Skip to main content
Erschienen in:

11.09.2024 | Research

Morphology and Texture-Guided Deep Neural Network for Intracranial Aneurysm Segmentation in 3D TOF-MRA

verfasst von: Maysam Orouskhani, Negar Firoozeh, Huayu Wang, Yan Wang, Hanrui Shi, Weijing Li, Beibei Sun, Jianjian Zhang, Xiao Li, Huilin Zhao, Mahmud Mossa-Basha, Jenq-Neng Hwang, Chengcheng Zhu

Erschienen in: Neuroinformatics | Ausgabe 4/2024

Einloggen, um Zugang zu erhalten

Abstract

This study concentrates on the segmentation of intracranial aneurysms, a pivotal aspect of diagnosis and treatment planning. We aim to overcome the inherent instance imbalance and morphological variability by introducing a novel morphology and texture loss reweighting approach. Our innovative method involves the incorporation of tailored weights within the loss function of deep neural networks. Specifically designed to account for aneurysm size, shape, and texture, this approach strategically guides the model to focus on capturing discriminative information from imbalanced features. The study conducted extensive experimentation utilizing ADAM and RENJI TOF-MRA datasets to validate the proposed approach. The results of our experimentation demonstrate the remarkable effectiveness of the introduced methodology in improving aneurysm segmentation accuracy. By dynamically adapting to the variances present in aneurysm features, our model showcases promising outcomes for accurate diagnostic insights. The nuanced consideration of morphological and textural nuances within the loss function proves instrumental in overcoming the challenge posed by instance imbalance. In conclusion, our study presents a nuanced solution to the intricate challenge of intracranial aneurysm segmentation. The proposed morphology and texture loss reweighting approach, with its tailored weights and dynamic adaptability, proves to be instrumental in enhancing segmentation precision. The promising outcomes from our experimentation suggest the potential for accurate diagnostic insights and informed treatment strategies, marking a significant advancement in this critical domain of medical imaging.
Literatur
Zurück zum Zitat Anima, V., & Madhu, S. (2024). On the automated unruptured intracranial aneurysm segmentation from TOF-MRA using deep learning techniques. Ieee Access : Practical Innovations, Open Solutions. Anima, V., & Madhu, S. (2024). On the automated unruptured intracranial aneurysm segmentation from TOF-MRA using deep learning techniques. Ieee Access : Practical Innovations, Open Solutions.
Zurück zum Zitat Claux, F., Baudouin, M., Bogey, C., & Rouchaud, A. (2023). Dense, deep learning-based intracranial aneurysm detection on TOF MRI using two-stage regularized U-Net. Journal of Neuroradiology, 50(1), 9–15.CrossRefPubMed Claux, F., Baudouin, M., Bogey, C., & Rouchaud, A. (2023). Dense, deep learning-based intracranial aneurysm detection on TOF MRI using two-stage regularized U-Net. Journal of Neuroradiology, 50(1), 9–15.CrossRefPubMed
Zurück zum Zitat Di Noto, T., Marie, G., Tourbier, S., Alemán-Gómez, Y., & Richiardi, J. (2023). Towards automated brain aneurysm detection in TOF-MRA: Open data, weak labels, and anatomical knowledge. Neuroinformatics, 21(1), 21–34.CrossRefPubMed Di Noto, T., Marie, G., Tourbier, S., Alemán-Gómez, Y., & Richiardi, J. (2023). Towards automated brain aneurysm detection in TOF-MRA: Open data, weak labels, and anatomical knowledge. Neuroinformatics, 21(1), 21–34.CrossRefPubMed
Zurück zum Zitat El Jurdi, R., Petitjean, C., Honeine, P., Cheplygina, V., & Abdallah, F. (2021). High-level prior-based loss functions for medical image segmentation: A survey. Computer Vision and Image Understanding, 210,CrossRef El Jurdi, R., Petitjean, C., Honeine, P., Cheplygina, V., & Abdallah, F. (2021). High-level prior-based loss functions for medical image segmentation: A survey. Computer Vision and Image Understanding, 210,CrossRef
Zurück zum Zitat Etminan, N., & Rinkel, G. J. (2016). Unruptured intracranial aneurysms: Development, rupture and preventive management. Nature Reviews Neurology, 12(12), 699–713.CrossRefPubMed Etminan, N., & Rinkel, G. J. (2016). Unruptured intracranial aneurysms: Development, rupture and preventive management. Nature Reviews Neurology, 12(12), 699–713.CrossRefPubMed
Zurück zum Zitat Ham, S., Seo, J., Yun, J., Bae, Y., Kim, T., Sunwoo, L., & Kim, N. (2023). Automated detection of intracranial aneurysms using skeleton-based 3D patches, semantic segmentation, and auxiliary classification for overcoming data imbalance in brain TOF-MRA. Scientific Reports, 13(1), 12018.CrossRefPubMedPubMedCentral Ham, S., Seo, J., Yun, J., Bae, Y., Kim, T., Sunwoo, L., & Kim, N. (2023). Automated detection of intracranial aneurysms using skeleton-based 3D patches, semantic segmentation, and auxiliary classification for overcoming data imbalance in brain TOF-MRA. Scientific Reports, 13(1), 12018.CrossRefPubMedPubMedCentral
Zurück zum Zitat Haskins, G., Kruger, U., & Yan, P. (2020). Deep learning in medical image registration: A survey. Machine Vision and Applications, 31, 1–18.CrossRef Haskins, G., Kruger, U., & Yan, P. (2020). Deep learning in medical image registration: A survey. Machine Vision and Applications, 31, 1–18.CrossRef
Zurück zum Zitat Isensee, F., Jaeger, P. F., Kohl, S. A., Petersen, J., & Maier-Hein, K. H. (2018). nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation. Nature Methods, 18(2), 203–211.CrossRef Isensee, F., Jaeger, P. F., Kohl, S. A., Petersen, J., & Maier-Hein, K. H. (2018). nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation. Nature Methods, 18(2), 203–211.CrossRef
Zurück zum Zitat Işın, A., Direkoğlu, C., & Şah, M. (2016). Review of MRI-based brain tumor image segmentation using deep learning methods. Procedia Computer Science, 102, 317–324.CrossRef Işın, A., Direkoğlu, C., & Şah, M. (2016). Review of MRI-based brain tumor image segmentation using deep learning methods. Procedia Computer Science, 102, 317–324.CrossRef
Zurück zum Zitat Kervadec, H., Bouchtiba, J., Desrosiers, C., Granger, E., Dolz, J., & Ayed, I. B. (2018). Boundary loss for highly unbalanced segmentation. arXiv Preprint arXiv:181207032. Kervadec, H., Bouchtiba, J., Desrosiers, C., Granger, E., Dolz, J., & Ayed, I. B. (2018). Boundary loss for highly unbalanced segmentation. arXiv Preprint arXiv:181207032.
Zurück zum Zitat Lin, T., Goyal, P., Girshick, R., & Dollr, P. (2017). Focal loss for dense object detection. In: 2017 IEEE International Conference on Computer Vision (ICCV). 2999–3007. Lin, T., Goyal, P., Girshick, R., & Dollr, P. (2017). Focal loss for dense object detection. In: 2017 IEEE International Conference on Computer Vision (ICCV). 2999–3007.
Zurück zum Zitat Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., Van Der Laak, J. A., Van Ginneken, B., & S´anchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88.CrossRefPubMed Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., Van Der Laak, J. A., Van Ginneken, B., & S´anchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88.CrossRefPubMed
Zurück zum Zitat Ma, J., Chen, J., Ng, M., Huang, R., Li, Y., Li, C., Yang, X., & Martel, A. L. (2021). Loss odyssey in medical image segmentation. Medical Image Analysis, 71,CrossRefPubMed Ma, J., Chen, J., Ng, M., Huang, R., Li, Y., Li, C., Yang, X., & Martel, A. L. (2021). Loss odyssey in medical image segmentation. Medical Image Analysis, 71,CrossRefPubMed
Zurück zum Zitat Milletari, F., Navab, N., & Ahmadi, S. (2016). V-net: Fully convolutional neural networks for volumetric medical image segmentation. In Fourth International Conference on 3D Vision (3DV). Milletari, F., Navab, N., & Ahmadi, S. (2016). V-net: Fully convolutional neural networks for volumetric medical image segmentation. In Fourth International Conference on 3D Vision (3DV).
Zurück zum Zitat Mirikharaji, Z., & Hamarneh, G. (2018). Star shape prior in fully convolutional networks for skin lesion segmentation. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2018, pp. 737–745. Mirikharaji, Z., & Hamarneh, G. (2018). Star shape prior in fully convolutional networks for skin lesion segmentation. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2018, pp. 737–745.
Zurück zum Zitat Nichyporuk, B., Szeto, J., Arnold, D. L., & Arbel, T. (2021). Optimizing operating points for high performance lesion detection and segmentation using lesion size reweighting. ArXiv. /abs/2107.12978. Nichyporuk, B., Szeto, J., Arnold, D. L., & Arbel, T. (2021). Optimizing operating points for high performance lesion detection and segmentation using lesion size reweighting. ArXiv. /abs/2107.12978.
Zurück zum Zitat Patel, T. R., Patel, A., Veeturi, S. S., Shah, M., Waqas, M., Monteiro, A., & Tutino, V. M. (2023). Evaluating a 3D deep learning pipeline for cerebral vessel and intracranial aneurysm segmentation from computed tomography angiography–digital subtraction angiography image pairs. Neurosurgical Focus, 54(6), E13.CrossRefPubMed Patel, T. R., Patel, A., Veeturi, S. S., Shah, M., Waqas, M., Monteiro, A., & Tutino, V. M. (2023). Evaluating a 3D deep learning pipeline for cerebral vessel and intracranial aneurysm segmentation from computed tomography angiography–digital subtraction angiography image pairs. Neurosurgical Focus, 54(6), E13.CrossRefPubMed
Zurück zum Zitat Qu, J., Niu, J., Li, Y., Chen, T., Peng, F., Xia, J., & Li, C. (2024). A deep learning framework for intracranial aneurysms automatic segmentation and detection on magnetic resonance T1 images. European Radiology, 34(5), 2838–2848.CrossRefPubMed Qu, J., Niu, J., Li, Y., Chen, T., Peng, F., Xia, J., & Li, C. (2024). A deep learning framework for intracranial aneurysms automatic segmentation and detection on magnetic resonance T1 images. European Radiology, 34(5), 2838–2848.CrossRefPubMed
Zurück zum Zitat Rachmadi, M. F., Byra, M., & Skibbe, H. (2024). A new family of instance-level loss functions for improving instance-level segmentation and detection of white matter hyperintensities in routine clinical brain MRI. Computers in Biology and Medicine, 174,CrossRefPubMed Rachmadi, M. F., Byra, M., & Skibbe, H. (2024). A new family of instance-level loss functions for improving instance-level segmentation and detection of white matter hyperintensities in routine clinical brain MRI. Computers in Biology and Medicine, 174,CrossRefPubMed
Zurück zum Zitat Rachmadi, M. F., Poon, C., & Skibbe, H. (2023). Improving segmentation of objects with varying sizes in Biomedical images using instance-wise and Center-of-Instance segmentation loss function. ArXiv./abs/2304.06229. Rachmadi, M. F., Poon, C., & Skibbe, H. (2023). Improving segmentation of objects with varying sizes in Biomedical images using instance-wise and Center-of-Instance segmentation loss function. ArXiv./abs/2304.06229.
Zurück zum Zitat Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (Eds.) Medical Image Computing and Computer-Assisted Intervention, pp. 234–241. Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (Eds.) Medical Image Computing and Computer-Assisted Intervention, pp. 234–241.
Zurück zum Zitat Salehi, S. S. M., Erdogmus, D., & Gholipour, A. (2019). Tversky loss function for image segmentation using 3d fully convolutional deep networks. In International Workshop on Machine Learning in Medical Imaging, pp. 379–387. Salehi, S. S. M., Erdogmus, D., & Gholipour, A. (2019). Tversky loss function for image segmentation using 3d fully convolutional deep networks. In International Workshop on Machine Learning in Medical Imaging, pp. 379–387.
Zurück zum Zitat Shao, D., Lu, X., & Liu, X. (2022). 3D intracranial aneurysm classification and segmentation via unsupervised dual-branch learning. IEEE Journal of Biomedical and Health Informatics, 27(4), 1770–1779.CrossRef Shao, D., Lu, X., & Liu, X. (2022). 3D intracranial aneurysm classification and segmentation via unsupervised dual-branch learning. IEEE Journal of Biomedical and Health Informatics, 27(4), 1770–1779.CrossRef
Zurück zum Zitat Sherlock, M., Agha, A., & Tompson, C. J. (2006). Aneurysmal subarachnoid hemorrhage. New England Journal of Medicine, 354(16), 1755–1757.CrossRefPubMed Sherlock, M., Agha, A., & Tompson, C. J. (2006). Aneurysmal subarachnoid hemorrhage. New England Journal of Medicine, 354(16), 1755–1757.CrossRefPubMed
Zurück zum Zitat Shirokikh, B., Shevtsov, A., Kurmukov, A., Dalechina, A., Krivov, E., Kostjuchenko, V., & Belyaev, M. (2020). Universal loss reweighting to balance lesion size inequality in 3D medical image segmentation. MICCAI, pp. 523–532. Shirokikh, B., Shevtsov, A., Kurmukov, A., Dalechina, A., Krivov, E., Kostjuchenko, V., & Belyaev, M. (2020). Universal loss reweighting to balance lesion size inequality in 3D medical image segmentation. MICCAI, pp. 523–532.
Zurück zum Zitat Sudre, C., Li, W., Vercauteren, T., Ourselin, S., & Cardoso, M. (2017). Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, pp. 240–248. Sudre, C., Li, W., Vercauteren, T., Ourselin, S., & Cardoso, M. (2017). Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, pp. 240–248.
Zurück zum Zitat Timmins, K. M., Van der Schaaf, I. C., Bennink, E., Ruigrok, Y. M., An, X., Baumgartner, M., & Kuijf, H. J. (2021). Comparing methods of detecting and segmenting unruptured intracranial aneurysms on TOF-MRAS: The ADAM challenge. Neuroimage, 238,CrossRefPubMed Timmins, K. M., Van der Schaaf, I. C., Bennink, E., Ruigrok, Y. M., An, X., Baumgartner, M., & Kuijf, H. J. (2021). Comparing methods of detecting and segmenting unruptured intracranial aneurysms on TOF-MRAS: The ADAM challenge. Neuroimage, 238,CrossRefPubMed
Zurück zum Zitat Vlak, M. H., Algra, A., Brandenburg, R., & Rinkel, G. J. (2011). Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: A systematic review and meta-analysis. The Lancet Neurology, 10(7), 626–636.CrossRefPubMed Vlak, M. H., Algra, A., Brandenburg, R., & Rinkel, G. J. (2011). Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: A systematic review and meta-analysis. The Lancet Neurology, 10(7), 626–636.CrossRefPubMed
Zurück zum Zitat Yu, B., Wang, Y., Wang, L., Shen, D., & Zhou, L. (2020). Medical image synthesis via deep learning. Deep Learning in Medical Image Analysis: Challenges and Applications, Advances in Experimental Medicine and Biology, 2020(1213), 23–44.CrossRef Yu, B., Wang, Y., Wang, L., Shen, D., & Zhou, L. (2020). Medical image synthesis via deep learning. Deep Learning in Medical Image Analysis: Challenges and Applications, Advances in Experimental Medicine and Biology, 2020(1213), 23–44.CrossRef
Zurück zum Zitat Yuan, W., Peng, Y., Guo, Y., Ren, Y., & Xue, Q. (2022). DCAU-Net: Dense convolutional attention U-Net for segmentation of intracranial aneurysm images. Visual Computing for Industry Biomedicine and art, 5(1), 1–18. Yuan, W., Peng, Y., Guo, Y., Ren, Y., & Xue, Q. (2022). DCAU-Net: Dense convolutional attention U-Net for segmentation of intracranial aneurysm images. Visual Computing for Industry Biomedicine and art, 5(1), 1–18.
Zurück zum Zitat Zhu, G., Luo, X., Yang, T., Cai, L., Yeo, J., Yan, G., & Yang, J. (2022). Deep learning-based recognition and segmentation of intracranial aneurysms under small sample size. Frontiers in Physiology, 13, 1084202.CrossRefPubMedPubMedCentral Zhu, G., Luo, X., Yang, T., Cai, L., Yeo, J., Yan, G., & Yang, J. (2022). Deep learning-based recognition and segmentation of intracranial aneurysms under small sample size. Frontiers in Physiology, 13, 1084202.CrossRefPubMedPubMedCentral
Metadaten
Titel
Morphology and Texture-Guided Deep Neural Network for Intracranial Aneurysm Segmentation in 3D TOF-MRA
verfasst von
Maysam Orouskhani
Negar Firoozeh
Huayu Wang
Yan Wang
Hanrui Shi
Weijing Li
Beibei Sun
Jianjian Zhang
Xiao Li
Huilin Zhao
Mahmud Mossa-Basha
Jenq-Neng Hwang
Chengcheng Zhu
Publikationsdatum
11.09.2024
Verlag
Springer US
Erschienen in
Neuroinformatics / Ausgabe 4/2024
Print ISSN: 1539-2791
Elektronische ISSN: 1559-0089
DOI
https://doi.org/10.1007/s12021-024-09683-5

Kompaktes Leitlinien-Wissen Neurologie (Link öffnet in neuem Fenster)

Mit medbee Pocketcards schnell und sicher entscheiden.
Leitlinien-Wissen kostenlos und immer griffbereit auf ihrem Desktop, Handy oder Tablet.

Neu im Fachgebiet Neurologie

Stumme Schlaganfälle − ein häufiger Nebenbefund im Kopf-CT?

In 4% der in der Notfallambulanz initiierten zerebralen Bildgebung sind „alte“ Schlaganfälle zu erkennen. Gar nicht so selten handelt es sich laut einer aktuellen Studie dabei um unbemerkte Insulte. Bietet sich hier womöglich die Chance auf ein effektives opportunistisches Screening?

CGRP-Antikörper auch bei älteren Migränekranken sicher

Beginnen ältere Migränekranke eine Prophylaxe mit CGRP-Antikörpern, kommt es anschließend nicht häufiger zu kardiovaskulären Problemen als unter einer Prophylaxe mit Botulinumtoxin. Darauf deutet eine US-Analyse von Medicare-Versicherten.

Frühwarnzeichen für multiple Sklerose bei Kindern und Jugendlichen

Ein Forschungsteam aus Deutschland und Kanada hat eine Reihe metabolischer, okulärer, muskuloskelettaler, gastrointestinaler und kardiovaskulärer Symptome identifiziert, die bei Kindern und Jugendlichen der Diagnose einer multiplen Sklerose (MS) vorausgehen können.

Migräne verstehen und psychotherapeutisch behandeln

Das Wissen über die Mechanismen, die im Gehirn bei einer Migräneattacke ablaufen, und mögliche Auslöser wird immer breiter. Der psychologische Psychotherapeut Dr. Dipl.-Psych. Timo Klan fasst den aktuellen Erkenntnisstand zusammen. Und er gibt Tipps für eine differenzierte, individuelle Diagnostik auch von Begleiterkrankungen und beschreibt erfolgreiche psychotherapeutische Interventionen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.