Skip to main content
Erschienen in: Brain Topography 4/2018

14.02.2018 | Original Paper

Movement Kinematics Dynamically Modulates the Rolandic ~ 20-Hz Rhythm During Goal-Directed Executed and Observed Hand Actions

verfasst von: B. Marty, M. Bourguignon, V. Jousmäki, V. Wens, S. Goldman, X. De Tiège

Erschienen in: Brain Topography | Ausgabe 4/2018

Einloggen, um Zugang zu erhalten

Abstract

This study investigates whether movement kinematics modulates similarly the rolandic α and β rhythm amplitude during executed and observed goal-directed hand movements. It also assesses if this modulation relates to the corticokinematic coherence (CKC), which is the coupling observed between cortical activity and movement kinematics during such motor actions. Magnetoencephalography (MEG) signals were recorded from 11 right-handed healthy subjects while they performed or observed an actor performing the same repetitive hand pinching action. Subjects’ and actor’s forefinger movements were monitored with an accelerometer. Coherence was computed between acceleration signals and the amplitude of α (8–12 Hz) or β (15–25 Hz) oscillations. The coherence was also evaluated between source-projected MEG signals and their β amplitude. Coherence was mainly observed between acceleration and the amplitude of β oscillations at movement frequency within bilateral primary sensorimotor (SM1) cortex with no difference between executed and observed movements. Cross-correlation between the amplitude of β oscillations at the SM1 cortex and movement acceleration was maximal when acceleration was delayed by ~ 100 ms, both during movement execution and observation. Coherence between source-projected MEG signals and their β amplitude during movement observation and execution was not significantly different from that during rest. This study shows that observing others’ actions engages in the viewer’s brain similar dynamic modulations of SM1 cortex β rhythm as during action execution. Results support the view that different neural mechanisms might account for this modulation and CKC. These two kinematic-related phenomena might help humans to understand how observed motor actions are actually performed.
Literatur
Zurück zum Zitat Avanzini P, Fabbri-Destro M, Dalla Volta R, Daprati E, Rizzolatti G, Cantalupo G (2012) The dynamics of sensorimotor cortical oscillations during the observation of hand movements: an EEG study. PLoS ONE 7:e37534CrossRefPubMedPubMedCentral Avanzini P, Fabbri-Destro M, Dalla Volta R, Daprati E, Rizzolatti G, Cantalupo G (2012) The dynamics of sensorimotor cortical oscillations during the observation of hand movements: an EEG study. PLoS ONE 7:e37534CrossRefPubMedPubMedCentral
Zurück zum Zitat Bauer M, Oostenveld R, Peeters M, Fries P (2006) Tactile spatial attention enhances gamma-band activity in somatosensory cortex and reduces low-frequency activity in parieto-occipital areas. J Neurosci 26:490–501CrossRefPubMed Bauer M, Oostenveld R, Peeters M, Fries P (2006) Tactile spatial attention enhances gamma-band activity in somatosensory cortex and reduces low-frequency activity in parieto-occipital areas. J Neurosci 26:490–501CrossRefPubMed
Zurück zum Zitat Bortel R, Sovka P (2007) Approximation of statistical distribution of magnitude squared coherence estimated with segment overlapping. Signal Process 87:1100–1117CrossRef Bortel R, Sovka P (2007) Approximation of statistical distribution of magnitude squared coherence estimated with segment overlapping. Signal Process 87:1100–1117CrossRef
Zurück zum Zitat Bourguignon M, De Tiège X, de Beeck MO, Pirotte B, Van Bogaert P, Goldman S, Hari R, Jousmäki V (2011) Functional motor-cortex mapping using corticokinematic coherence. Neuroimage 55:1475–1479CrossRefPubMed Bourguignon M, De Tiège X, de Beeck MO, Pirotte B, Van Bogaert P, Goldman S, Hari R, Jousmäki V (2011) Functional motor-cortex mapping using corticokinematic coherence. Neuroimage 55:1475–1479CrossRefPubMed
Zurück zum Zitat Bourguignon M, De Tiège X, de Beeck MO, Van Bogaert P, Goldman S, Jousmaki V, Hari R (2013) Primary motor cortex and cerebellum are coupled with the kinematics of observed hand movements. Neuroimage 66:500–507CrossRefPubMed Bourguignon M, De Tiège X, de Beeck MO, Van Bogaert P, Goldman S, Jousmaki V, Hari R (2013) Primary motor cortex and cerebellum are coupled with the kinematics of observed hand movements. Neuroimage 66:500–507CrossRefPubMed
Zurück zum Zitat Bourguignon M, Jousmäki V, Op de Beeck M, Van Bogaert P, Goldman S, De Tiège X (2012) Neuronal network coherent with hand kinematics during fast repetitive hand movements. Neuroimage 59(2):1684–1691CrossRefPubMed Bourguignon M, Jousmäki V, Op de Beeck M, Van Bogaert P, Goldman S, De Tiège X (2012) Neuronal network coherent with hand kinematics during fast repetitive hand movements. Neuroimage 59(2):1684–1691CrossRefPubMed
Zurück zum Zitat Bourguignon M, Piitulainen H, De Tiege X, Jousmaki V, Hari R (2015) Corticokinematic coherence mainly reflects movement-induced proprioceptive feedback. Neuroimage 106:382–390CrossRefPubMedPubMedCentral Bourguignon M, Piitulainen H, De Tiege X, Jousmaki V, Hari R (2015) Corticokinematic coherence mainly reflects movement-induced proprioceptive feedback. Neuroimage 106:382–390CrossRefPubMedPubMedCentral
Zurück zum Zitat Brinkman L, Stolk A, Dijkerman HC, de Lange FP, Toni I (2014) Distinct roles for alpha- and beta-band oscillations during mental simulation of goal-directed actions. J Neurosci 34:14783–14792CrossRefPubMedPubMedCentral Brinkman L, Stolk A, Dijkerman HC, de Lange FP, Toni I (2014) Distinct roles for alpha- and beta-band oscillations during mental simulation of goal-directed actions. J Neurosci 34:14783–14792CrossRefPubMedPubMedCentral
Zurück zum Zitat Caetano G, Jousmaki V, Hari R (2007) Actor’s and observer’s primary motor cortices stabilize similarly after seen or heard motor actions. Proc Natl Acad Sci USA 104:9058–9062CrossRefPubMedPubMedCentral Caetano G, Jousmaki V, Hari R (2007) Actor’s and observer’s primary motor cortices stabilize similarly after seen or heard motor actions. Proc Natl Acad Sci USA 104:9058–9062CrossRefPubMedPubMedCentral
Zurück zum Zitat Carrette E, De Tiege X, Op De Beeck M, De Herdt V, Meurs A, Legros B, Raedt R, Deblaere K, Van Roost D, Bourguignon M, Goldman S, Boon P, Van Bogaert P, Vonck K (2011) Magnetoencephalography in epilepsy patients carrying a vagus nerve stimulator. Epilepsy Res 93:44–52CrossRefPubMed Carrette E, De Tiege X, Op De Beeck M, De Herdt V, Meurs A, Legros B, Raedt R, Deblaere K, Van Roost D, Bourguignon M, Goldman S, Boon P, Van Bogaert P, Vonck K (2011) Magnetoencephalography in epilepsy patients carrying a vagus nerve stimulator. Epilepsy Res 93:44–52CrossRefPubMed
Zurück zum Zitat Cassim F, Monaca C, Szurhaj W, Bourriez JL, Defebvre L, Derambure P, Guieu JD (2001) Does post-movement beta synchronization reflect an idling motor cortex? Neuroreport 12:3859–3863CrossRefPubMed Cassim F, Monaca C, Szurhaj W, Bourriez JL, Defebvre L, Derambure P, Guieu JD (2001) Does post-movement beta synchronization reflect an idling motor cortex? Neuroreport 12:3859–3863CrossRefPubMed
Zurück zum Zitat Cheyne D, Gaetz W, Garnero L, Lachaux JP, Ducorps A, Schwartz D, Varela FJ (2003) Neuromagnetic imaging of cortical oscillations accompanying tactile stimulation. Brain Res Cogn Brain Res 17:599–611CrossRefPubMed Cheyne D, Gaetz W, Garnero L, Lachaux JP, Ducorps A, Schwartz D, Varela FJ (2003) Neuromagnetic imaging of cortical oscillations accompanying tactile stimulation. Brain Res Cogn Brain Res 17:599–611CrossRefPubMed
Zurück zum Zitat De Tiege X, de Beeck MO, Funke M, Legros B, Parkkonen L, Goldman S, Van Bogaert P (2008) Recording epileptic activity with MEG in a light-weight magnetic shield De Tiege X, de Beeck MO, Funke M, Legros B, Parkkonen L, Goldman S, Van Bogaert P (2008) Recording epileptic activity with MEG in a light-weight magnetic shield
Zurück zum Zitat Faes L, Pinna GD, Porta A, Maestri R, Nollo G (2004) Surrogate data analysis for assessing the significance of the coherence function. IEEE Trans Biomed Eng 51:1156–1166CrossRefPubMed Faes L, Pinna GD, Porta A, Maestri R, Nollo G (2004) Surrogate data analysis for assessing the significance of the coherence function. IEEE Trans Biomed Eng 51:1156–1166CrossRefPubMed
Zurück zum Zitat Gastaut H (1952) Electrocorticographic study of the reactivity of rolandic rhythm. Rev Neurol (Paris) 87:176–182 Gastaut H (1952) Electrocorticographic study of the reactivity of rolandic rhythm. Rev Neurol (Paris) 87:176–182
Zurück zum Zitat Halliday DM, Rosenberg JR, Amjad AM, Breeze P, Conway BA, Farmer SF (1995) A framework for the analysis of mixed time series/point process data—theory and application to the study of physiological tremor, single motor unit discharges and electromyograms. Prog Biophys Mol Biol 64:237–278CrossRefPubMed Halliday DM, Rosenberg JR, Amjad AM, Breeze P, Conway BA, Farmer SF (1995) A framework for the analysis of mixed time series/point process data—theory and application to the study of physiological tremor, single motor unit discharges and electromyograms. Prog Biophys Mol Biol 64:237–278CrossRefPubMed
Zurück zum Zitat Hari R, Forss N, Avikainen S, Kirveskari E, Salenius S, Rizzolatti G (1998) Activation of human primary motor cortex during action observation: a neuromagnetic study. Proc Natl Acad Sci USA 95:15061–15065CrossRefPubMedPubMedCentral Hari R, Forss N, Avikainen S, Kirveskari E, Salenius S, Rizzolatti G (1998) Activation of human primary motor cortex during action observation: a neuromagnetic study. Proc Natl Acad Sci USA 95:15061–15065CrossRefPubMedPubMedCentral
Zurück zum Zitat Houweling S, Beek PJ, Daffertshofer A (2010) Spectral changes of interhemispheric crosstalk during movement instabilities. Cereb Cortex 20:2605–2613CrossRefPubMed Houweling S, Beek PJ, Daffertshofer A (2010) Spectral changes of interhemispheric crosstalk during movement instabilities. Cereb Cortex 20:2605–2613CrossRefPubMed
Zurück zum Zitat Jarvelainen J, Schurmann M, Hari R (2004) Activation of the human primary motor cortex during observation of tool use. Neuroimage 23:187–192CrossRefPubMed Jarvelainen J, Schurmann M, Hari R (2004) Activation of the human primary motor cortex during observation of tool use. Neuroimage 23:187–192CrossRefPubMed
Zurück zum Zitat Jerbi K, Lachaux JP, N’Diaye K, Pantazis D, Leahy RM, Garnero L, Baillet S (2007) Coherent neural representation of hand speed in humans revealed by MEG imaging. Proc Natl Acad Sci USA 104:7676–7681CrossRefPubMedPubMedCentral Jerbi K, Lachaux JP, N’Diaye K, Pantazis D, Leahy RM, Garnero L, Baillet S (2007) Coherent neural representation of hand speed in humans revealed by MEG imaging. Proc Natl Acad Sci USA 104:7676–7681CrossRefPubMedPubMedCentral
Zurück zum Zitat Keysers C, Kaas JH, Gazzola V (2010) Somatosensation in social perception. Nat Rev Neurosci 11(6):417–428CrossRefPubMed Keysers C, Kaas JH, Gazzola V (2010) Somatosensation in social perception. Nat Rev Neurosci 11(6):417–428CrossRefPubMed
Zurück zum Zitat Kilner JM, Marchant JL, Frith CD (2009) Relationship between activity in human primary motor cortex during action observation and the mirror neuron system. PLoS ONE 4:e4925CrossRefPubMedPubMedCentral Kilner JM, Marchant JL, Frith CD (2009) Relationship between activity in human primary motor cortex during action observation and the mirror neuron system. PLoS ONE 4:e4925CrossRefPubMedPubMedCentral
Zurück zum Zitat Lippi G, Fontana R, Avanzini P, Aloe R, Ippolito L, Sandei F, Favaloro EJ (2012) Influence of mechanical trauma of blood and hemolysis on PFA-100 testing. Blood Coagul Fibrinolysis 23:82–86CrossRefPubMed Lippi G, Fontana R, Avanzini P, Aloe R, Ippolito L, Sandei F, Favaloro EJ (2012) Influence of mechanical trauma of blood and hemolysis on PFA-100 testing. Blood Coagul Fibrinolysis 23:82–86CrossRefPubMed
Zurück zum Zitat Marty B, Bourguignon M, Jousmaki V, Wens V, Op de Beeck M, Van Bogaert P, Goldman S, Hari R, De Tiege X (2015a) Cortical kinematic processing of executed and observed goal-directed hand actions. Neuroimage 119:221–228CrossRefPubMed Marty B, Bourguignon M, Jousmaki V, Wens V, Op de Beeck M, Van Bogaert P, Goldman S, Hari R, De Tiege X (2015a) Cortical kinematic processing of executed and observed goal-directed hand actions. Neuroimage 119:221–228CrossRefPubMed
Zurück zum Zitat Marty B, Bourguignon M, Op de Beeck M, Wens V, Goldman S, Van Bogaert P, Jousmaki V, De Tiege X (2015b) Effect of movement rate on corticokinematic coherence. Neurophysiol Clin 45:469–474CrossRef Marty B, Bourguignon M, Op de Beeck M, Wens V, Goldman S, Van Bogaert P, Jousmaki V, De Tiege X (2015b) Effect of movement rate on corticokinematic coherence. Neurophysiol Clin 45:469–474CrossRef
Zurück zum Zitat Nagamine T, Kajola M, Salmelin R, Shibasaki H, Hari R (1996) Movement-related slow cortical magnetic fields and changes of spontaneous MEG- and EEG-brain rhythms. Electroencephalogr Clin Neurophysiol 99:274–286CrossRefPubMed Nagamine T, Kajola M, Salmelin R, Shibasaki H, Hari R (1996) Movement-related slow cortical magnetic fields and changes of spontaneous MEG- and EEG-brain rhythms. Electroencephalogr Clin Neurophysiol 99:274–286CrossRefPubMed
Zurück zum Zitat Neuper C, Wortz M, Pfurtscheller G (2006) ERD/ERS patterns reflecting sensorimotor activation and deactivation. Prog Brain Res 159:211–222CrossRefPubMed Neuper C, Wortz M, Pfurtscheller G (2006) ERD/ERS patterns reflecting sensorimotor activation and deactivation. Prog Brain Res 159:211–222CrossRefPubMed
Zurück zum Zitat Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15:1–25CrossRefPubMed Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15:1–25CrossRefPubMed
Zurück zum Zitat Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113CrossRefPubMed Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113CrossRefPubMed
Zurück zum Zitat Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110:1842–1857CrossRefPubMed Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110:1842–1857CrossRefPubMed
Zurück zum Zitat Pfurtscheller G, Stancak A Jr, Neuper C (1996) Post-movement beta synchronization. A correlate of an idling motor area? Electroencephalogr Clin Neurophysiol 98:281–293CrossRefPubMed Pfurtscheller G, Stancak A Jr, Neuper C (1996) Post-movement beta synchronization. A correlate of an idling motor area? Electroencephalogr Clin Neurophysiol 98:281–293CrossRefPubMed
Zurück zum Zitat Piitulainen H, Bourguignon M, De Tiege X, Hari R, Jousmaki V (2013a) Coherence between magnetoencephalography and hand-action-related acceleration, force, pressure, and electromyogram. Neuroimage 72:83–90CrossRefPubMed Piitulainen H, Bourguignon M, De Tiege X, Hari R, Jousmaki V (2013a) Coherence between magnetoencephalography and hand-action-related acceleration, force, pressure, and electromyogram. Neuroimage 72:83–90CrossRefPubMed
Zurück zum Zitat Piitulainen H, Bourguignon M, De Tiège X, Hari R, Jousmäki V (2013b) Corticokinematic coherence during active and passive finger movements. Neuroscience 238:361–370CrossRef Piitulainen H, Bourguignon M, De Tiège X, Hari R, Jousmäki V (2013b) Corticokinematic coherence during active and passive finger movements. Neuroscience 238:361–370CrossRef
Zurück zum Zitat Rizzolatti G, Sinigaglia C (2010) The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations. Nat Rev Neurosci 11:264–274CrossRefPubMed Rizzolatti G, Sinigaglia C (2010) The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations. Nat Rev Neurosci 11:264–274CrossRefPubMed
Zurück zum Zitat Rosenberg JR, Amjad AM, Breeze P, Brillinger DR, Halliday DM (1989) The Fourier approach to the identification of functional coupling between neuronal spike trains. Prog Biophys Mol Biol 53:1–31CrossRefPubMed Rosenberg JR, Amjad AM, Breeze P, Brillinger DR, Halliday DM (1989) The Fourier approach to the identification of functional coupling between neuronal spike trains. Prog Biophys Mol Biol 53:1–31CrossRefPubMed
Zurück zum Zitat Salenius S, Schnitzler A, Salmelin R, Jousmaki V, Hari R (1997) Modulation of human cortical rolandic rhythms during natural sensorimotor tasks. Neuroimage 5:221–228CrossRefPubMed Salenius S, Schnitzler A, Salmelin R, Jousmaki V, Hari R (1997) Modulation of human cortical rolandic rhythms during natural sensorimotor tasks. Neuroimage 5:221–228CrossRefPubMed
Zurück zum Zitat Salmelin R, Hari R (1994a) Characterization of spontaneous MEG rhythms in healthy adults. Electroencephalogr Clin Neurophysiol 91:237–248CrossRefPubMed Salmelin R, Hari R (1994a) Characterization of spontaneous MEG rhythms in healthy adults. Electroencephalogr Clin Neurophysiol 91:237–248CrossRefPubMed
Zurück zum Zitat Salmelin R, Hari R (1994b) Spatiotemporal characteristics of sensorimotor neuromagnetic rhythms related to thumb movement. Neuroscience 60:537–550CrossRefPubMed Salmelin R, Hari R (1994b) Spatiotemporal characteristics of sensorimotor neuromagnetic rhythms related to thumb movement. Neuroscience 60:537–550CrossRefPubMed
Zurück zum Zitat Schalk G, Kubanek J, Miller KJ, Anderson NR, Leuthardt EC, Ojemann JG, Limbrick D, Moran D, Gerhardt LA, Wolpaw JR (2007) Decoding two-dimensional movement trajectories using electrocorticographic signals in humans. J Neural Eng 4:264–275CrossRefPubMed Schalk G, Kubanek J, Miller KJ, Anderson NR, Leuthardt EC, Ojemann JG, Limbrick D, Moran D, Gerhardt LA, Wolpaw JR (2007) Decoding two-dimensional movement trajectories using electrocorticographic signals in humans. J Neural Eng 4:264–275CrossRefPubMed
Zurück zum Zitat Schnitzler A, Salenius S, Salmelin R, Jousmaki V, Hari R (1997) Involvement of primary motor cortex in motor imagery: a neuromagnetic study. Neuroimage 6:201–208CrossRefPubMed Schnitzler A, Salenius S, Salmelin R, Jousmaki V, Hari R (1997) Involvement of primary motor cortex in motor imagery: a neuromagnetic study. Neuroimage 6:201–208CrossRefPubMed
Zurück zum Zitat Seeber M, Scherer R, Muller-Putz GR (2016) EEG oscillations are modulated in different behavior-related networks during rhythmic finger movements. J Neurosci 36:11671–11681CrossRefPubMed Seeber M, Scherer R, Muller-Putz GR (2016) EEG oscillations are modulated in different behavior-related networks during rhythmic finger movements. J Neurosci 36:11671–11681CrossRefPubMed
Zurück zum Zitat Taulu S, Simola J, Kajola M (2005) Applications of the signal space separation method. IEEE Trans Signal Process 53:3359–3372CrossRef Taulu S, Simola J, Kajola M (2005) Applications of the signal space separation method. IEEE Trans Signal Process 53:3359–3372CrossRef
Zurück zum Zitat Van Veen BD, Van Drongelen W, Yuchtman M, Suzuki A (1997) Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans Biomed Eng 44:867–880CrossRefPubMed Van Veen BD, Van Drongelen W, Yuchtman M, Suzuki A (1997) Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans Biomed Eng 44:867–880CrossRefPubMed
Zurück zum Zitat Vigneswaran G, Philipp R, Lemon RN, Kraskov A (2013) M1 corticospinal mirror neurons and their role in movement suppression during action observation. Curr Biol 23:236–243CrossRefPubMedPubMedCentral Vigneswaran G, Philipp R, Lemon RN, Kraskov A (2013) M1 corticospinal mirror neurons and their role in movement suppression during action observation. Curr Biol 23:236–243CrossRefPubMedPubMedCentral
Zurück zum Zitat Zhou G, Bourguignon M, Parkkonen L, Hari R (2016) Neural signatures of hand kinematics in leaders vs. followers: A dual-MEG study. Neuroimage 125:731–738CrossRefPubMedPubMedCentral Zhou G, Bourguignon M, Parkkonen L, Hari R (2016) Neural signatures of hand kinematics in leaders vs. followers: A dual-MEG study. Neuroimage 125:731–738CrossRefPubMedPubMedCentral
Metadaten
Titel
Movement Kinematics Dynamically Modulates the Rolandic ~ 20-Hz Rhythm During Goal-Directed Executed and Observed Hand Actions
verfasst von
B. Marty
M. Bourguignon
V. Jousmäki
V. Wens
S. Goldman
X. De Tiège
Publikationsdatum
14.02.2018
Verlag
Springer US
Erschienen in
Brain Topography / Ausgabe 4/2018
Print ISSN: 0896-0267
Elektronische ISSN: 1573-6792
DOI
https://doi.org/10.1007/s10548-018-0634-y

Weitere Artikel der Ausgabe 4/2018

Brain Topography 4/2018 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.