10.06.2024 | Review
MRI-based virtual pathology of the prostate
verfasst von:
Aritrick Chatterjee, Durgesh Kumar Dwivedi
Erschienen in:
Magnetic Resonance Materials in Physics, Biology and Medicine
|
Ausgabe 4/2024
Einloggen, um Zugang zu erhalten
Abstract
Prostate cancer poses significant diagnostic challenges, with conventional methods like prostate-specific antigen (PSA) screening and transrectal ultrasound (TRUS)-guided biopsies often leading to overdiagnosis or miss clinically significant cancers. Multiparametric MRI (mpMRI) has emerged as a more reliable tool. However, it is limited by high inter-observer variability and radiologists missing up to 30% of clinically significant cancers. This article summarizes a few of these recent advancements in quantitative MRI techniques that look at the “Virtual Pathology” of the prostate with an aim to enhance prostate cancer detection and characterization. These techniques include T2 relaxation-based techniques such as luminal water imaging, diffusion based such as vascular, extracellular, and restricted diffusion for cytometry in tumors (VERDICT) and restriction spectrum imaging or combined relaxation-diffusion techniques such as hybrid multi-dimensional MRI (HM-MRI), time-dependent diffusion imaging, and diffusion-relaxation correlation spectrum imaging. These methods provide detailed insights into underlying prostate microstructure and tissue composition and have shown improved diagnostic accuracy over conventional MRI. These innovative MRI methods hold potential for augmenting mpMRI, reducing variability in diagnosis, and paving the way for MRI as a 'virtual histology' tool in prostate cancer diagnosis. However, they require further validation in larger multi-center clinical settings and rigorous in-depth radiological-pathology correlation are needed for broader implementation.