizophr Bull 38:950–957CrossRef Gonzalez-Burgos G, Lewis DA (2008) NMDA receptor hypofunction, parvalbumin-positive neurons, and cortical gamma oscillations in schizophrenia. Schizophr Bull 38:950–957CrossRef
Zurück zum Zitat Groenewegen HJ (1988) Organization of the afferent connections of the mediodorsal thalamic nucleus in the rat, related to the mediodorsal-prefrontal topography. Neuroscience 24:379–431CrossRefPubMed Groenewegen HJ (1988) Organization of the afferent connections of the mediodorsal thalamic nucleus in the rat, related to the mediodorsal-prefrontal topography. Neuroscience 24:379–431CrossRefPubMed
Zurück zum Zitat Guldin WO, Pritzel M, Markowitsch HJ (1981) Prefrontal cortex of the mouse defined as cortical projection area of the thalamic mediodorsal nucleus. Brain Behav Evol 19:93–107CrossRefPubMed Guldin WO, Pritzel M, Markowitsch HJ (1981) Prefrontal cortex of the mouse defined as cortical projection area of the thalamic mediodorsal nucleus. Brain Behav Evol 19:93–107CrossRefPubMed
Zurück zum Zitat Handley SL, McBlane JW (1993) An assessment of the elevated plus-maze for studying anxiety and anxiety-modulating drugs. J Pharmacol Toxicol Methods 29:129–138CrossRefPubMed Handley SL, McBlane JW (1993) An assessment of the elevated plus-maze for studying anxiety and anxiety-modulating drugs. J Pharmacol Toxicol Methods 29:129–138CrossRefPubMed
Zurück zum Zitat Handley SL, Mithani S (1984) Effects of alpha-adrenoceptor agonists and antagonists in a maze-exploration model of ‘fear’-motivated behavior. Naunyn Schmiedebergs Arch Pharmacol 327:1–5CrossRefPubMed Handley SL, Mithani S (1984) Effects of alpha-adrenoceptor agonists and antagonists in a maze-exploration model of ‘fear’-motivated behavior. Naunyn Schmiedebergs Arch Pharmacol 327:1–5CrossRefPubMed
Zurück zum Zitat Howard MW, Rizzuto DS, Caplan JB, Madsen JR, Lisman J, Aschenbrenner-Scheibe R, Schulze-Bonhage A, Kahana MJ (2003) Gamma oscillations correlate with working memory load in humans. Cereb Cortex 13:1369–1374CrossRefPubMed Howard MW, Rizzuto DS, Caplan JB, Madsen JR, Lisman J, Aschenbrenner-Scheibe R, Schulze-Bonhage A, Kahana MJ (2003) Gamma oscillations correlate with working memory load in humans. Cereb Cortex 13:1369–1374CrossRefPubMed
Zurück zum Zitat Hunt PR, Aggleton JP (1998) Neurotoxic lesions of the dorsomedial thalamus impair the acquisition but not the performance of delayed matching to place by rats: A deficit in shifting response rules. J Neurosci 18:10045–10052PubMed Hunt PR, Aggleton JP (1998) Neurotoxic lesions of the dorsomedial thalamus impair the acquisition but not the performance of delayed matching to place by rats: A deficit in shifting response rules. J Neurosci 18:10045–10052PubMed
Zurück zum Zitat Hurley KM, Herbert H, Moga MM, Saper CB (1991) Efferent projections of the infralimbic cortex of the rat. J Comp Neurol 308:249–276CrossRefPubMed Hurley KM, Herbert H, Moga MM, Saper CB (1991) Efferent projections of the infralimbic cortex of the rat. J Comp Neurol 308:249–276CrossRefPubMed
Zurück zum Zitat Isseroff A, Rosvold HE, Galkin TW, Goldman-Rakic PS (1982) Spatial memory impairments following damage to the mediodorsal nucleus of the thalamus in rhesus monkeys. Brain Res 232:97–113CrossRefPubMed Isseroff A, Rosvold HE, Galkin TW, Goldman-Rakic PS (1982) Spatial memory impairments following damage to the mediodorsal nucleus of the thalamus in rhesus monkeys. Brain Res 232:97–113CrossRefPubMed
Zurück zum Zitat Jones L, Johnson N, Byne W (2002) Alterations in MAP2 staining in area 9 and 32 of schizophrenic prefrontal cortex. Psychiatry Res 114:137–148CrossRefPubMed Jones L, Johnson N, Byne W (2002) Alterations in MAP2 staining in area 9 and 32 of schizophrenic prefrontal cortex. Psychiatry Res 114:137–148CrossRefPubMed
Zurück zum Zitat Kesner RP, Hunt ME, Williams JM, Long JM (1996) Prefrontal cortex and working memory for spatial response, spatial location, and visual object information in the rat. Cereb Cortex 6:311–318CrossRefPubMed Kesner RP, Hunt ME, Williams JM, Long JM (1996) Prefrontal cortex and working memory for spatial response, spatial location, and visual object information in the rat. Cereb Cortex 6:311–318CrossRefPubMed
Zurück zum Zitat Kolb B, Buhrmann K, McDonald R, Sutherland RJ (1994) Dissociation of the medial prefrontal, posterior parietal, and posterior temporal cortex for spatial navigation and recognition memory in the rat. Cereb Cortex 4:664–680CrossRefPubMed Kolb B, Buhrmann K, McDonald R, Sutherland RJ (1994) Dissociation of the medial prefrontal, posterior parietal, and posterior temporal cortex for spatial navigation and recognition memory in the rat. Cereb Cortex 4:664–680CrossRefPubMed
Zurück zum Zitat Kosaka H, Omori M, Murata T, Iidaka T, Yamada H, Okada T, Takahashi T, Sadato N, Itoh H, Yonekura Y, Wada Y (2002) Differential amygdala response during facial recognition in patients with schizophrenia: an fMRI study. Schizophr Res 57:87–95CrossRefPubMed Kosaka H, Omori M, Murata T, Iidaka T, Yamada H, Okada T, Takahashi T, Sadato N, Itoh H, Yonekura Y, Wada Y (2002) Differential amygdala response during facial recognition in patients with schizophrenia: an fMRI study. Schizophr Res 57:87–95CrossRefPubMed
Zurück zum Zitat Krettek JE, Price JL (1977) The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat. J Comp Neurol 171:157–192CrossRefPubMed Krettek JE, Price JL (1977) The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat. J Comp Neurol 171:157–192CrossRefPubMed
Zurück zum Zitat Kuroda M, Murakami K, Kishi K, Price JL (1995) Thalamocortical synapses between axons from the mediodorsal thalamic nucleus and pyramidal cells in the prelimbic cortex of the rat. J Comp Neurol 356:143–151CrossRefPubMed Kuroda M, Murakami K, Kishi K, Price JL (1995) Thalamocortical synapses between axons from the mediodorsal thalamic nucleus and pyramidal cells in the prelimbic cortex of the rat. J Comp Neurol 356:143–151CrossRefPubMed
Zurück zum Zitat Kuroda M, Yokofujita J, Murakami K (1998) An ultrastructural study of the neural circuit between the prefrontal cortex and the mediodorsal nucleus of the thalamus. Prog Neurobiol 54:417–458CrossRefPubMed Kuroda M, Yokofujita J, Murakami K (1998) An ultrastructural study of the neural circuit between the prefrontal cortex and the mediodorsal nucleus of the thalamus. Prog Neurobiol 54:417–458CrossRefPubMed
Zurück zum Zitat Labiner DM, Butler LS, Cao Z, Hosford DA, Shin C, McNamara JO (1993) Induction of c-fos mRNA by kindled seizures: complex relationship with neuronal burst firing. J Neurosci 13:744–751PubMed Labiner DM, Butler LS, Cao Z, Hosford DA, Shin C, McNamara JO (1993) Induction of c-fos mRNA by kindled seizures: complex relationship with neuronal burst firing. J Neurosci 13:744–751PubMed
Zurück zum Zitat Lacroix L, Broersen LM, Weiner I, Feldon J (1998) The effects of excitotoxic lesion of the medial prefrontal cortex on latent inhibition, prepulse inhibition, food hoarding, elevated plus maze, active avoidance and locomotor activity in the rat. Neuroscience 84:431–442CrossRefPubMed Lacroix L, Broersen LM, Weiner I, Feldon J (1998) The effects of excitotoxic lesion of the medial prefrontal cortex on latent inhibition, prepulse inhibition, food hoarding, elevated plus maze, active avoidance and locomotor activity in the rat. Neuroscience 84:431–442CrossRefPubMed
Zurück zum Zitat Lapiz-Bluhm MD, Bondi CO, Doyen J, Rodriguez GA, Bedard-Arana T, Morilak DA (2008) Behavioral assays to model cognitive and affective dimensions of depression and anxiety in rats. J Neuroendocrinol 20:1115–1137PubMedCentralCrossRefPubMed Lapiz-Bluhm MD, Bondi CO, Doyen J, Rodriguez GA, Bedard-Arana T, Morilak DA (2008) Behavioral assays to model cognitive and affective dimensions of depression and anxiety in rats. J Neuroendocrinol 20:1115–1137PubMedCentralCrossRefPubMed
Zurück zum Zitat Leonard CM (1969) The prefrontal cortex of the rat. I. Cortical projection of the mediodorsal nucleus. II. Efferent connections. Brain Res 12(2):321–343CrossRefPubMed Leonard CM (1969) The prefrontal cortex of the rat. I. Cortical projection of the mediodorsal nucleus. II. Efferent connections. Brain Res 12(2):321–343CrossRefPubMed
Zurück zum Zitat Li CR, Huang GB, Sui ZY, Han EH, Chung YC (2010) Effects of 6-hydroxydopamine lesioning of the medial prefrontal cortex on social interactions in adolescent and adult rats. Brain Res 1346:183–189CrossRefPubMed Li CR, Huang GB, Sui ZY, Han EH, Chung YC (2010) Effects of 6-hydroxydopamine lesioning of the medial prefrontal cortex on social interactions in adolescent and adult rats. Brain Res 1346:183–189CrossRefPubMed
Zurück zum Zitat Lipska BK, Weinberger DR (1993) Delayed effects of neonatal hippocampal damage on haloperidol induced catalepsy and apomorphine-induced stereotypic behaviours in the rat. Dev Brain Res 75:213–222CrossRef Lipska BK, Weinberger DR (1993) Delayed effects of neonatal hippocampal damage on haloperidol induced catalepsy and apomorphine-induced stereotypic behaviours in the rat. Dev Brain Res 75:213–222CrossRef
Zurück zum Zitat Maaswinkel H, Gispen WH, Spruijt BM (1996) Effects of an electrolytic lesion of the prelimbic area on anxiety-related and cognitive tasks in the rat. Behav Brain Res 79:51–59CrossRefPubMed Maaswinkel H, Gispen WH, Spruijt BM (1996) Effects of an electrolytic lesion of the prelimbic area on anxiety-related and cognitive tasks in the rat. Behav Brain Res 79:51–59CrossRefPubMed
Zurück zum Zitat Marmolejo N, Paez J, Levitt JB, Jones LB (2012) Early postnatal lesion of the medial dorsal nucleus leads to loss of dendrites and spines in adult prefrontal cortex. Dev Neurosci 34(6):463–476CrossRefPubMed Marmolejo N, Paez J, Levitt JB, Jones LB (2012) Early postnatal lesion of the medial dorsal nucleus leads to loss of dendrites and spines in adult prefrontal cortex. Dev Neurosci 34(6):463–476CrossRefPubMed
Zurück zum Zitat Marmolejo N, Paez J, Levitt JB, Jones LB (2013) Early postnatal lesion of the medialdorsal nucleus leads to loss of dendrites and spines in adult prefrontal cortex. Dev Neurosci 34:463–476PubMedCentralCrossRef Marmolejo N, Paez J, Levitt JB, Jones LB (2013) Early postnatal lesion of the medialdorsal nucleus leads to loss of dendrites and spines in adult prefrontal cortex. Dev Neurosci 34:463–476PubMedCentralCrossRef
Zurück zum Zitat McAllister AK (2000) Cellular and molecular mechanisms of dendrite growth. Cereb Cortex 10(10):963–973CrossRefPubMed McAllister AK (2000) Cellular and molecular mechanisms of dendrite growth. Cereb Cortex 10(10):963–973CrossRefPubMed
Zurück zum Zitat McAlonan GM, Robbins TW, Everitt BJ (1993) Effects of medial dorsal thalamic and ventral pallidal lesions on the acquisition of a conditioned place preference: further evidence for the involvement of the ventral striatopallidal system in reward-related processes. Neuroscience 52:605–620CrossRefPubMed McAlonan GM, Robbins TW, Everitt BJ (1993) Effects of medial dorsal thalamic and ventral pallidal lesions on the acquisition of a conditioned place preference: further evidence for the involvement of the ventral striatopallidal system in reward-related processes. Neuroscience 52:605–620CrossRefPubMed
Zurück zum Zitat McDonald AJ (1991) Organization of amygdaloid projections to the prefrontal cortex and associated striatum in the rat. Neuroscience 44:1–14CrossRefPubMed McDonald AJ (1991) Organization of amygdaloid projections to the prefrontal cortex and associated striatum in the rat. Neuroscience 44:1–14CrossRefPubMed
Zurück zum Zitat McDonald AJ (1998) Cortical pathways to the mammalian amygdala. Progr Neurobiol 55:257–332CrossRef McDonald AJ (1998) Cortical pathways to the mammalian amygdala. Progr Neurobiol 55:257–332CrossRef
Zurück zum Zitat McDonald AJ, Mascagni F (2001) Colocalization of calcium-binding proteins and GABA in neurons of the rat basolateral amygdala. Neuroscience 105:681–693CrossRefPubMed McDonald AJ, Mascagni F (2001) Colocalization of calcium-binding proteins and GABA in neurons of the rat basolateral amygdala. Neuroscience 105:681–693CrossRefPubMed
Zurück zum Zitat McDonald AJ, Mascagni F, Guo L (1996) Projections of the medial and lateral prefrontal cortices to the amygdala: a Phaseolus vulgaris leucoagglutinin study in the rat. Neuroscience 71:55–75CrossRefPubMed McDonald AJ, Mascagni F, Guo L (1996) Projections of the medial and lateral prefrontal cortices to the amygdala: a Phaseolus vulgaris leucoagglutinin study in the rat. Neuroscience 71:55–75CrossRefPubMed
Zurück zum Zitat Mitchell AS, Dalrymple Alford JC (2005) Dissociable memory effects after medial thalamus lesions in the rat. Eur J Neurosci 22:973–985CrossRefPubMed Mitchell AS, Dalrymple Alford JC (2005) Dissociable memory effects after medial thalamus lesions in the rat. Eur J Neurosci 22:973–985CrossRefPubMed
Zurück zum Zitat Mitchell AS, Browning PGF, Baxter MG (2007) Neurotoxic lesions of the medial mediodorsal nucleus of the thalamus disrupt reinforcer devaluation effects in rhesus monkeys. J Neurosci 27:11289–11295PubMedCentralCrossRefPubMed Mitchell AS, Browning PGF, Baxter MG (2007) Neurotoxic lesions of the medial mediodorsal nucleus of the thalamus disrupt reinforcer devaluation effects in rhesus monkeys. J Neurosci 27:11289–11295PubMedCentralCrossRefPubMed
Zurück zum Zitat Moreira CM, Masson S, Carvalho MC, Brandao ML (2007) Exploratory behaviour of rats in the elevated plus maze is differentially sensitive to inactivation of the basolateral and central amygdaloid nuclei. Brain Res Bull 71:466–474CrossRefPubMed Moreira CM, Masson S, Carvalho MC, Brandao ML (2007) Exploratory behaviour of rats in the elevated plus maze is differentially sensitive to inactivation of the basolateral and central amygdaloid nuclei. Brain Res Bull 71:466–474CrossRefPubMed
Zurück zum Zitat Negyessy L, Hámori J, Bentivoglio M (1998) Contralateral cortical projection to the mediodorsal thalamic nucleus: origin and synaptic organization in the rat. Neuroscience 84:741–753CrossRefPubMed Negyessy L, Hámori J, Bentivoglio M (1998) Contralateral cortical projection to the mediodorsal thalamic nucleus: origin and synaptic organization in the rat. Neuroscience 84:741–753CrossRefPubMed
Zurück zum Zitat Ottersen OP, Ben-Ari Y (1979) Afferent connections to the amygdaloid complex of the rat and cat. J Comp Neurol 187:401–424CrossRefPubMed Ottersen OP, Ben-Ari Y (1979) Afferent connections to the amygdaloid complex of the rat and cat. J Comp Neurol 187:401–424CrossRefPubMed
Zurück zum Zitat Ouhaz Z, Ba-M’hame S, Mitchell AS, Elidrissi A, Bennis M (2015) Behavioral and cognitive changes after early postnatal lesions of the rat mediodorsal thalamus. Behav Brain Res 292:219–232PubMedCentralCrossRefPubMed Ouhaz Z, Ba-M’hame S, Mitchell AS, Elidrissi A, Bennis M (2015) Behavioral and cognitive changes after early postnatal lesions of the rat mediodorsal thalamus. Behav Brain Res 292:219–232PubMedCentralCrossRefPubMed
Zurück zum Zitat Parker A, Eacott MJ, Gaffan D (1997) The recognition memory deficit caused by mediodorsal thalamic lesion in non-human primates: A comparison with rhinal cortex lesion. Eur J Neurosci 9:2423–2431CrossRefPubMed Parker A, Eacott MJ, Gaffan D (1997) The recognition memory deficit caused by mediodorsal thalamic lesion in non-human primates: A comparison with rhinal cortex lesion. Eur J Neurosci 9:2423–2431CrossRefPubMed
Zurück zum Zitat Parnaudeau S, O’Neill PK, Bolkan SS, Ward RD, Abbas AI, Roth BL, Balsam PD, Gordon JA, Kellendonk C (2013) Inhibition of mediodorsal thalamus disrupts thalamofrontal connectivity and cognition. Neuron 77:1151–1162PubMedCentralCrossRefPubMed Parnaudeau S, O’Neill PK, Bolkan SS, Ward RD, Abbas AI, Roth BL, Balsam PD, Gordon JA, Kellendonk C (2013) Inhibition of mediodorsal thalamus disrupts thalamofrontal connectivity and cognition. Neuron 77:1151–1162PubMedCentralCrossRefPubMed
Zurück zum Zitat Parnaudeau S, Taylor K, Bolkan SS, Ward RD, Balsam PD, Kellendonk C (2015) Mediodorsal thalamus hypofunction impairs flexible goal-directed behavior. Biol Psychiatry 77:445–453CrossRefPubMed Parnaudeau S, Taylor K, Bolkan SS, Ward RD, Balsam PD, Kellendonk C (2015) Mediodorsal thalamus hypofunction impairs flexible goal-directed behavior. Biol Psychiatry 77:445–453CrossRefPubMed
Zurück zum Zitat Paxinos G, Watson C (2008) The rat brain: in stereotaxic coordinates, vol 6. Elsevier Academic Press, San Diego Paxinos G, Watson C (2008) The rat brain: in stereotaxic coordinates, vol 6. Elsevier Academic Press, San Diego
Zurück zum Zitat Pesold C, Treit D (1995) The central and basolateral amygdala differentially mediate the anxiolytic effects of benzodiazepines. Brain Res 671:213–221CrossRefPubMed Pesold C, Treit D (1995) The central and basolateral amygdala differentially mediate the anxiolytic effects of benzodiazepines. Brain Res 671:213–221CrossRefPubMed
Zurück zum Zitat Phelps EA, Le Doux JE (2005) Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron 48:175–187CrossRefPubMed Phelps EA, Le Doux JE (2005) Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron 48:175–187CrossRefPubMed
Zurück zum Zitat Phifer CB, Terry LM (1986) Use of hypothermia for general anesthesia in preweanling rodents. Physiol Behav 38:887–890CrossRefPubMed Phifer CB, Terry LM (1986) Use of hypothermia for general anesthesia in preweanling rodents. Physiol Behav 38:887–890CrossRefPubMed
Zurück zum Zitat Prager EM, Pidoplichko VI, Aroniadou-Anderjaska V, Apland JP, Braga MF (2014) Pathophysiological mechanisms underlying increased anxiety after soman exposure: reduced GABAergic inhibition in the basolateral amygdala. Neurotoxicology 44:335–343CrossRefPubMed Prager EM, Pidoplichko VI, Aroniadou-Anderjaska V, Apland JP, Braga MF (2014) Pathophysiological mechanisms underlying increased anxiety after soman exposure: reduced GABAergic inhibition in the basolateral amygdala. Neurotoxicology 44:335–343CrossRefPubMed
Zurück zum Zitat Quirk GJ, Beer JS (2006) Prefrontal involvement in the regulation of emotion: convergence of rat and human studies. Curr Opin Neurobiol 16:723–727CrossRefPubMed Quirk GJ, Beer JS (2006) Prefrontal involvement in the regulation of emotion: convergence of rat and human studies. Curr Opin Neurobiol 16:723–727CrossRefPubMed
Zurück zum Zitat Ragozzino M, Detrick S, Kesner R (2002) The effects of prelimbic and infralimbic lesions on working memory for visual objects in rats. Neurobiol Learn Mem 77:29–43CrossRefPubMed Ragozzino M, Detrick S, Kesner R (2002) The effects of prelimbic and infralimbic lesions on working memory for visual objects in rats. Neurobiol Learn Mem 77:29–43CrossRefPubMed
Zurück zum Zitat Rajan I, Cline HT (1998) Glutamate receptor activity is required for normal development of tectal cell dendrites in vivo. J Neurosci 18:7836–7846PubMed Rajan I, Cline HT (1998) Glutamate receptor activity is required for normal development of tectal cell dendrites in vivo. J Neurosci 18:7836–7846PubMed
Zurück zum Zitat Rauch SL, Shin LM, Phelps EA (2006) Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research – past, present, and future. Biol Psychiatry 60:376–382CrossRefPubMed Rauch SL, Shin LM, Phelps EA (2006) Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research – past, present, and future. Biol Psychiatry 60:376–382CrossRefPubMed
Zurück zum Zitat Rauch AV, Reker M, Ohrmann P, Pedersen A, Bauer J, Dannlowski U, Harding L, Koelkebeck K, Konrad C, Kugel H, Arolt V, Heindel W, Suslow T (2010) Increased amygdala activation during automatic processing of facial emotion in schizophrenia. Psychiatry Res 182:200–206CrossRefPubMed Rauch AV, Reker M, Ohrmann P, Pedersen A, Bauer J, Dannlowski U, Harding L, Koelkebeck K, Konrad C, Kugel H, Arolt V, Heindel W, Suslow T (2010) Increased amygdala activation during automatic processing of facial emotion in schizophrenia. Psychiatry Res 182:200–206CrossRefPubMed
Zurück zum Zitat Rios O, Villalobos J (2004) Postnatal development of the afferent projections from the dorsomedial thalamic nucleus to the frontal cortex in mice. Dev Brain Res 150(1):47–50CrossRefPubMed Rios O, Villalobos J (2004) Postnatal development of the afferent projections from the dorsomedial thalamic nucleus to the frontal cortex in mice. Dev Brain Res 150(1):47–50CrossRefPubMed
Zurück zum Zitat Room P, Russchen FT, Groenewegen HJ, Lohman AH (1985) Efferent connections of the prelimbic (area 32) and the infralimbic (area 25) cortices: An anterograde tracing study in the cat. J Comp Neurol 242:40–55CrossRefPubMed Room P, Russchen FT, Groenewegen HJ, Lohman AH (1985) Efferent connections of the prelimbic (area 32) and the infralimbic (area 25) cortices: An anterograde tracing study in the cat. J Comp Neurol 242:40–55CrossRefPubMed
Zurück zum Zitat Rose JE, Woolsey CN (1948) The orbitofrontal cortex and its connections with the mediodorsal nucleus in rabbit, sheep and cat. Res Publ Assoc Res Nerv Ment Dis 27(1):210–232PubMed Rose JE, Woolsey CN (1948) The orbitofrontal cortex and its connections with the mediodorsal nucleus in rabbit, sheep and cat. Res Publ Assoc Res Nerv Ment Dis 27(1):210–232PubMed
Zurück zum Zitat Sah P, Faber ESL, Lopez de Armentia M, Power J (2003) The amygdaloid complex: anatomy and physiology. Physiol Rev 83(3):803–834CrossRefPubMed Sah P, Faber ESL, Lopez de Armentia M, Power J (2003) The amygdaloid complex: anatomy and physiology. Physiol Rev 83(3):803–834CrossRefPubMed
Zurück zum Zitat Sesack SR, Deutch AY, Roth RH, Bunney BS (1989) Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: An anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. J Comp Neurol 290:213–242CrossRefPubMed Sesack SR, Deutch AY, Roth RH, Bunney BS (1989) Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: An anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. J Comp Neurol 290:213–242CrossRefPubMed
Zurück zum Zitat Sgambato V et al (1997) Effect of electrical stimulation of the cerebral cortex on the expression of the Fos protein in the basal ganglia. Neuroscience 81:93–112CrossRefPubMed Sgambato V et al (1997) Effect of electrical stimulation of the cerebral cortex on the expression of the Fos protein in the basal ganglia. Neuroscience 81:93–112CrossRefPubMed
Zurück zum Zitat Sheng M, Greenberg ME (1990) The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron 4:477–485CrossRefPubMed Sheng M, Greenberg ME (1990) The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron 4:477–485CrossRefPubMed
Zurück zum Zitat Shinonaga Y, Takada M, Mizuno N (1994) Topographic organization of collateral projections from the basolateral amygdaloid nucleus to both the prefrontal cortex and nucleus accumbens in the rat. Neuroscience 58:389–397CrossRefPubMed Shinonaga Y, Takada M, Mizuno N (1994) Topographic organization of collateral projections from the basolateral amygdaloid nucleus to both the prefrontal cortex and nucleus accumbens in the rat. Neuroscience 58:389–397CrossRefPubMed
Zurück zum Zitat Sholl DA (1953) Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 87(4):387–406PubMedCentralPubMed Sholl DA (1953) Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 87(4):387–406PubMedCentralPubMed
Zurück zum Zitat Silva-Gomez AB, Rojas D, Juarez I, Flores G (2003) Decreased dendritic spine density on prefrontal cortical and hippocampal pyramidal neurons in postweaning social isolation rats. Brain Res 983:128–136CrossRefPubMed Silva-Gomez AB, Rojas D, Juarez I, Flores G (2003) Decreased dendritic spine density on prefrontal cortical and hippocampal pyramidal neurons in postweaning social isolation rats. Brain Res 983:128–136CrossRefPubMed
Zurück zum Zitat Souza A, Dussan-Sarria JA, Medeiros LF, Souza AC, Oliveira C, Scarabelot VL, Adachi LN, Winkelmann-Duarte EC, Philippi-Martins BB, Netto CA, Caumo W, Torres ILS (2014) Neonatal hypoxic–ischemic encephalopathy reduces c-Fos activation in the rat hippocampus: evidence of a long-lasting effect. Int J Dev Neurosci 38:213–222CrossRefPubMed Souza A, Dussan-Sarria JA, Medeiros LF, Souza AC, Oliveira C, Scarabelot VL, Adachi LN, Winkelmann-Duarte EC, Philippi-Martins BB, Netto CA, Caumo W, Torres ILS (2014) Neonatal hypoxic–ischemic encephalopathy reduces c-Fos activation in the rat hippocampus: evidence of a long-lasting effect. Int J Dev Neurosci 38:213–222CrossRefPubMed
Zurück zum Zitat Su HS, Bentivoglio M (1990) Thalamic midline cell populations projecting to the nucleus accumbens, amygdala and hippocampus in the rat. J Comp Neurol 297:582–593CrossRef Su HS, Bentivoglio M (1990) Thalamic midline cell populations projecting to the nucleus accumbens, amygdala and hippocampus in the rat. J Comp Neurol 297:582–593CrossRef
Zurück zum Zitat Thompson M, Weickert CS, Wyatt E, Webster MJ (2009) Decreased glutamic acid decarboxylase67 mRNA expression in multiple brain areas of patients with schizophrenia and mood disorders. J Psychiatr Res 43(11):970–977CrossRefPubMed Thompson M, Weickert CS, Wyatt E, Webster MJ (2009) Decreased glutamic acid decarboxylase67 mRNA expression in multiple brain areas of patients with schizophrenia and mood disorders. J Psychiatr Res 43(11):970–977CrossRefPubMed
Zurück zum Zitat Thomases DR, Cass DK, Tseng KY (2013) Periadolescent exposure to the NMDA receptor antagonist MK-801 impairs the functional maturation of local GABAergic circuits in the adult prefrontal cortex. J Neurosci 33:26–34PubMedCentralCrossRefPubMed Thomases DR, Cass DK, Tseng KY (2013) Periadolescent exposure to the NMDA receptor antagonist MK-801 impairs the functional maturation of local GABAergic circuits in the adult prefrontal cortex. J Neurosci 33:26–34PubMedCentralCrossRefPubMed
Zurück zum Zitat Tseng KY, Chambers RA, Lipska BK (2009) The neonatal ventral hippocampal lesion as a heuristic neurodevelopmental model of schizophrenia. Behav Brain Res 204:295–305CrossRefPubMed Tseng KY, Chambers RA, Lipska BK (2009) The neonatal ventral hippocampal lesion as a heuristic neurodevelopmental model of schizophrenia. Behav Brain Res 204:295–305CrossRefPubMed
Zurück zum Zitat Uhlhaas PJ, Roux F, Singer W (2013) Thalamocortical synchronization and cognition: implications for schizophrenia? Neuron 77(6):997–999CrossRefPubMed Uhlhaas PJ, Roux F, Singer W (2013) Thalamocortical synchronization and cognition: implications for schizophrenia? Neuron 77(6):997–999CrossRefPubMed
Zurück zum Zitat Uylings HB, Groenewegen HJ, Kolb B (2003) Do rats have a prefrontal cortex? Behav BrainRes 146:3–17 Uylings HB, Groenewegen HJ, Kolb B (2003) Do rats have a prefrontal cortex? Behav BrainRes 146:3–17
Zurück zum Zitat Van Eden CG (1986) Development of connections between the mediodorsal nucleus of the thalamus and the prefrontal cortex in the rat. J Comp Neurol 244:349–359CrossRefPubMed Van Eden CG (1986) Development of connections between the mediodorsal nucleus of the thalamus and the prefrontal cortex in the rat. J Comp Neurol 244:349–359CrossRefPubMed
Zurück zum Zitat Van Eden CG, Uylings HB (1985) Postnatal volumetric development of the prefrontal cortex in the rat. J Comp Neurol 241:268–274CrossRefPubMed Van Eden CG, Uylings HB (1985) Postnatal volumetric development of the prefrontal cortex in the rat. J Comp Neurol 241:268–274CrossRefPubMed
Zurück zum Zitat Van Ooyen A, van Pelt J, Corner MA (1995) Implication of activity-dependent neurite outgrowth for neuronal morphology and network development. J Theor Biol 172:63–82CrossRefPubMed Van Ooyen A, van Pelt J, Corner MA (1995) Implication of activity-dependent neurite outgrowth for neuronal morphology and network development. J Theor Biol 172:63–82CrossRefPubMed
Zurück zum Zitat Van Pelt J, van Ooyen A, Corner MA (1996) Growth cone dynamics and activity-dependent processes in neuronal network development. Prog Brain Res 108:333–346CrossRefPubMed Van Pelt J, van Ooyen A, Corner MA (1996) Growth cone dynamics and activity-dependent processes in neuronal network development. Prog Brain Res 108:333–346CrossRefPubMed
Zurück zum Zitat Vertes RP (2004) Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51(1):32–58CrossRefPubMed Vertes RP (2004) Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51(1):32–58CrossRefPubMed
Zurück zum Zitat Villarreal G, King CY (2001) Brain imaging in posttraumatic stress disorder. Semin Clin Neuropsychiatry 6:131–45CrossRefPubMed Villarreal G, King CY (2001) Brain imaging in posttraumatic stress disorder. Semin Clin Neuropsychiatry 6:131–45CrossRefPubMed
Zurück zum Zitat Vincent SL, Pabreza L, Benes FM (1995) Postnatal maturation of GABA immunoreactive neurons of rat medial prefrontal cortex. J Comp Neurol 355:81–92CrossRefPubMed Vincent SL, Pabreza L, Benes FM (1995) Postnatal maturation of GABA immunoreactive neurons of rat medial prefrontal cortex. J Comp Neurol 355:81–92CrossRefPubMed
Zurück zum Zitat Volk DW, Lewis DA (2003) Effects of a mediodorsal thalamus lesion on prefrontal inhibitory circuitry: implications for schizophrenia. Biol Psychiatry 53:385–389CrossRefPubMed Volk DW, Lewis DA (2003) Effects of a mediodorsal thalamus lesion on prefrontal inhibitory circuitry: implications for schizophrenia. Biol Psychiatry 53:385–389CrossRefPubMed
Zurück zum Zitat Volk DW, Austin MC, Pierri JN, Sampson AR, Lewis DA (2000) Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gammaaminobutyric acid neurons in subjects with schizophrenia. Arch Gen Psychiatry 57:237–245CrossRefPubMed Volk DW, Austin MC, Pierri JN, Sampson AR, Lewis DA (2000) Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gammaaminobutyric acid neurons in subjects with schizophrenia. Arch Gen Psychiatry 57:237–245CrossRefPubMed
Zurück zum Zitat Wise SP, Fleshman JW, Jones EG (1979) Maturation of pyramidal cell form in relation to developing afferent and efferent connections of the rat somatic sensory cortex. J Neurosci 4:1275–1297CrossRef Wise SP, Fleshman JW, Jones EG (1979) Maturation of pyramidal cell form in relation to developing afferent and efferent connections of the rat somatic sensory cortex. J Neurosci 4:1275–1297CrossRef
Zurück zum Zitat Wolff JR, Wagner GP (1983) Self organization in synaptogenesis: interaction between the formation of excitatory and inhibitory synapses. In: Basar F, Flohr H, Haken H, Mandell AJ. (eds) Synergetics in the brain. Springer, Berlin, pp 50–59CrossRef Wolff JR, Wagner GP (1983) Self organization in synaptogenesis: interaction between the formation of excitatory and inhibitory synapses. In: Basar F, Flohr H, Haken H, Mandell AJ. (eds) Synergetics in the brain. Springer, Berlin, pp 50–59CrossRef
Zurück zum Zitat Xing J, Ginty DD, Greenberg ME (1996) Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science 273:959–963CrossRefPubMed Xing J, Ginty DD, Greenberg ME (1996) Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science 273:959–963CrossRefPubMed
Zurück zum Zitat Zola-Morgan S, Squire LR (1985) Amnesia in monkeys after lesions of the mediodorsal nucleus of the thalamus. Ann Neurol 17:558–564CrossRefPubMed Zola-Morgan S, Squire LR (1985) Amnesia in monkeys after lesions of the mediodorsal nucleus of the thalamus. Ann Neurol 17:558–564CrossRefPubMed
Metadaten
Titel
Morphological, structural, and functional alterations of the prefrontal cortex and the basolateral amygdala after early lesion of the rat mediodorsal thalamus
verfasst von
Zakaria Ouhaz
Saadia Ba-M’hamed
Mohamed Bennis
Publikationsdatum
01.02.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 6/2017
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-016-1354-2

Weitere Artikel der Ausgabe 6/2017

Brain Structure and Function 6/2017 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.