Skip to main content
Erschienen in:

17.08.2018 | Research Article

MRI quality assurance based on 3D FLAIR brain images

verfasst von: Juha I. Peltonen, Teemu Mäkelä, Eero Salli

Erschienen in: Magnetic Resonance Materials in Physics, Biology and Medicine | Ausgabe 6/2018

Einloggen, um Zugang zu erhalten

Abstract

Objective

Quality assurance (QA) of magnetic resonance imaging (MRI) often relies on imaging phantoms with suitable structures and uniform regions. However, the connection between phantom measurements and actual clinical image quality is ambiguous. Thus, it is desirable to measure objective image quality directly from clinical images.

Materials and methods

In this work, four measurements suitable for clinical image QA were presented: image resolution, contrast-to-noise ratio, quality index and bias index. The methods were applied to a large cohort of clinical 3D FLAIR volumes over a test period of 9.5 months. The results were compared with phantom QA. Additionally, the effect of patient movement on the presented measures was studied.

Results

A connection between the presented clinical QA methods and scanner performance was observed: the values reacted to MRI equipment breakdowns that occurred during the study period. No apparent correlation with phantom QA results was found. The patient movement was found to have a significant effect on the resolution and contrast-to-noise ratio values.

Discussion

QA based on clinical images provides a direct method for following MRI scanner performance. The methods could be used to detect problems, and potentially reduce scanner downtime. Furthermore, with the presented methodologies comparisons could be made between different sequences and imaging settings. In the future, an online QA system could recognize insufficient image quality and suggest an immediate re-scan.
Literatur
1.
Zurück zum Zitat Ron P, Jerry A, Geoffrey C, Michael D, Edward HR, Carl K, Jeff M, Moriel NA, Joe O, Donna R (2015) 2015 American College of Radiology MRI Quality Control Manual Ron P, Jerry A, Geoffrey C, Michael D, Edward HR, Carl K, Jeff M, Moriel NA, Joe O, Donna R (2015) 2015 American College of Radiology MRI Quality Control Manual
3.
Zurück zum Zitat International Engineering Consortium (2007) IEC 62464-1. Magnetic resonance equipment for medical imaging—part 1: determination of essential image quality parameters International Engineering Consortium (2007) IEC 62464-1. Magnetic resonance equipment for medical imaging—part 1: determination of essential image quality parameters
4.
Zurück zum Zitat National Electrical Manufacturers Association (2008) NEMA standards publication MS 1-2008 determination of signal-to-noise ratio (SNR) in diagnostic magnetic resonance imaging National Electrical Manufacturers Association (2008) NEMA standards publication MS 1-2008 determination of signal-to-noise ratio (SNR) in diagnostic magnetic resonance imaging
5.
Zurück zum Zitat National Electrical Manufacturers Association (2008) NEMA standards publication MS 3-2008 determination of image uniformity in diagnostic magnetic resonance images National Electrical Manufacturers Association (2008) NEMA standards publication MS 3-2008 determination of image uniformity in diagnostic magnetic resonance images
6.
Zurück zum Zitat Lummel N, Schoepf V, Burke M, Brueckmann H, Linn J (2011) 3D fluid-attenuated inversion recovery imaging: reduced CSF artifacts and enhanced sensitivity and specificity for subarachnoid hemorrhage. Am J Neuroradiol 32(11):2054–2060CrossRef Lummel N, Schoepf V, Burke M, Brueckmann H, Linn J (2011) 3D fluid-attenuated inversion recovery imaging: reduced CSF artifacts and enhanced sensitivity and specificity for subarachnoid hemorrhage. Am J Neuroradiol 32(11):2054–2060CrossRef
7.
Zurück zum Zitat Likert R (1932) A technique for the measurement of attitudes. Arch Psychol 22:5–55 Likert R (1932) A technique for the measurement of attitudes. Arch Psychol 22:5–55
8.
Zurück zum Zitat Cummins RA, Gullone E (2000) Why we should not use 5-point Likert scales: The case for subjective quality of life measurement. In: Proceedings of the Second International Conference on Quality of Life in Cities, Singapore, pp 74–93 Cummins RA, Gullone E (2000) Why we should not use 5-point Likert scales: The case for subjective quality of life measurement. In: Proceedings of the Second International Conference on Quality of Life in Cities, Singapore, pp 74–93
9.
Zurück zum Zitat Magnotta VA, Friedman L, Birn F (2006) Measurement of signal-to-noise and contrast-to-noise in the fBIRN multicenter imaging study. J Digit Imaging 19(2):140–147CrossRef Magnotta VA, Friedman L, Birn F (2006) Measurement of signal-to-noise and contrast-to-noise in the fBIRN multicenter imaging study. J Digit Imaging 19(2):140–147CrossRef
10.
Zurück zum Zitat Wang W, Hu P, Meyer CH (2007) Estimating the spatial resolution of in vivo magnetic resonance images using radiofrequency tagging pulses. Magn Reson Med 58(1):190–199CrossRef Wang W, Hu P, Meyer CH (2007) Estimating the spatial resolution of in vivo magnetic resonance images using radiofrequency tagging pulses. Magn Reson Med 58(1):190–199CrossRef
11.
Zurück zum Zitat Mortamet B, Bernstein MA, Jack CR, Gunter JL, Ward C, Britson PJ, Meuli R, Thiran J, Krueger G (2009) Automatic quality assessment in structural brain magnetic resonance imaging. Magn Reson Med 62(2):365–372CrossRef Mortamet B, Bernstein MA, Jack CR, Gunter JL, Ward C, Britson PJ, Meuli R, Thiran J, Krueger G (2009) Automatic quality assessment in structural brain magnetic resonance imaging. Magn Reson Med 62(2):365–372CrossRef
12.
Zurück zum Zitat Borri M, Scurr ED, Richardson C, Usher M, Leach MO, Schmidt MA (2016) A novel approach to evaluate spatial resolution of MRI clinical images for optimization and standardization of breast screening protocols. Med Phys 43(12):6354–6363CrossRef Borri M, Scurr ED, Richardson C, Usher M, Leach MO, Schmidt MA (2016) A novel approach to evaluate spatial resolution of MRI clinical images for optimization and standardization of breast screening protocols. Med Phys 43(12):6354–6363CrossRef
13.
Zurück zum Zitat Osadebey M, Pedersen M, Arnold D, Wendel-Mitoraj K, Alzheimer’s Disease Neuroimaging Initiative (2017) The spatial statistics of structural magnetic resonance images: application to post-acquisition quality assessment of brain MRI images. Imaging Sci J 65(8):468–483CrossRef Osadebey M, Pedersen M, Arnold D, Wendel-Mitoraj K, Alzheimer’s Disease Neuroimaging Initiative (2017) The spatial statistics of structural magnetic resonance images: application to post-acquisition quality assessment of brain MRI images. Imaging Sci J 65(8):468–483CrossRef
14.
Zurück zum Zitat Jang J, Bang K, Jang H, Hwang D (2018) Quality evaluation of no-reference MR images using multidirectional filters and image statistics. Magn Reson Med 80:914–924CrossRef Jang J, Bang K, Jang H, Hwang D (2018) Quality evaluation of no-reference MR images using multidirectional filters and image statistics. Magn Reson Med 80:914–924CrossRef
15.
Zurück zum Zitat Gedamu EL, Collins D, Arnold DL (2008) Automated quality control of brain MR images. J Magn Reson Imaging 28(2):308–319CrossRef Gedamu EL, Collins D, Arnold DL (2008) Automated quality control of brain MR images. J Magn Reson Imaging 28(2):308–319CrossRef
16.
Zurück zum Zitat Kruggel F, Turner J, Muftuler LT, Initiative Alzheimer’s Disease Neuroimaging (2010) Impact of scanner hardware and imaging protocol on image quality and compartment volume precision in the ADNI cohort. Neuroimage 49(3):2123–2133CrossRef Kruggel F, Turner J, Muftuler LT, Initiative Alzheimer’s Disease Neuroimaging (2010) Impact of scanner hardware and imaging protocol on image quality and compartment volume precision in the ADNI cohort. Neuroimage 49(3):2123–2133CrossRef
17.
Zurück zum Zitat Gedamu E (2011) Guidelines for developing automated quality control procedures for brain magnetic resonance images acquired in multi-centre clinical trials. In: Ivanov O (ed) Applications and experiences of quality control. IntechOpen, London, pp 135–158 Gedamu E (2011) Guidelines for developing automated quality control procedures for brain magnetic resonance images acquired in multi-centre clinical trials. In: Ivanov O (ed) Applications and experiences of quality control. IntechOpen, London, pp 135–158
18.
Zurück zum Zitat Gedamu EL, Gedamu A (2012) Subject movement during multislice interleaved MR acquisitions: prevalence and potential effect on MRI-derived brain pathology measurements and multicenter clinical trials of therapeutics for multiple sclerosis. J Magn Reson Imaging 36(2):332–343CrossRef Gedamu EL, Gedamu A (2012) Subject movement during multislice interleaved MR acquisitions: prevalence and potential effect on MRI-derived brain pathology measurements and multicenter clinical trials of therapeutics for multiple sclerosis. J Magn Reson Imaging 36(2):332–343CrossRef
19.
Zurück zum Zitat Backhausen LL, Herting MM, Buse J, Roessner V, Smolka MN, Vetter NC (2016) Quality control of structural MRI images applied using FreeSurfer—a hands-on workflow to rate motion artifacts. Front Neurosci 10:558CrossRef Backhausen LL, Herting MM, Buse J, Roessner V, Smolka MN, Vetter NC (2016) Quality control of structural MRI images applied using FreeSurfer—a hands-on workflow to rate motion artifacts. Front Neurosci 10:558CrossRef
20.
Zurück zum Zitat White T, Jansen PR, Muetzel RL, Sudre G, El Marroun H, Tiemeier H, Qiu A, Shaw P, Michael AM, Verhulst FC (2018) Automated quality assessment of structural magnetic resonance images in children: comparison with visual inspection and surface-based reconstruction. Hum Brain Mapp 39:1218–1231CrossRef White T, Jansen PR, Muetzel RL, Sudre G, El Marroun H, Tiemeier H, Qiu A, Shaw P, Michael AM, Verhulst FC (2018) Automated quality assessment of structural magnetic resonance images in children: comparison with visual inspection and surface-based reconstruction. Hum Brain Mapp 39:1218–1231CrossRef
21.
Zurück zum Zitat Noguchi K, Ogawa T, Inugami A, Toyoshima H, Sugawara S, Hatazawa J, Fujita H, Shimosegawa E, Kanno I, Okudera T (1995) Acute subarachnoid hemorrhage: mR imaging with fluid-attenuated inversion recovery pulse sequences. Radiology 196(3):773–777CrossRef Noguchi K, Ogawa T, Inugami A, Toyoshima H, Sugawara S, Hatazawa J, Fujita H, Shimosegawa E, Kanno I, Okudera T (1995) Acute subarachnoid hemorrhage: mR imaging with fluid-attenuated inversion recovery pulse sequences. Radiology 196(3):773–777CrossRef
22.
Zurück zum Zitat Bakshi R, Kamran S, Kinkel PR, Bates VE, Mechtler LL, Janardhan V, Belani SL, Kinkel WR (1999) Fluid-attenuated inversion-recovery MR imaging in acute and subacute cerebral intraventricular hemorrhage. Am J Neuroradiol 20(4):629–636PubMed Bakshi R, Kamran S, Kinkel PR, Bates VE, Mechtler LL, Janardhan V, Belani SL, Kinkel WR (1999) Fluid-attenuated inversion-recovery MR imaging in acute and subacute cerebral intraventricular hemorrhage. Am J Neuroradiol 20(4):629–636PubMed
23.
Zurück zum Zitat Hennig J, Weigel M, Scheffler K (2003) Multiecho sequences with variable refocusing flip angles: optimization of signal behavior using smooth transitions between pseudo steady states (TRAPS). Magn Reson Med 49(3):527–535CrossRef Hennig J, Weigel M, Scheffler K (2003) Multiecho sequences with variable refocusing flip angles: optimization of signal behavior using smooth transitions between pseudo steady states (TRAPS). Magn Reson Med 49(3):527–535CrossRef
24.
Zurück zum Zitat Busse RF, Hariharan H, Vu A, Brittain JH (2006) Fast spin echo sequences with very long echo trains: design of variable refocusing flip angle schedules and generation of clinical T2 contrast. Magn Reson Med 55(5):1030–1037CrossRef Busse RF, Hariharan H, Vu A, Brittain JH (2006) Fast spin echo sequences with very long echo trains: design of variable refocusing flip angle schedules and generation of clinical T2 contrast. Magn Reson Med 55(5):1030–1037CrossRef
25.
Zurück zum Zitat Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66CrossRef Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66CrossRef
26.
Zurück zum Zitat Van Den Boomgaard R, Van Balen R (1992) Methods for fast morphological image transforms using bitmapped binary images. CVGIP Graph Models Image Process 54(3):252–258CrossRef Van Den Boomgaard R, Van Balen R (1992) Methods for fast morphological image transforms using bitmapped binary images. CVGIP Graph Models Image Process 54(3):252–258CrossRef
27.
Zurück zum Zitat Steckner MC (1994) Computing the modulation transfer function of magnetic resonance imagers. Dissertation, The University of Western Ontario Steckner MC (1994) Computing the modulation transfer function of magnetic resonance imagers. Dissertation, The University of Western Ontario
28.
Zurück zum Zitat Fang Q, Boas DA (2009) Tetrahedral mesh generation from volumetric binary and grayscale images. In: Proceedings of the IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Boston, MA, pp 1142–1145 Fang Q, Boas DA (2009) Tetrahedral mesh generation from volumetric binary and grayscale images. In: Proceedings of the IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Boston, MA, pp 1142–1145
29.
Zurück zum Zitat Canny J (1987) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intel 8(6):679–698CrossRef Canny J (1987) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intel 8(6):679–698CrossRef
30.
Zurück zum Zitat Peltonen JI, Mäkelä T, Sofiev A, Salli E (2017) An automatic image processing workflow for daily magnetic resonance imaging quality assurance. J Digit Imaging 30(2):163–171CrossRef Peltonen JI, Mäkelä T, Sofiev A, Salli E (2017) An automatic image processing workflow for daily magnetic resonance imaging quality assurance. J Digit Imaging 30(2):163–171CrossRef
31.
Zurück zum Zitat Chard DT, Parker GJ, Griffin C, Thompson AJ, Miller DH (2002) The reproducibility and sensitivity of brain tissue volume measurements derived from an SPM-based segmentation methodology. J Magn Reson Imaging 15(3):259–267CrossRef Chard DT, Parker GJ, Griffin C, Thompson AJ, Miller DH (2002) The reproducibility and sensitivity of brain tissue volume measurements derived from an SPM-based segmentation methodology. J Magn Reson Imaging 15(3):259–267CrossRef
32.
Zurück zum Zitat Kazemi K, Noorizadeh N (2014) Quantitative comparison of SPM, FSL, and brainsuite for brain MR image segmentation. J Biomed Phys Eng 4(1):13–26PubMedPubMedCentral Kazemi K, Noorizadeh N (2014) Quantitative comparison of SPM, FSL, and brainsuite for brain MR image segmentation. J Biomed Phys Eng 4(1):13–26PubMedPubMedCentral
33.
Zurück zum Zitat Andre JB, Bresnahan BW, Mossa-Basha M, Hoff MN, Smith CP, Anzai Y, Cohen WA (2015) Toward quantifying the prevalence, severity, and cost associated with patient motion during clinical MR examinations. J Am Coll Radiol 12(7):689–695CrossRef Andre JB, Bresnahan BW, Mossa-Basha M, Hoff MN, Smith CP, Anzai Y, Cohen WA (2015) Toward quantifying the prevalence, severity, and cost associated with patient motion during clinical MR examinations. J Am Coll Radiol 12(7):689–695CrossRef
34.
Zurück zum Zitat Alfaro-Almagro F, Jenkinson M, Bangerter NK, Andersson JL, Griffanti L, Douaud G, Sotiropoulos SN, Jbabdi S, Hernandez-Fernandez M, Vallee E (2018) Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank. Neuroimage 166:400–424CrossRef Alfaro-Almagro F, Jenkinson M, Bangerter NK, Andersson JL, Griffanti L, Douaud G, Sotiropoulos SN, Jbabdi S, Hernandez-Fernandez M, Vallee E (2018) Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank. Neuroimage 166:400–424CrossRef
35.
Zurück zum Zitat Esteban O, Birman D, Schaer M, Koyejo O, Poldrack R, Gorgolewski K (2017) MRIQC: predicting quality in manual MRI assessment protocols using no-reference image quality measures. BioRxiv 27:2017 Esteban O, Birman D, Schaer M, Koyejo O, Poldrack R, Gorgolewski K (2017) MRIQC: predicting quality in manual MRI assessment protocols using no-reference image quality measures. BioRxiv 27:2017
36.
Zurück zum Zitat Esteban O, Birman D, Schaer M, Koyejo OO, Poldrack RA, Gorgolewski KJ (2017) MRIQC: Advancing the automatic prediction of image quality in MRI from unseen sites. PLoS One 12(9):e0184661CrossRef Esteban O, Birman D, Schaer M, Koyejo OO, Poldrack RA, Gorgolewski KJ (2017) MRIQC: Advancing the automatic prediction of image quality in MRI from unseen sites. PLoS One 12(9):e0184661CrossRef
37.
Zurück zum Zitat Pizarro RA, Cheng X, Barnett A, Lemaitre H, Verchinski BA, Goldman AL, Xiao E, Luo Q, Berman KF, Callicott JH (2016) Automated quality assessment of structural magnetic resonance brain images based on a supervised machine learning algorithm. Front Neuroinform 10:52CrossRef Pizarro RA, Cheng X, Barnett A, Lemaitre H, Verchinski BA, Goldman AL, Xiao E, Luo Q, Berman KF, Callicott JH (2016) Automated quality assessment of structural magnetic resonance brain images based on a supervised machine learning algorithm. Front Neuroinform 10:52CrossRef
38.
Zurück zum Zitat Küstner T, Liebgott A, Mauch L, Martirosian P, Bamberg F, Nikolaou K, Yang B, Schick F, Gatidis S (2017) Automated reference-free detection of motion artifacts in magnetic resonance images. Magn Reson Mater Phy 31(2):243–256CrossRef Küstner T, Liebgott A, Mauch L, Martirosian P, Bamberg F, Nikolaou K, Yang B, Schick F, Gatidis S (2017) Automated reference-free detection of motion artifacts in magnetic resonance images. Magn Reson Mater Phy 31(2):243–256CrossRef
Metadaten
Titel
MRI quality assurance based on 3D FLAIR brain images
verfasst von
Juha I. Peltonen
Teemu Mäkelä
Eero Salli
Publikationsdatum
17.08.2018
Verlag
Springer International Publishing
Erschienen in
Magnetic Resonance Materials in Physics, Biology and Medicine / Ausgabe 6/2018
Print ISSN: 0968-5243
Elektronische ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-018-0699-3

Neu im Fachgebiet Radiologie

Ab sofort gelten die neuen Verordnungsausnahmen für Lipidsenker

Freie Fahrt für Lipidsenker? Das nicht, doch mit niedrigerem Schwellenwert fürs Infarktrisiko und neuen Indikationen hat der G-BA die Verordnungs-Handbremse ein gutes Stück weit gelockert.

Abdominale CT bei Kindern: 40% mit Zufallsbefunden

Wird bei Kindern mit stumpfem Trauma eine CT des Bauchraums veranlasst, sind in rund 40% der Fälle Auffälligkeiten zu sehen, die nichts mit dem Trauma zu tun haben. Die allerwenigsten davon sind klinisch relevant.

Genügt die biparametrische MRT für die Prostatadiagnostik?

Die multiparametrische Magnetresonanztomografie hat einen festen Platz im Screening auf klinisch signifikante Prostatakarzinome. Ob auch ein biparametrisches Vorgehen ausreicht, ist in einer Metaanalyse untersucht worden.

Höhere Trefferquoten bei Brustkrebsscreening dank KI?

Künstliche Intelligenz unterstützt bei der Auswertung von Mammografie-Screenings und senkt somit den Arbeitsaufwand für Radiologen. Wie wirken sich diese Technologien auf die Trefferquote und die Falsch-positiv-Rate aus? Das hat jetzt eine Studie aus Schweden untersucht.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.