Skip to main content
Erschienen in: Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie 4/2016

20.04.2016 | Original Article

MRI vs. CT for orthodontic applications: comparison of two MRI protocols and three CT (multislice, cone-beam, industrial) technologies

Erschienen in: Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie | Ausgabe 4/2016

Einloggen, um Zugang zu erhalten

Abstract

Objectives

To examine the relative usefulness and suitability of magnetic resonance imaging (MRI) in daily clinical practice as compared to various technologies of computed tomography (CT) in addressing questions of orthodontic interest.

Methods

Three blinded raters evaluated 2D slices and 3D reconstructions created from scans of two pig heads. Five imaging modalities were used, including three CT technologies—multislice (MSCT), cone-beam CT (CBCT), and industrial (µCT)—and two MRI protocols with different scan durations. Defined orthodontic parameters were rated one by one on the 2D slices and the 3D reconstructions, followed by final overall ratings for each modality. A mixed linear model was used for statistical analysis.

Results

Based on the 2D slices, the parameter of visualizing tooth-germ topography did not yield any significantly different ratings for MRI versus any of the CT scans. While some ratings for the other parameters did involve significant differences, how these should be interpreted depends greatly on the relevance of each parameter. Based on the 3D reconstructions, the only significant difference between technologies was noted for the parameter of visualizing root-surface morphology. Based on the final overall ratings, the imaging performance of the standard MRI protocol was noninferior to the performance of the three CT technologies.

Conclusions

On comparing the imaging performance of MRI and CT scans, it becomes clear that MRI has a huge potential for applications in daily clinical practice. Given its additional benefits of a good contrast ratio and complete absence of ionizing radiation, further studies are needed to explore this clinical potential in greater detail.
Fußnoten
1
More specifically, the IIS "Project Group NanoCT Systems" (Würzburg, Germany) and the IIS "Application Center for Computed Tomography Measurement Technology" (Deggendorf, Germany).
 
Literatur
4.
Zurück zum Zitat Wojtowicz A, Jodko M, Perek J et al (2014) Interactive 3D imaging technologies: application in advanced methods of jaw bone reconstruction using stem cells/pre-osteoblasts in oral surgery. Wideochirurgia i inne techniki malo inwazyjne = Videosurgery and other miniinvasive techniques/kwartalnik pod patronatem Sekcji Wideochirurgii TChP oraz Sekcji Chirurgii Bariatrycznej TChP 9(3):441–448 Wojtowicz A, Jodko M, Perek J et al (2014) Interactive 3D imaging technologies: application in advanced methods of jaw bone reconstruction using stem cells/pre-osteoblasts in oral surgery. Wideochirurgia i inne techniki malo inwazyjne = Videosurgery and other miniinvasive techniques/kwartalnik pod patronatem Sekcji Wideochirurgii TChP oraz Sekcji Chirurgii Bariatrycznej TChP 9(3):441–448
5.
Zurück zum Zitat Boldt F, Weinzierl C, Hertrich K et al (2009) Comparison of the spatial landmark scatter of various 3D digitalization methods. J Orofac Orthop 70(3):247–263PubMedCrossRef Boldt F, Weinzierl C, Hertrich K et al (2009) Comparison of the spatial landmark scatter of various 3D digitalization methods. J Orofac Orthop 70(3):247–263PubMedCrossRef
6.
Zurück zum Zitat Greiner M, Greiner A, Hirschfelder U (2007) Variance of landmarks in digital evaluations: comparison between CT-based and conventional digital lateral cephalometric radiographs. J Orofac Orthop 68(4):290–298PubMedCrossRef Greiner M, Greiner A, Hirschfelder U (2007) Variance of landmarks in digital evaluations: comparison between CT-based and conventional digital lateral cephalometric radiographs. J Orofac Orthop 68(4):290–298PubMedCrossRef
7.
Zurück zum Zitat Hanke S, Hirschfelder U, Keller T et al (2012) 3D CT based rating of unilateral impacted canines. J Cranio Maxillo Fac Surg Off Publ Eur Assoc Cranio Maxillo Fac Surg 40(8):e268–e276CrossRef Hanke S, Hirschfelder U, Keller T et al (2012) 3D CT based rating of unilateral impacted canines. J Cranio Maxillo Fac Surg Off Publ Eur Assoc Cranio Maxillo Fac Surg 40(8):e268–e276CrossRef
8.
Zurück zum Zitat Hirschfelder U, Hirschfelder H (1985) Imaging of the form and structure of the mandible by computed tomography. Fortschr Kieferorthop 46(2):138–148PubMedCrossRef Hirschfelder U, Hirschfelder H (1985) Imaging of the form and structure of the mandible by computed tomography. Fortschr Kieferorthop 46(2):138–148PubMedCrossRef
9.
Zurück zum Zitat Hirschfelder U, Petschelt A (1986) Impaction of teeth from an orthodontic point of view. Deutsche zahnarztliche Zeitschrift 41(2):164–170PubMed Hirschfelder U, Petschelt A (1986) Impaction of teeth from an orthodontic point of view. Deutsche zahnarztliche Zeitschrift 41(2):164–170PubMed
10.
Zurück zum Zitat Hofmann E, Schmid M, Lell M et al (2014) Cone beam computed tomography and low-dose multislice computed tomography in orthodontics and dentistry. J Orofac Orthop 75(5):384–398PubMedCrossRef Hofmann E, Schmid M, Lell M et al (2014) Cone beam computed tomography and low-dose multislice computed tomography in orthodontics and dentistry. J Orofac Orthop 75(5):384–398PubMedCrossRef
12.
Zurück zum Zitat Medelnik J, Hertrich K, Steinhauser-Andresen S et al (2011) Accuracy of anatomical landmark identification using different CBCT- and MSCT-based 3D images: an in vitro study. J Orofac Orthop 72(4):261–278PubMedCrossRef Medelnik J, Hertrich K, Steinhauser-Andresen S et al (2011) Accuracy of anatomical landmark identification using different CBCT- and MSCT-based 3D images: an in vitro study. J Orofac Orthop 72(4):261–278PubMedCrossRef
13.
Zurück zum Zitat Fuhrmann R (1996) Three-dimensional interpretation of alveolar bone dehiscences. An anatomical-radiological study–Part I. J Orofac Orthop 57(2):62–74PubMedCrossRef Fuhrmann R (1996) Three-dimensional interpretation of alveolar bone dehiscences. An anatomical-radiological study–Part I. J Orofac Orthop 57(2):62–74PubMedCrossRef
14.
Zurück zum Zitat Fuhrmann R (1996) Three-dimensional interpretation of labiolingual bone width of the lower incisors. Part II. J Orofac Orthop 57(3):168–185PubMedCrossRef Fuhrmann R (1996) Three-dimensional interpretation of labiolingual bone width of the lower incisors. Part II. J Orofac Orthop 57(3):168–185PubMedCrossRef
15.
Zurück zum Zitat Fuhrmann R (1996) Three-dimensional interpretation of periodontal lesions and remodeling during orthodontic treatment. Part III. J Orofac Orthop 57(4):224–237PubMedCrossRef Fuhrmann R (1996) Three-dimensional interpretation of periodontal lesions and remodeling during orthodontic treatment. Part III. J Orofac Orthop 57(4):224–237PubMedCrossRef
16.
Zurück zum Zitat Fuhrmann R, Wehrbein H, Diedrich P (1993) Dreidimensionale computertomographische Darstellung des bezahnten Alveolarkamms. Fortschr Kieferorthop 54(2):91–100PubMedCrossRef Fuhrmann R, Wehrbein H, Diedrich P (1993) Dreidimensionale computertomographische Darstellung des bezahnten Alveolarkamms. Fortschr Kieferorthop 54(2):91–100PubMedCrossRef
17.
Zurück zum Zitat Hofmann E, Medelnik J, Fink M et al (2013) Three-dimensional volume tomographic study of the imaging accuracy of impacted teeth: MSCT and CBCT comparison–an in vitro study. Eur J Orthod 35(3):286–294PubMedCrossRef Hofmann E, Medelnik J, Fink M et al (2013) Three-dimensional volume tomographic study of the imaging accuracy of impacted teeth: MSCT and CBCT comparison–an in vitro study. Eur J Orthod 35(3):286–294PubMedCrossRef
18.
Zurück zum Zitat Hofmann E, Medelnik J, Keller T et al (2011) Measuring mesiodistal width of impacted maxillary canines: CT-assisted determination. J Orofac Orthop 72(1):33–44PubMedCrossRef Hofmann E, Medelnik J, Keller T et al (2011) Measuring mesiodistal width of impacted maxillary canines: CT-assisted determination. J Orofac Orthop 72(1):33–44PubMedCrossRef
19.
Zurück zum Zitat Hofmann E, Rodich M, Hirschfelder U (2011) The topography of displaced canines: a 3D-CT study. J Orofac Orthop 72 (4):247–252, 254–260 Hofmann E, Rodich M, Hirschfelder U (2011) The topography of displaced canines: a 3D-CT study. J Orofac Orthop 72 (4):247–252, 254–260
20.
Zurück zum Zitat Hofmann E, Schmid M, Sedlmair M et al (2014) Comparative study of image quality and radiation dose of cone beam and low-dose multislice computed tomography–an in vitro investigation. Clin Oral Invest 18(1):301–311CrossRef Hofmann E, Schmid M, Sedlmair M et al (2014) Comparative study of image quality and radiation dose of cone beam and low-dose multislice computed tomography–an in vitro investigation. Clin Oral Invest 18(1):301–311CrossRef
21.
Zurück zum Zitat Plooij JM, Maal TJ, Haers P et al (2011) Digital three-dimensional image fusion processes for planning and evaluating orthodontics and orthognathic surgery. A systematic review. Int J Oral Maxillofac Surg 40(4):341–352PubMedCrossRef Plooij JM, Maal TJ, Haers P et al (2011) Digital three-dimensional image fusion processes for planning and evaluating orthodontics and orthognathic surgery. A systematic review. Int J Oral Maxillofac Surg 40(4):341–352PubMedCrossRef
22.
Zurück zum Zitat Swennen GR, Mollemans W, De Clercq C et al (2009) A cone-beam computed tomography triple scan procedure to obtain a three-dimensional augmented virtual skull model appropriate for orthognathic surgery planning. J Craniofac Surg 20(2):297–307PubMedCrossRef Swennen GR, Mollemans W, De Clercq C et al (2009) A cone-beam computed tomography triple scan procedure to obtain a three-dimensional augmented virtual skull model appropriate for orthognathic surgery planning. J Craniofac Surg 20(2):297–307PubMedCrossRef
23.
Zurück zum Zitat Kyriakou Y, Kolditz D, Langner O et al (2011) Digital volume tomography (DVT) and multislice spiral CT (MSCT): an objective examination of dose and image quality. RoFo: Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin 183(2):144–153PubMedCrossRef Kyriakou Y, Kolditz D, Langner O et al (2011) Digital volume tomography (DVT) and multislice spiral CT (MSCT): an objective examination of dose and image quality. RoFo: Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin 183(2):144–153PubMedCrossRef
24.
25.
Zurück zum Zitat Hopfgartner AJ, Tymofiyeva O, Ehses P et al (2013) Dynamic MRI of the TMJ under physical load. Dento Maxillo Fac Radiol 42(9):20120436CrossRef Hopfgartner AJ, Tymofiyeva O, Ehses P et al (2013) Dynamic MRI of the TMJ under physical load. Dento Maxillo Fac Radiol 42(9):20120436CrossRef
26.
Zurück zum Zitat Hovener JB, Zwick S, Leupold J et al (2012) Dental MRI: imaging of soft and solid components without ionizing radiation. J Magn Reson Imaging JMRI 36(4):841–846PubMedCrossRef Hovener JB, Zwick S, Leupold J et al (2012) Dental MRI: imaging of soft and solid components without ionizing radiation. J Magn Reson Imaging JMRI 36(4):841–846PubMedCrossRef
27.
Zurück zum Zitat Tymofiyeva O, Boldt J, Rottner K et al (2009) High-resolution 3D magnetic resonance imaging and quantification of carious lesions and dental pulp in vivo. Magma 22(6):365–374PubMedCrossRef Tymofiyeva O, Boldt J, Rottner K et al (2009) High-resolution 3D magnetic resonance imaging and quantification of carious lesions and dental pulp in vivo. Magma 22(6):365–374PubMedCrossRef
28.
Zurück zum Zitat Tymofiyeva O, Rottner K, Gareis D et al (2008) In vivo MRI-based dental impression using an intraoral RF receiver coil. Concepts Magn Reson Part B Magn Reson Eng 33B(4):244–251CrossRef Tymofiyeva O, Rottner K, Gareis D et al (2008) In vivo MRI-based dental impression using an intraoral RF receiver coil. Concepts Magn Reson Part B Magn Reson Eng 33B(4):244–251CrossRef
29.
Zurück zum Zitat Tymofiyeva O, Proff PC, Rottner K et al (2013) Diagnosis of dental abnormalities in children using 3-dimensional magnetic resonance imaging. J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg 71(7):1159–1169CrossRef Tymofiyeva O, Proff PC, Rottner K et al (2013) Diagnosis of dental abnormalities in children using 3-dimensional magnetic resonance imaging. J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg 71(7):1159–1169CrossRef
30.
Zurück zum Zitat Tymofiyeva O, Rottner K, Jakob PM et al (2010) Three-dimensional localization of impacted teeth using magnetic resonance imaging. Clin Oral Invest 14(2):169–176CrossRef Tymofiyeva O, Rottner K, Jakob PM et al (2010) Three-dimensional localization of impacted teeth using magnetic resonance imaging. Clin Oral Invest 14(2):169–176CrossRef
31.
Zurück zum Zitat Tymofiyeva O, Schmid F, von Kienlin M et al (2011) On precise localization of boundaries between extended uniform objects in MRI: tooth imaging as an example. MAGMA 24(1):19–28PubMedCrossRef Tymofiyeva O, Schmid F, von Kienlin M et al (2011) On precise localization of boundaries between extended uniform objects in MRI: tooth imaging as an example. MAGMA 24(1):19–28PubMedCrossRef
32.
Zurück zum Zitat Tymofiyeva O, Vaegler S, Rottner K et al (2013) Influence of dental materials on dental MRI. Dento Maxillo Fac Radiol 42(6):20120271CrossRef Tymofiyeva O, Vaegler S, Rottner K et al (2013) Influence of dental materials on dental MRI. Dento Maxillo Fac Radiol 42(6):20120271CrossRef
33.
Zurück zum Zitat Katti G, Ara SA, Shireen A (2011) Magnetic resonance imaging (MRI)—A review. Int J Dent Clin 3(1):65 Katti G, Ara SA, Shireen A (2011) Magnetic resonance imaging (MRI)—A review. Int J Dent Clin 3(1):65
34.
Zurück zum Zitat Verbeke G, Molenberghs G (2000) Linear mixed models for longitudinal data. Springer Science & Business Media Verbeke G, Molenberghs G (2000) Linear mixed models for longitudinal data. Springer Science & Business Media
35.
Zurück zum Zitat Bretz F, Hothorn T, Westfall P (2010) Multiple comparisons using R. CRC Press, Boca RatonCrossRef Bretz F, Hothorn T, Westfall P (2010) Multiple comparisons using R. CRC Press, Boca RatonCrossRef
38.
Zurück zum Zitat Team RC (2015) R: A language and environment for statistical computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing; 2013 Team RC (2015) R: A language and environment for statistical computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing; 2013
39.
Zurück zum Zitat Danforth RA, Dus I, Mah J (2003) 3-D volume imaging for dentistry: a new dimension. J Calif Dent Assoc 31(11):817–823PubMed Danforth RA, Dus I, Mah J (2003) 3-D volume imaging for dentistry: a new dimension. J Calif Dent Assoc 31(11):817–823PubMed
40.
Zurück zum Zitat Holberg C, Steinhauser S, Geis P et al (2005) Cone-beam computed tomography in orthodontics: benefits and limitations. J Orofac Orthop 66(6):434–444PubMedCrossRef Holberg C, Steinhauser S, Geis P et al (2005) Cone-beam computed tomography in orthodontics: benefits and limitations. J Orofac Orthop 66(6):434–444PubMedCrossRef
41.
Zurück zum Zitat Vannier MW (2003) Craniofacial computed tomography scanning: technology, applications and future trends. Orthod Craniofac Res 6(Suppl 1):23–30 discussion 179–182 PubMedCrossRef Vannier MW (2003) Craniofacial computed tomography scanning: technology, applications and future trends. Orthod Craniofac Res 6(Suppl 1):23–30 discussion 179–182 PubMedCrossRef
42.
Zurück zum Zitat Douglas WR (1972) Of pigs and men and research: a review of applications and analogies of the pig, sus scrofa, in human medical research. Space Life Sci 3(3):226–234PubMed Douglas WR (1972) Of pigs and men and research: a review of applications and analogies of the pig, sus scrofa, in human medical research. Space Life Sci 3(3):226–234PubMed
43.
Zurück zum Zitat Appel TR, Baumann MA (2002) Solid-state nuclear magnetic resonance microscopy demonstrating human dental anatomy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 94(2):256–261PubMedCrossRef Appel TR, Baumann MA (2002) Solid-state nuclear magnetic resonance microscopy demonstrating human dental anatomy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 94(2):256–261PubMedCrossRef
44.
45.
Zurück zum Zitat Weiger M, Pruessmann KP, Bracher AK et al (2012) High-resolution ZTE imaging of human teeth. NMR Biomed 25(10):1144–1151PubMedCrossRef Weiger M, Pruessmann KP, Bracher AK et al (2012) High-resolution ZTE imaging of human teeth. NMR Biomed 25(10):1144–1151PubMedCrossRef
46.
Zurück zum Zitat Weiger M, Pruessmann KP, Hennel F (2011) MRI with zero echo time: hard versus sweep pulse excitation. Magn Reson Med Off J Soc Magn Reson Med Soc Magn Reson Med 66(2):379–389CrossRef Weiger M, Pruessmann KP, Hennel F (2011) MRI with zero echo time: hard versus sweep pulse excitation. Magn Reson Med Off J Soc Magn Reson Med Soc Magn Reson Med 66(2):379–389CrossRef
47.
Zurück zum Zitat Bracher AK, Hofmann C, Bornstedt A et al (2013) Ultrashort echo time (UTE) MRI for the assessment of caries lesions. Dento Maxillo Fac Radiol 42(6):20120321CrossRef Bracher AK, Hofmann C, Bornstedt A et al (2013) Ultrashort echo time (UTE) MRI for the assessment of caries lesions. Dento Maxillo Fac Radiol 42(6):20120321CrossRef
Metadaten
Titel
MRI vs. CT for orthodontic applications: comparison of two MRI protocols and three CT (multislice, cone-beam, industrial) technologies
Publikationsdatum
20.04.2016
Erschienen in
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie / Ausgabe 4/2016
Print ISSN: 1434-5293
Elektronische ISSN: 1615-6714
DOI
https://doi.org/10.1007/s00056-016-0028-2

Weitere Artikel der Ausgabe 4/2016

Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie 4/2016 Zur Ausgabe

Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Zahnmedizin und bleiben Sie gut informiert – ganz bequem per eMail.