Skip to main content
main-content

01.12.2017 | Research article | Ausgabe 1/2017 Open Access

BMC Medical Imaging 1/2017

MRI texture analysis in differentiating luminal A and luminal B breast cancer molecular subtypes - a feasibility study

Zeitschrift:
BMC Medical Imaging > Ausgabe 1/2017
Autoren:
Kirsi Holli-Helenius, Annukka Salminen, Irina Rinta-Kiikka, Ilkka Koskivuo, Nina Brück, Pia Boström, Riitta Parkkola

Abstract

Background

The aim of this study was to use texture analysis (TA) of breast magnetic resonance (MR) images to assist in differentiating estrogen receptor (ER) positive breast cancer molecular subtypes.

Methods

Twenty-seven patients with histopathologically proven invasive ductal breast cancer were selected in preliminary study. Tumors were classified into molecular subtypes: luminal A (ER-positive and/or progesterone receptor (PR)-positive, human epidermal growth factor receptor type 2 (HER2) -negative, proliferation marker Ki-67 < 20 and low grade (I)) and luminal B (ER-positive and/or PR-positive, HER2-positive or HER2-negative with high Ki-67 ≥ 20 and higher grade (II or III)). Co-occurrence matrix -based texture features were extracted from each tumor on T1-weighted non fat saturated pre- and postcontrast MR images using TA software MaZda. Texture parameters and tumour volumes were correlated with tumour prognostic factors.

Results

Textural differences were observed mainly in precontrast images. The two most discriminative texture parameters to differentiate luminal A and luminal B subtypes were sum entropy and sum variance (p = 0.003). The AUCs were 0.828 for sum entropy (p = 0.004), and 0.833 for sum variance (p = 0.003), and 0.878 for the model combining texture features sum entropy, sum variance (p = 0.001). In the LOOCV, the AUC for model combining features sum entropy and sum variance was 0.876. Sum entropy and sum variance showed positive correlation with higher Ki-67 index. Luminal B types were larger in volume and moderate correlation between larger tumour volume and higher Ki-67 index was also observed (r = 0.499, p = 0.008).

Conclusions

Texture features which measure randomness, heterogeneity or smoothness and homogeneity may either directly or indirectly reflect underlying growth patterns of breast tumours. TA and volumetric analysis may provide a way to evaluate the biologic aggressiveness of breast tumours and provide aid in decisions regarding therapeutic efficacy.
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2017

BMC Medical Imaging 1/2017 Zur Ausgabe

Neu im Fachgebiet Radiologie

Meistgelesene Bücher aus der Radiologie

2016 | Buch

Medizinische Fremdkörper in der Bildgebung

Thorax, Abdomen, Gefäße und Kinder

Dieses einzigartige Buch enthält ca. 1.600 hochwertige radiologische Abbildungen und Fotos iatrogen eingebrachter Fremdmaterialien im Röntgenbild und CT.

Herausgeber:
Dr. med. Daniela Kildal

2011 | Buch

Atlas Klinische Neuroradiologie des Gehirns

Radiologie lebt von Bildern! Der vorliegende Atlas trägt dieser Tatsache Rechnung. Sie finden zu jedem Krankheitsbild des Gehirns Referenzbilder zum Abgleichen mit eigenen Befunden.

Autoren:
Priv.-Doz. Dr. med. Jennifer Linn, Prof. Dr. med. Martin Wiesmann, Prof. Dr. med. Hartmut Brückmann

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Radiologie und bleiben Sie gut informiert – ganz bequem per eMail.

Bildnachweise