Skip to main content
Erschienen in:

11.01.2022 | Imaging Informatics and Artificial Intelligence

MRI-derived radiomics analysis improves the noninvasive pretreatment identification of multimodality therapy candidates with early-stage cervical cancer

verfasst von: Yuan Li, Jing Ren, Jun-Jun Yang, Ying Cao, Chen Xia, Elaine Y. P. Lee, Bo Chen, Hui Guan, Ya-Fei Qi, Xin Gao, Wen Tang, Kuan Chen, Zheng-Yu Jin, Yong-Lan He, Yang Xiang, Hua-Dan Xue

Erschienen in: European Radiology | Ausgabe 6/2022

Einloggen, um Zugang zu erhalten

Abstract

Objectives

To develop and validate a clinical-radiomics model that incorporates radiomics signatures and pretreatment clinicopathological parameters to identify multimodality therapy candidates among patients with early-stage cervical cancer.

Methods

Between January 2017 and February 2021, 235 patients with IB1-IIA1 cervical cancer who underwent radical hysterectomy were enrolled and divided into training (n = 194, training:validation = 8:2) and testing (n = 41) sets according to surgical time. The radiomics features of each patient were extracted from preoperative sagittal T2-weighted images. Significance testing, Pearson correlation analysis, and Least Absolute Shrinkage and Selection Operator were used to select radiomic features associated with multimodality therapy administration. A clinical-radiomics model incorporating radiomics signature, age, 2018 Federation International of Gynecology and Obstetrics (FIGO) stage, menopausal status, and preoperative biopsy histological type was developed to identify multimodality therapy candidates. A clinical model and a clinical-conventional radiological model were also constructed. A nomogram and decision curve analysis were developed to facilitate clinical application.

Results

The clinical-radiomics model showed good predictive performance, with an area under the curve, sensitivity, and specificity in the testing set of 0.885 (95% confidence interval: 0.781–0.989), 78.9%, and 81.8%, respectively. The AUC, sensitivity, and specificity of the clinical model and clinical-conventional radiological model were 0.751 (0.603–0.900), 63.2%, and 63.6%, 0.801 (0.661–0.942), 73.7%, and 68.2%, respectively. A decision curve analysis demonstrated that when the threshold probability was > 20%, the clinical-radiomics model or nomogram may be more advantageous than the treat all or treat-none strategy.

Conclusions

The clinical-radiomics model and nomogram can potentially identify multimodality therapy candidates in patients with early-stage cervical cancer.

Key Points

• Pretreatment identification of multimodality therapy candidates among patients with early-stage cervical cancer helped to select the optimal primary treatment and reduce severe complication risk and costs.
• The clinical-radiomics model achieved a better prediction performance compared with the clinical model and the clinical-conventional radiological model.
• An easy-to-use nomogram exhibited good performance for individual preoperative prediction.
Literatur
2.
Zurück zum Zitat Sartori E, Tisi G, Chiudinelli F, La Face B, Franzini R, Pecorelli S (2007) Early stage cervical cancer: adjuvant treatment in negative lymph node cases. Gynecol Oncol 107:S170-174CrossRef Sartori E, Tisi G, Chiudinelli F, La Face B, Franzini R, Pecorelli S (2007) Early stage cervical cancer: adjuvant treatment in negative lymph node cases. Gynecol Oncol 107:S170-174CrossRef
3.
Zurück zum Zitat Doll K, Donnelly E, Helenowksi I et al (2011) Treatment of stage IB1 cervix cancer: comparison of radical hysterectomy and radiation. Gynecol Oncol 123:444CrossRef Doll K, Donnelly E, Helenowksi I et al (2011) Treatment of stage IB1 cervix cancer: comparison of radical hysterectomy and radiation. Gynecol Oncol 123:444CrossRef
4.
Zurück zum Zitat Gemer O, Lavie O, Gdalevich M et al (2016) Evaluation of clinical and pathologic risk factors may reduce the rate of multimodality treatment of early cervical cancer. Am J Clin Oncol 39:37–42CrossRef Gemer O, Lavie O, Gdalevich M et al (2016) Evaluation of clinical and pathologic risk factors may reduce the rate of multimodality treatment of early cervical cancer. Am J Clin Oncol 39:37–42CrossRef
5.
Zurück zum Zitat Shu T, Zhao D, Li B et al (2017) Prognostic evaluation of postoperative adjuvant therapy for operable cervical cancer: 10 years’ experience of National Cancer Center in China. Chin J Cancer Res 29:510–520CrossRef Shu T, Zhao D, Li B et al (2017) Prognostic evaluation of postoperative adjuvant therapy for operable cervical cancer: 10 years’ experience of National Cancer Center in China. Chin J Cancer Res 29:510–520CrossRef
7.
Zurück zum Zitat Rogers L, Siu SS, Luesley D, Bryant A, Dickinson HO (2012) Radiotherapy and chemoradiation after surgery for early cervical cancer. Cochrane Database Syst Rev 5 Cd007583 Rogers L, Siu SS, Luesley D, Bryant A, Dickinson HO (2012) Radiotherapy and chemoradiation after surgery for early cervical cancer. Cochrane Database Syst Rev 5 Cd007583
8.
Zurück zum Zitat Saleh M, Virarkar M, Javadi S, Elsherif SB, de Castro FS, Bhosale P (2020) Cervical cancer: 2018 Revised International Federation of Gynecology and Obstetrics Staging System and the Role of Imaging. AJR Am J Roentgenol 214:1182–1195CrossRef Saleh M, Virarkar M, Javadi S, Elsherif SB, de Castro FS, Bhosale P (2020) Cervical cancer: 2018 Revised International Federation of Gynecology and Obstetrics Staging System and the Role of Imaging. AJR Am J Roentgenol 214:1182–1195CrossRef
9.
Zurück zum Zitat Haldorsen IS, Lura N, Blaakær J, Fischerova D, Werner HMJ (2019) What Is the Role of Imaging at Primary Diagnostic Work-Up in Uterine Cervical Cancer? Curr Oncol Rep 21:77CrossRef Haldorsen IS, Lura N, Blaakær J, Fischerova D, Werner HMJ (2019) What Is the Role of Imaging at Primary Diagnostic Work-Up in Uterine Cervical Cancer? Curr Oncol Rep 21:77CrossRef
10.
Zurück zum Zitat Cibula D, McCluggage WG (2019) Sentinel lymph node (SLN) concept in cervical cancer: current limitations and unanswered questions. Gynecol Oncol 152:202–207CrossRef Cibula D, McCluggage WG (2019) Sentinel lymph node (SLN) concept in cervical cancer: current limitations and unanswered questions. Gynecol Oncol 152:202–207CrossRef
11.
Zurück zum Zitat Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577CrossRef Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577CrossRef
12.
Zurück zum Zitat Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762CrossRef Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762CrossRef
13.
Zurück zum Zitat Balcacer P, Shergill A, Litkouhi B (2019) MRI of cervical cancer with a surgical perspective: staging, prognostic implications and pitfalls. Abdom Radiol (NY) 44:2557–2571CrossRef Balcacer P, Shergill A, Litkouhi B (2019) MRI of cervical cancer with a surgical perspective: staging, prognostic implications and pitfalls. Abdom Radiol (NY) 44:2557–2571CrossRef
14.
Zurück zum Zitat Wu Q, Wang S, Chen X et al (2019) Radiomics analysis of magnetic resonance imaging improves diagnostic performance of lymph node metastasis in patients with cervical cancer. Radiother Oncol 138:141–148CrossRef Wu Q, Wang S, Chen X et al (2019) Radiomics analysis of magnetic resonance imaging improves diagnostic performance of lymph node metastasis in patients with cervical cancer. Radiother Oncol 138:141–148CrossRef
15.
Zurück zum Zitat Xiao M, Ma F, Li Y et al (2020) Multiparametric MRI-based radiomics nomogram for predicting lymph node metastasis in early-stage cervical cancer. J Magn Reson Imaging 52:885–896CrossRef Xiao M, Ma F, Li Y et al (2020) Multiparametric MRI-based radiomics nomogram for predicting lymph node metastasis in early-stage cervical cancer. J Magn Reson Imaging 52:885–896CrossRef
16.
Zurück zum Zitat Li Z, Li H, Wang S et al (2019) MR-based radiomics nomogram of cervical cancer in prediction of the lymph-vascular space invasion preoperatively. J Magn Reson Imaging 49:1420–1426CrossRef Li Z, Li H, Wang S et al (2019) MR-based radiomics nomogram of cervical cancer in prediction of the lymph-vascular space invasion preoperatively. J Magn Reson Imaging 49:1420–1426CrossRef
17.
Zurück zum Zitat Wu Q, Shi D, Dou S et al (2019) Radiomics analysis of multiparametric MRI evaluates the pathological features of cervical squamous cell carcinoma. J Magn Reson Imaging 49:1141–1148CrossRef Wu Q, Shi D, Dou S et al (2019) Radiomics analysis of multiparametric MRI evaluates the pathological features of cervical squamous cell carcinoma. J Magn Reson Imaging 49:1141–1148CrossRef
18.
Zurück zum Zitat Wang T, Gao T, Guo H et al (2020) Preoperative prediction of parametrial invasion in early-stage cervical cancer with MRI-based radiomics nomogram. Eur Radiol 30:3585–3593CrossRef Wang T, Gao T, Guo H et al (2020) Preoperative prediction of parametrial invasion in early-stage cervical cancer with MRI-based radiomics nomogram. Eur Radiol 30:3585–3593CrossRef
20.
Zurück zum Zitat Wang M, Xia C, Huang L et al (2020) Deep learning-based triage and analysis of lesion burden for COVID-19: a retrospective study with external validation. Lancet Digit Health 2:e506–e515CrossRef Wang M, Xia C, Huang L et al (2020) Deep learning-based triage and analysis of lesion burden for COVID-19: a retrospective study with external validation. Lancet Digit Health 2:e506–e515CrossRef
21.
Zurück zum Zitat Landoni F, Colombo A, Milani R, Placa F, Zanagnolo V, Mangioni C (2017) Randomized study between radical surgery and radiotherapy for the treatment of stage IB-IIA cervical cancer: 20-year update. J Gynecol Oncol 28 e34 Landoni F, Colombo A, Milani R, Placa F, Zanagnolo V, Mangioni C (2017) Randomized study between radical surgery and radiotherapy for the treatment of stage IB-IIA cervical cancer: 20-year update. J Gynecol Oncol 28 e34
22.
Zurück zum Zitat Landoni F, Maneo A, Colombo A et al (1997) Randomised study of radical surgery versus radiotherapy for stage Ib-IIa cervical cancer. Lancet 350:535–540CrossRef Landoni F, Maneo A, Colombo A et al (1997) Randomised study of radical surgery versus radiotherapy for stage Ib-IIa cervical cancer. Lancet 350:535–540CrossRef
23.
Zurück zum Zitat Cibula D, Pötter R, Planchamp F et al (2018) The European Society of Gynaecological Oncology/European Society for Radiotherapy and Oncology/European Society of Pathology guidelines for the management of patients with cervical cancer. Radiother Oncol 127:404–416CrossRef Cibula D, Pötter R, Planchamp F et al (2018) The European Society of Gynaecological Oncology/European Society for Radiotherapy and Oncology/European Society of Pathology guidelines for the management of patients with cervical cancer. Radiother Oncol 127:404–416CrossRef
24.
Zurück zum Zitat Marth C, Landoni F, Mahner S, McCormack M, Gonzalez-Martin A, Colombo N (2017) Cervical cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 28:iv72-iv83 Marth C, Landoni F, Mahner S, McCormack M, Gonzalez-Martin A, Colombo N (2017) Cervical cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 28:iv72-iv83
25.
Zurück zum Zitat Adam JA, van Diepen PR, Mom CH, Stoker J, van Eck-Smit BLF, Bipat S (2020) [(18)F]FDG-PET or PET/CT in the evaluation of pelvic and para-aortic lymph nodes in patients with locally advanced cervical cancer: a systematic review of the literature. Gynecol Oncol 159:588–596CrossRef Adam JA, van Diepen PR, Mom CH, Stoker J, van Eck-Smit BLF, Bipat S (2020) [(18)F]FDG-PET or PET/CT in the evaluation of pelvic and para-aortic lymph nodes in patients with locally advanced cervical cancer: a systematic review of the literature. Gynecol Oncol 159:588–596CrossRef
26.
Zurück zum Zitat Xiao M, Yan B, Li Y, Lu J, Qiang J (2020) Diagnostic performance of MR imaging in evaluating prognostic factors in patients with cervical cancer: a meta-analysis. Eur Radiol 30:1405–1418CrossRef Xiao M, Yan B, Li Y, Lu J, Qiang J (2020) Diagnostic performance of MR imaging in evaluating prognostic factors in patients with cervical cancer: a meta-analysis. Eur Radiol 30:1405–1418CrossRef
27.
Zurück zum Zitat Bourbonne V, Vallières M, Lucia F et al (2019) MRI-derived radiomics to guide post-operative management for high-risk prostate cancer. Front Oncol 9:807CrossRef Bourbonne V, Vallières M, Lucia F et al (2019) MRI-derived radiomics to guide post-operative management for high-risk prostate cancer. Front Oncol 9:807CrossRef
28.
Zurück zum Zitat Bourbonne V, Fournier G, Vallières M et al (2020) External validation of an MRI-derived radiomics model to predict biochemical recurrence after surgery for high-risk prostate cancer. Cancers (Basel) 12:814CrossRef Bourbonne V, Fournier G, Vallières M et al (2020) External validation of an MRI-derived radiomics model to predict biochemical recurrence after surgery for high-risk prostate cancer. Cancers (Basel) 12:814CrossRef
29.
Zurück zum Zitat Balleyguier C, Sala E, Da Cunha T et al (2011) Staging of uterine cervical cancer with MRI: guidelines of the European Society of Urogenital Radiology. Eur Radiol 21:1102–1110CrossRef Balleyguier C, Sala E, Da Cunha T et al (2011) Staging of uterine cervical cancer with MRI: guidelines of the European Society of Urogenital Radiology. Eur Radiol 21:1102–1110CrossRef
30.
Zurück zum Zitat Dimopoulos JC, Petrow P, Tanderup K et al (2012) Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (IV): Basic principles and parameters for MR imaging within the frame of image based adaptive cervix cancer brachytherapy. Radiother Oncol 103:113–122CrossRef Dimopoulos JC, Petrow P, Tanderup K et al (2012) Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (IV): Basic principles and parameters for MR imaging within the frame of image based adaptive cervix cancer brachytherapy. Radiother Oncol 103:113–122CrossRef
31.
Zurück zum Zitat Avanzo M, Stancanello J, El Naqa I (2017) Beyond imaging: the promise of radiomics. Phys Med 38:122–139CrossRef Avanzo M, Stancanello J, El Naqa I (2017) Beyond imaging: the promise of radiomics. Phys Med 38:122–139CrossRef
32.
Zurück zum Zitat Park SH, Lim H, Bae BK et al (2021) Robustness of magnetic resonance radiomic features to pixel size resampling and interpolation in patients with cervical cancer. Cancer Imaging 21:19CrossRef Park SH, Lim H, Bae BK et al (2021) Robustness of magnetic resonance radiomic features to pixel size resampling and interpolation in patients with cervical cancer. Cancer Imaging 21:19CrossRef
33.
Zurück zum Zitat Vickers AJ, Cronin AM, Elkin EB, Gonen M (2008) Extensions to decision curve analysis, a novel method for evaluating diagnostic tests, prediction models and molecular markers. BMC Med Inform Decis Mak 8:53CrossRef Vickers AJ, Cronin AM, Elkin EB, Gonen M (2008) Extensions to decision curve analysis, a novel method for evaluating diagnostic tests, prediction models and molecular markers. BMC Med Inform Decis Mak 8:53CrossRef
34.
Zurück zum Zitat Vickers AJ, Van Calster B, Steyerberg EW (2016) Net benefit approaches to the evaluation of prediction models, molecular markers, and diagnostic tests. BMJ 352 i6 Vickers AJ, Van Calster B, Steyerberg EW (2016) Net benefit approaches to the evaluation of prediction models, molecular markers, and diagnostic tests. BMJ 352 i6
Metadaten
Titel
MRI-derived radiomics analysis improves the noninvasive pretreatment identification of multimodality therapy candidates with early-stage cervical cancer
verfasst von
Yuan Li
Jing Ren
Jun-Jun Yang
Ying Cao
Chen Xia
Elaine Y. P. Lee
Bo Chen
Hui Guan
Ya-Fei Qi
Xin Gao
Wen Tang
Kuan Chen
Zheng-Yu Jin
Yong-Lan He
Yang Xiang
Hua-Dan Xue
Publikationsdatum
11.01.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 6/2022
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-021-08463-y

Neu im Fachgebiet Radiologie

Abdominale CT bei Kindern: 40% mit Zufallsbefunden

Wird bei Kindern mit stumpfem Trauma eine CT des Bauchraums veranlasst, sind in rund 40% der Fälle Auffälligkeiten zu sehen, die nichts mit dem Trauma zu tun haben. Die allerwenigsten davon sind klinisch relevant.

Genügt die biparametrische MRT für die Prostatadiagnostik?

Die multiparametrische Magnetresonanztomografie hat einen festen Platz im Screening auf klinisch signifikante Prostatakarzinome. Ob auch ein biparametrisches Vorgehen ausreicht, ist in einer Metaanalyse untersucht worden.

Höhere Trefferquoten bei Brustkrebsscreening dank KI?

Künstliche Intelligenz unterstützt bei der Auswertung von Mammografie-Screenings und senkt somit den Arbeitsaufwand für Radiologen. Wie wirken sich diese Technologien auf die Trefferquote und die Falsch-positiv-Rate aus? Das hat jetzt eine Studie aus Schweden untersucht.

KI-gestütztes Mammografiescreening überzeugt im Praxistest

Mit dem Einsatz künstlicher Intelligenz lässt sich die Detektionsrate im Mammografiescreening offenbar deutlich steigern. Mehr unnötige Zusatzuntersuchungen sind laut der Studie aus Deutschland nicht zu befürchten.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.