Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 8/2022

29.01.2022 | Original Article

Multi-antitumor therapy and synchronous imaging monitoring based on exosome

verfasst von: Ruijie Qian, Boping Jing, Dawei Jiang, Yongkang Gai, Ziyang Zhu, Xiaojuan Huang, Yu Gao, Xiaoli Lan, Rui An

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 8/2022

Einloggen, um Zugang zu erhalten

Abstract

Background

Tumor-derived exosomes (TEX) have shown great potential for drug delivery and tumor targeting. Here, we developed a novel multi-drug loaded exosomes nanoprobe for combined antitumor chemotherapy and photodynamic therapy, and monitoring the drug delivery capabilities with pre-targeting technique.

Methods

TEX of human colorectal cancer HCT116 was prepared, and Doxorubicin and the photodynamic therapy agent 5-aminolevulinic acid (ALA) were loaded and named as TEX@DOX@ALA. Tumor uptake was first examined using fluorescence imaging of the fluorescent dye Cy5 (TEX@DOX@ALA@Cy5). Visualization of exosome aggregation in tumor were realized by positron-emission tomography/computed tomography (PET/CT) with pre-targeting technique. Tumor-bearing mice were first injected with TEX@DOX@ALA labeled with azide (N3) (TEX@DOX@ALA@N3), and then 68Ga-(2,2′-((6-amino-1-(4,7-bis (carboxymethyl)-1,4,7-triazonan-1-yl) hexan-2-yl) azanediyl) diacetic acid-dibenzocyclooctyne (68Ga-L-NETA-DBCO) was injected after 24 h for PET/CT imaging via in vivo click chemistry. For the antitumor therapy with photodynamic and/or chemotherapy, seven groups of tumor-bearing mice with different therapy were monitored, and the tumor size, animal weight and the survival time were recorded. Furthermore, the samples of blood and interested tissues (heart, lung, liver, kidney, and spleen) were harvested for hematological analysis and H&E staining.

Results

The drug loading process did not influence the structure or the function of the HCT116 TEX membranes. In a fluorescence imaging experiment, higher fluorescence could be seen in tumor after TEX@DOX@ALA@Cy5 injected, and reached the highest signal at 24 h. From PET/CT images with subcutaneous and orthotopic colon tumor-bearing mice, clear radioactivity could be seen in tumors, which suggested the successes of TEX accumulation in tumors. TEX@DOX@ALA group with photodynamic therapy and chemotherapy had the best tumor inhibition effect compared with the other groups, with the longest survival time (36 days, 37.5%). No significant damage was found on histological observation and the blood biochemical analysis, which suggested the safety of the multi-drug loaded exosomes.

Conclusions

We successfully engineered an exosome-based nanoprobe integrating PET imaging components and therapeutic drugs. This drug-loaded exosome system may effectively target tumors and enable synergistic chemotherapeutic and photodynamic antitumor effects.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortalityworldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.CrossRefPubMed Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortalityworldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.CrossRefPubMed
2.
Zurück zum Zitat Peng P-C, Hong R-L, Tsai T, Chen C-T. Co-Encapsulation of Chlorin e6 and Chemotherapeutic Drugs in a PEGylated Liposome Enhance the Efficacy of Tumor Treatment: Pharmacokinetics and Therapeutic Efficacy. Pharmaceutics. 2019;11(11). Peng P-C, Hong R-L, Tsai T, Chen C-T. Co-Encapsulation of Chlorin e6 and Chemotherapeutic Drugs in a PEGylated Liposome Enhance the Efficacy of Tumor Treatment: Pharmacokinetics and Therapeutic Efficacy. Pharmaceutics. 2019;11(11).
3.
Zurück zum Zitat Legha SS, Benjamin RS, Mackay B, Ewer M, Wallace S, Valdivieso M, et al. Reduction of doxorubicin cardiotoxicity by prolonged continuous intravenous infusion. p. 133-9. Legha SS, Benjamin RS, Mackay B, Ewer M, Wallace S, Valdivieso M, et al. Reduction of doxorubicin cardiotoxicity by prolonged continuous intravenous infusion. p. 133-9.
4.
Zurück zum Zitat Wang M, Zhai Y, Ye H, Lv Q, Sun B, Luo C, et al. High co-loading capacity and stimuli-responsive release based on Cascade reaction of self-destructive polymer for improved chemo-photodynamic therapy. ACS Nano. 2019;13(6):7010–23.PubMedCrossRef Wang M, Zhai Y, Ye H, Lv Q, Sun B, Luo C, et al. High co-loading capacity and stimuli-responsive release based on Cascade reaction of self-destructive polymer for improved chemo-photodynamic therapy. ACS Nano. 2019;13(6):7010–23.PubMedCrossRef
5.
Zurück zum Zitat Dolmans DEJG, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer. 2003;3(5):380–7.PubMedCrossRef Dolmans DEJG, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer. 2003;3(5):380–7.PubMedCrossRef
6.
Zurück zum Zitat Chen W, Ouyang J, Liu H, Chen M, Zeng K, Sheng J, et al. Black Phosphorus Nanosheet-Based Drug Delivery System for Synergistic Photodynamic/Photothermal/Chemotherapy of Cancer. Advanced materials (Deerfield Beach, Fla). 2017;29(5). Chen W, Ouyang J, Liu H, Chen M, Zeng K, Sheng J, et al. Black Phosphorus Nanosheet-Based Drug Delivery System for Synergistic Photodynamic/Photothermal/Chemotherapy of Cancer. Advanced materials (Deerfield Beach, Fla). 2017;29(5).
7.
Zurück zum Zitat Wang Y, Yang M, Qian J, Xu W, Wang J, Hou G, et al. Sequentially self-assembled polysaccharide-based nanocomplexes for combined chemotherapy and photodynamic therapy of breast cancer. Carbohydr Polym. 2019;203:203–13.PubMedCrossRef Wang Y, Yang M, Qian J, Xu W, Wang J, Hou G, et al. Sequentially self-assembled polysaccharide-based nanocomplexes for combined chemotherapy and photodynamic therapy of breast cancer. Carbohydr Polym. 2019;203:203–13.PubMedCrossRef
8.
Zurück zum Zitat Luan X, Sansanaphongpricha K, Myers I, Chen H, Yuan H, Sun D. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol Sin. 2017;38(6):754–63.PubMedPubMedCentralCrossRef Luan X, Sansanaphongpricha K, Myers I, Chen H, Yuan H, Sun D. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol Sin. 2017;38(6):754–63.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Syn NL, Wang L, Chow EK-H, Lim CT, Goh B-C. Exosomes in Cancer nanomedicine and immunotherapy: prospects and challenges. Trends Biotechnol. 2017;35(7):665–76.PubMedCrossRef Syn NL, Wang L, Chow EK-H, Lim CT, Goh B-C. Exosomes in Cancer nanomedicine and immunotherapy: prospects and challenges. Trends Biotechnol. 2017;35(7):665–76.PubMedCrossRef
10.
Zurück zum Zitat Hoshino A, Costa-Silva B, Shen T-L, Rodrigues G, Hashimoto A, Tesic Mark M, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527(7578):329–35.PubMedPubMedCentralCrossRef Hoshino A, Costa-Silva B, Shen T-L, Rodrigues G, Hashimoto A, Tesic Mark M, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527(7578):329–35.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Vader P, Mol EA, Pasterkamp G, Schiffelers RM. Extracellular vesicles for drug delivery. Advanced drug delivery reviews. 2016;106(Pt A):148-56. Vader P, Mol EA, Pasterkamp G, Schiffelers RM. Extracellular vesicles for drug delivery. Advanced drug delivery reviews. 2016;106(Pt A):148-56.
13.
Zurück zum Zitat Yang B, Chen Y, Shi J. Exosome Biochemistry and Advanced Nanotechnology for Next-Generation Theranostic Platforms. Advanced materials (Deerfield Beach, Fla). 2019;31(2):e1802896. Yang B, Chen Y, Shi J. Exosome Biochemistry and Advanced Nanotechnology for Next-Generation Theranostic Platforms. Advanced materials (Deerfield Beach, Fla). 2019;31(2):e1802896.
14.
Zurück zum Zitat Qi H, Liu C, Long L, Ren Y, Zhang S, Chang X, et al. Blood exosomes endowed with magnetic and targeting properties for Cancer therapy. ACS Nano. 2016;10(3):3323–33.PubMedCrossRef Qi H, Liu C, Long L, Ren Y, Zhang S, Chang X, et al. Blood exosomes endowed with magnetic and targeting properties for Cancer therapy. ACS Nano. 2016;10(3):3323–33.PubMedCrossRef
15.
Zurück zum Zitat Bellavia D, Raimondo S, Calabrese G, Forte S, Cristaldi M, Patinella A, et al. Interleukin 3- receptor targeted exosomes inhibit in vitro and in vivo chronic myelogenous leukemia cell growth. Theranostics. 2017;7(5):1333–45.PubMedPubMedCentralCrossRef Bellavia D, Raimondo S, Calabrese G, Forte S, Cristaldi M, Patinella A, et al. Interleukin 3- receptor targeted exosomes inhibit in vitro and in vivo chronic myelogenous leukemia cell growth. Theranostics. 2017;7(5):1333–45.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Jing B, Qian R, Jiang D, Gai Y, Liu Z, Guo F, et al. Extracellular vesicles-based pre-targeting strategy enables multi-modal imaging of. Journal of nanobiotechnology. 2021;19(1):151.PubMedPubMedCentralCrossRef Jing B, Qian R, Jiang D, Gai Y, Liu Z, Guo F, et al. Extracellular vesicles-based pre-targeting strategy enables multi-modal imaging of. Journal of nanobiotechnology. 2021;19(1):151.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Jing B, Gai Y, Qian R, Liu Z, Zhu Z, Gao Y, et al. Hydrophobic insertion-based engineering of tumor cell-derived exosomes for SPECT/NIRF imaging of colon cancer. Journal of nanobiotechnology. 2021;19(1):7.PubMedPubMedCentralCrossRef Jing B, Gai Y, Qian R, Liu Z, Zhu Z, Gao Y, et al. Hydrophobic insertion-based engineering of tumor cell-derived exosomes for SPECT/NIRF imaging of colon cancer. Journal of nanobiotechnology. 2021;19(1):7.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Takahashi Y, Nishikawa M, Shinotsuka H, Matsui Y, Ohara S, Imai T, et al. Visualization and in vivo tracking of the exosomes of murine melanoma B16-BL6 cells in mice after intravenous injection. J Biotechnol. 2013;165(2):77–84.PubMedCrossRef Takahashi Y, Nishikawa M, Shinotsuka H, Matsui Y, Ohara S, Imai T, et al. Visualization and in vivo tracking of the exosomes of murine melanoma B16-BL6 cells in mice after intravenous injection. J Biotechnol. 2013;165(2):77–84.PubMedCrossRef
19.
Zurück zum Zitat Lim E-K, Kim T, Paik S, Haam S, Huh Y-M, Lee K. Nanomaterials for theranostics: recent advances and future challenges. Chem Rev. 2015;115(1):327–94.PubMedCrossRef Lim E-K, Kim T, Paik S, Haam S, Huh Y-M, Lee K. Nanomaterials for theranostics: recent advances and future challenges. Chem Rev. 2015;115(1):327–94.PubMedCrossRef
20.
Zurück zum Zitat Luo D, Goel S, Liu H-J, Carter KA, Jiang D, Geng J, et al. Intrabilayer (64) cu labeling of photoactivatable Doxorubicin-Loaded Stealth Liposomes. ACS nano. 2017;11(12):12482–91.PubMedPubMedCentralCrossRef Luo D, Goel S, Liu H-J, Carter KA, Jiang D, Geng J, et al. Intrabilayer (64) cu labeling of photoactivatable Doxorubicin-Loaded Stealth Liposomes. ACS nano. 2017;11(12):12482–91.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Kneepkens E, Fernandes A, Nicolay K, Grüll H. Iron (III)-based magnetic resonance-Imageable liposomal T1 contrast agent for monitoring temperature-induced image-guided drug delivery. Investig Radiol. 2016;51(11):735–45.CrossRef Kneepkens E, Fernandes A, Nicolay K, Grüll H. Iron (III)-based magnetic resonance-Imageable liposomal T1 contrast agent for monitoring temperature-induced image-guided drug delivery. Investig Radiol. 2016;51(11):735–45.CrossRef
22.
Zurück zum Zitat Ektate K, Kapoor A, Maples D, Tuysuzoglu A, VanOsdol J, Ramasami S, et al. Motion compensated ultrasound imaging allows thermometry and image guided drug delivery monitoring from echogenic liposomes. Theranostics. 2016;6(11):1963–74.PubMedPubMedCentralCrossRef Ektate K, Kapoor A, Maples D, Tuysuzoglu A, VanOsdol J, Ramasami S, et al. Motion compensated ultrasound imaging allows thermometry and image guided drug delivery monitoring from echogenic liposomes. Theranostics. 2016;6(11):1963–74.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Stapleton S, Dunne M, Milosevic M, Tran CW, Gold MJ, Vedadi A, et al. Radiation and heat improve the delivery and efficacy of Nanotherapeutics by modulating Intratumoral fluid dynamics. ACS Nano. 2018;12(8):7583–600.PubMedCrossRef Stapleton S, Dunne M, Milosevic M, Tran CW, Gold MJ, Vedadi A, et al. Radiation and heat improve the delivery and efficacy of Nanotherapeutics by modulating Intratumoral fluid dynamics. ACS Nano. 2018;12(8):7583–600.PubMedCrossRef
24.
Zurück zum Zitat He S, Tourkakis G, Berezin O, Gerasimchuk N, Zhang H, Zhou H, et al. Temperature-dependent shape-responsive fluorescent nanospheres for image-guided drug delivery. J Mater Chem C. 2016;4(14):3028–35.CrossRef He S, Tourkakis G, Berezin O, Gerasimchuk N, Zhang H, Zhou H, et al. Temperature-dependent shape-responsive fluorescent nanospheres for image-guided drug delivery. J Mater Chem C. 2016;4(14):3028–35.CrossRef
25.
Zurück zum Zitat Gao N, Bozeman EN, Qian W, Wang L, Chen H, Lipowska M, et al. Tumor penetrating Theranostic nanoparticles for enhancement of targeted and image-guided drug delivery into peritoneal tumors following intraperitoneal delivery. Theranostics. 2017;7(6):1689–704.PubMedPubMedCentralCrossRef Gao N, Bozeman EN, Qian W, Wang L, Chen H, Lipowska M, et al. Tumor penetrating Theranostic nanoparticles for enhancement of targeted and image-guided drug delivery into peritoneal tumors following intraperitoneal delivery. Theranostics. 2017;7(6):1689–704.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Velikyan I. Continued rapid growth in (68) Ga applications: update 2013 to June 2014. Journal of labelled compounds & radiopharmaceuticals. 2015;58(3):99–121.CrossRef Velikyan I. Continued rapid growth in (68) Ga applications: update 2013 to June 2014. Journal of labelled compounds & radiopharmaceuticals. 2015;58(3):99–121.CrossRef
27.
Zurück zum Zitat Zhang X, Ding B, Qu C, Li H, Sun Y, Gai Y, et al. A thiopyrylium salt for PET/NIR-II tumor imaging and image-guided surgery. Mol Oncol. 2020;14(5):1089–100.PubMedPubMedCentralCrossRef Zhang X, Ding B, Qu C, Li H, Sun Y, Gai Y, et al. A thiopyrylium salt for PET/NIR-II tumor imaging and image-guided surgery. Mol Oncol. 2020;14(5):1089–100.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Li M, Fang H, Liu Q, Gai Y, Yuan L, Wang S, et al. Red blood cell membrane-coated upconversion nanoparticles for pretargeted multimodality imaging of triple-negative breast cancer. Biomaterials science. 2020;8(7):1802–14.PubMedCrossRef Li M, Fang H, Liu Q, Gai Y, Yuan L, Wang S, et al. Red blood cell membrane-coated upconversion nanoparticles for pretargeted multimodality imaging of triple-negative breast cancer. Biomaterials science. 2020;8(7):1802–14.PubMedCrossRef
29.
Zurück zum Zitat Ding N, Zou Z, Sha H, Su S, Qian H, Meng F, et al. iRGD synergizes with PD-1 knockout immunotherapy by enhancing lymphocyte infiltration in gastric cancer. Nat Commun. 2019;10(1):1336.PubMedPubMedCentralCrossRef Ding N, Zou Z, Sha H, Su S, Qian H, Meng F, et al. iRGD synergizes with PD-1 knockout immunotherapy by enhancing lymphocyte infiltration in gastric cancer. Nat Commun. 2019;10(1):1336.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Gregson AL, Hoji A, Injean P, Poynter ST, Briones C, Palchevskiy V, et al. Altered Exosomal RNA profiles in Bronchoalveolar lavage from lung transplants with acute rejection. Am J Respir Crit Care Med. 2015;192(12):1490–503.PubMedPubMedCentralCrossRef Gregson AL, Hoji A, Injean P, Poynter ST, Briones C, Palchevskiy V, et al. Altered Exosomal RNA profiles in Bronchoalveolar lavage from lung transplants with acute rejection. Am J Respir Crit Care Med. 2015;192(12):1490–503.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Fu W, Lei C, Liu S, Cui Y, Wang C, Qian K, et al. CAR exosomes derived from effector CAR-T cells have potent antitumour effects and low toxicity. Nat Commun. 2019;10(1):4355.PubMedPubMedCentralCrossRef Fu W, Lei C, Liu S, Cui Y, Wang C, Qian K, et al. CAR exosomes derived from effector CAR-T cells have potent antitumour effects and low toxicity. Nat Commun. 2019;10(1):4355.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Cheng Z, Liu S, Wu X, Raza F, Li Y, Yuan W, et al. Autologous erythrocytes delivery of berberine hydrochloride with long-acting effect for hypolipidemia treatment. Drug delivery. 2020;27(1):283–91.PubMedPubMedCentralCrossRef Cheng Z, Liu S, Wu X, Raza F, Li Y, Yuan W, et al. Autologous erythrocytes delivery of berberine hydrochloride with long-acting effect for hypolipidemia treatment. Drug delivery. 2020;27(1):283–91.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Liu H, Hu Y, Sun Y, Wan C, Zhang Z, Dai X, et al. Co-delivery of bee venom Melittin and a photosensitizer with an organic-inorganic hybrid Nanocarrier for photodynamic therapy and immunotherapy. ACS Nano. 2019;13(11):12638–52.PubMedCrossRef Liu H, Hu Y, Sun Y, Wan C, Zhang Z, Dai X, et al. Co-delivery of bee venom Melittin and a photosensitizer with an organic-inorganic hybrid Nanocarrier for photodynamic therapy and immunotherapy. ACS Nano. 2019;13(11):12638–52.PubMedCrossRef
34.
Zurück zum Zitat Milman N, Ginini L, Gil Z. Exosomes and their role in tumorigenesis and anticancer drug resistance. Drug Resist Updat. 2019;45. Milman N, Ginini L, Gil Z. Exosomes and their role in tumorigenesis and anticancer drug resistance. Drug Resist Updat. 2019;45.
36.
Zurück zum Zitat Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev. 2004;56(11):1649–59.PubMedCrossRef Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev. 2004;56(11):1649–59.PubMedCrossRef
37.
Zurück zum Zitat Yi YW, Lee JH, Kim S-Y, Pack C-G, Ha DH, Park SR, et al. Advances in Analysis of Biodistribution of Exosomes by Molecular Imaging. International journal of molecular sciences. 2020;21(2). Yi YW, Lee JH, Kim S-Y, Pack C-G, Ha DH, Park SR, et al. Advances in Analysis of Biodistribution of Exosomes by Molecular Imaging. International journal of molecular sciences. 2020;21(2).
38.
Zurück zum Zitat Jung KO, Jo H, Yu JH, Gambhir SS, Pratx G. Development and MPI tracking of novel hypoxia-targeted theranostic exosomes. Biomaterials. 2018;177:139–48.PubMedPubMedCentralCrossRef Jung KO, Jo H, Yu JH, Gambhir SS, Pratx G. Development and MPI tracking of novel hypoxia-targeted theranostic exosomes. Biomaterials. 2018;177:139–48.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Kooijmans SAA, Stremersch S, Braeckmans K, de Smedt SC, Hendrix A, Wood MJA, et al. Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles. Journal of controlled release : official journal of the Controlled Release Society. 2013;172(1):229–38.CrossRef Kooijmans SAA, Stremersch S, Braeckmans K, de Smedt SC, Hendrix A, Wood MJA, et al. Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles. Journal of controlled release : official journal of the Controlled Release Society. 2013;172(1):229–38.CrossRef
40.
Zurück zum Zitat Toffoli G, Hadla M, Corona G, Caligiuri I, Palazzolo S, Semeraro S, et al. Exosomal doxorubicin reduces the cardiac toxicity of doxorubicin. Nanomedicine (Lond). 2015;10(19):2963–71.CrossRef Toffoli G, Hadla M, Corona G, Caligiuri I, Palazzolo S, Semeraro S, et al. Exosomal doxorubicin reduces the cardiac toxicity of doxorubicin. Nanomedicine (Lond). 2015;10(19):2963–71.CrossRef
41.
Zurück zum Zitat Betzer O, Barnoy E, Sadan T, Elbaz I, Braverman C, Liu Z, et al. Advances in imaging strategies for in vivo tracking of exosomes. Wiley interdisciplinary reviews Nanomedicine and nanobiotechnology. 2020;12(2):e1594.PubMedCrossRef Betzer O, Barnoy E, Sadan T, Elbaz I, Braverman C, Liu Z, et al. Advances in imaging strategies for in vivo tracking of exosomes. Wiley interdisciplinary reviews Nanomedicine and nanobiotechnology. 2020;12(2):e1594.PubMedCrossRef
42.
Zurück zum Zitat Molavipordanjani S, Khodashenas S, Abedi SM, Moghadam MF, Mardanshahi A, Hosseinimehr SJ. (99m)Tc-radiolabeled HER2 targeted exosome for tumor imaging. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences. 2020;148:105312. Molavipordanjani S, Khodashenas S, Abedi SM, Moghadam MF, Mardanshahi A, Hosseinimehr SJ. (99m)Tc-radiolabeled HER2 targeted exosome for tumor imaging. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences. 2020;148:105312.
43.
Zurück zum Zitat Abello J, Nguyen TDT, Marasini R, Aryal S, Weiss ML. Biodistribution of gadolinium- and near infrared-labeled human umbilical cord mesenchymal stromal cell-derived exosomes in tumor bearing mice. 2019(1838-7640 (Electronic)). Abello J, Nguyen TDT, Marasini R, Aryal S, Weiss ML. Biodistribution of gadolinium- and near infrared-labeled human umbilical cord mesenchymal stromal cell-derived exosomes in tumor bearing mice. 2019(1838-7640 (Electronic)).
44.
Zurück zum Zitat Jing B, Qian R, Jiang D, Gai Y, Liu Z, Guo F, et al. Extracellular vesicles-based pre-targeting strategy enables multi-modal imaging of orthotopic colon cancer and image-guided surgery. J Nanobiotechnology. 2021;19(1):151.PubMedPubMedCentralCrossRef Jing B, Qian R, Jiang D, Gai Y, Liu Z, Guo F, et al. Extracellular vesicles-based pre-targeting strategy enables multi-modal imaging of orthotopic colon cancer and image-guided surgery. J Nanobiotechnology. 2021;19(1):151.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Li M, Fang H, Liu Q, Gai Y, Yuan L, Wang S, et al. Red blood cell membrane-coated upconversion nanoparticles for pretargeted multimodality imaging of triple-negative breast cancer. Biomater Sci. 2020;8(7):1802–14.PubMedCrossRef Li M, Fang H, Liu Q, Gai Y, Yuan L, Wang S, et al. Red blood cell membrane-coated upconversion nanoparticles for pretargeted multimodality imaging of triple-negative breast cancer. Biomater Sci. 2020;8(7):1802–14.PubMedCrossRef
46.
Zurück zum Zitat Fang H, Li M, Liu Q, Gai Y, Yuan L, Wang S, et al. Ultra-sensitive Nanoprobe modified with tumor cell membrane for UCL/MRI/PET multimodality precise imaging of triple-negative breast Cancer. Nanomicro Lett. 2020;12(1):62.PubMedPubMedCentral Fang H, Li M, Liu Q, Gai Y, Yuan L, Wang S, et al. Ultra-sensitive Nanoprobe modified with tumor cell membrane for UCL/MRI/PET multimodality precise imaging of triple-negative breast Cancer. Nanomicro Lett. 2020;12(1):62.PubMedPubMedCentral
47.
Zurück zum Zitat Hameed S, Bhattarai P, Liang X, Zhang N, Xu Y, Chen M, et al. Self-assembly of porphyrin-grafted lipid into nanoparticles encapsulating doxorubicin for synergistic chemo-photodynamic therapy and fluorescence imaging. Theranostics. 2018;8(19):5501–18.PubMedPubMedCentralCrossRef Hameed S, Bhattarai P, Liang X, Zhang N, Xu Y, Chen M, et al. Self-assembly of porphyrin-grafted lipid into nanoparticles encapsulating doxorubicin for synergistic chemo-photodynamic therapy and fluorescence imaging. Theranostics. 2018;8(19):5501–18.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Su J, Sun H, Meng Q, Zhang P, Yin Q, Li Y. Enhanced blood Suspensibility and laser-activated tumor-specific drug release of Theranostic mesoporous silica nanoparticles by functionalizing with erythrocyte membranes. Theranostics. 2017;7(3):523–37.PubMedPubMedCentralCrossRef Su J, Sun H, Meng Q, Zhang P, Yin Q, Li Y. Enhanced blood Suspensibility and laser-activated tumor-specific drug release of Theranostic mesoporous silica nanoparticles by functionalizing with erythrocyte membranes. Theranostics. 2017;7(3):523–37.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Liao B, Liang H, Chen J, Liu Q, Zhang B, Chen X. Suberoylanilide hydroxamic acid enhances chemosensitivity to 5-fluorouracil in hepatocellular carcinoma via inhibition of thymidylate synthase. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine. 2015;36(12):9347–56.CrossRef Liao B, Liang H, Chen J, Liu Q, Zhang B, Chen X. Suberoylanilide hydroxamic acid enhances chemosensitivity to 5-fluorouracil in hepatocellular carcinoma via inhibition of thymidylate synthase. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine. 2015;36(12):9347–56.CrossRef
51.
Zurück zum Zitat Luo D, Goel S, Liu HJ, Carter KA, Jiang D, Geng J, et al. Intrabilayer (64)cu labeling of photoactivatable. Doxorubicin-Loaded Stealth Liposomes ACS Nano. 2017;11(12):12482–91.PubMed Luo D, Goel S, Liu HJ, Carter KA, Jiang D, Geng J, et al. Intrabilayer (64)cu labeling of photoactivatable. Doxorubicin-Loaded Stealth Liposomes ACS Nano. 2017;11(12):12482–91.PubMed
52.
Zurück zum Zitat Zhang J, Shen L, Li X, Song W, Liu Y, Huang L. Nanoformulated Codelivery of quercetin and Alantolactone promotes an antitumor response through synergistic immunogenic cell death for microsatellite-stable colorectal Cancer. ACS Nano. 2019;13(11):12511–24.PubMedCrossRef Zhang J, Shen L, Li X, Song W, Liu Y, Huang L. Nanoformulated Codelivery of quercetin and Alantolactone promotes an antitumor response through synergistic immunogenic cell death for microsatellite-stable colorectal Cancer. ACS Nano. 2019;13(11):12511–24.PubMedCrossRef
53.
Zurück zum Zitat Nam G-H, Choi Y, Kim GB, Kim S, Kim SA, Kim I-S. Emerging Prospects of Exosomes for Cancer Treatment: From Conventional Therapy to Immunotherapy. Advanced materials (Deerfield Beach, Fla). 2020;32(51):e2002440. Nam G-H, Choi Y, Kim GB, Kim S, Kim SA, Kim I-S. Emerging Prospects of Exosomes for Cancer Treatment: From Conventional Therapy to Immunotherapy. Advanced materials (Deerfield Beach, Fla). 2020;32(51):e2002440.
Metadaten
Titel
Multi-antitumor therapy and synchronous imaging monitoring based on exosome
verfasst von
Ruijie Qian
Boping Jing
Dawei Jiang
Yongkang Gai
Ziyang Zhu
Xiaojuan Huang
Yu Gao
Xiaoli Lan
Rui An
Publikationsdatum
29.01.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 8/2022
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-022-05696-x

Weitere Artikel der Ausgabe 8/2022

European Journal of Nuclear Medicine and Molecular Imaging 8/2022 Zur Ausgabe