Skip to main content
Erschienen in: BMC Urology 1/2016

Open Access 01.12.2016 | Research article

Multi-disciplinary surgical approach to the management of patients with renal cell carcinoma with venous tumor thrombus: 15 year experience and lessons learned

verfasst von: Bishoy A. Gayed, Ramy Youssef, Oussama Darwish, Payal Kapur, Aditya Bagrodia, James Brugarolas, Ganesh Raj, J. Michael DiMaio, Arthur Sagalowsky, Vitaly Margulis

Erschienen in: BMC Urology | Ausgabe 1/2016

Abstract

Background

The management of patients with renal cell carcinoma (RCC) with venous tumor thrombus (VTT) is challenging. We report our 15 year experience in the management of patients with RCC with VTT utilizing a multidisciplinary team approach, highlighting improved total and specifically Clavien III-V complication rates.

Methods

We reviewed the records of 146 consecutive patients who underwent radical nephrectomy with venous thrombectomy between 1998 and 2012. Data on patient history, staging, surgical techniques, morbidity, and survival were analyzed. Additionally, complication rates between two surgical eras, 1998–2006 and 2006–2012, were assessed.

Results

The study included 146 patients, 97 males (66 %), and a median age of 61 years (range, 24–83). Overall complications rate was 53 %, high grade complications (Clavien III -V) occurred in 10 % of patients. Most importantly, there was a lower incidence of overall and high grade complications (45 % and 8 %, respectively) in the last 6 years compared to the earlier surgeries included in the study (67 % and 13 % respectively) [p = .008 and .03, respectively). 30 day postoperative mortality was 2.7 %. 5 year overall survival (5Y- OS) and 5 year cancer specific survival (5Y- CSS) were 51 % and 40 %, respectively. Metastasis was the only independent predictor factor for CSS (HR 3.8, CI 1.9-7.6 and p < .001) and OS (HR 2.6, CI 1.5-4.7 and p = .001) in all patients.

Conclusions

Our data suggest that patients with RCC and VTT can be treated safely utilizing a multidisciplinary team approach leading to a decrease in complication rates.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​s12894-016-0157-3) contains supplementary material, which is available to authorized users.

Background

In 2015, there will be nearly 62000 newly diagnosed cases of RCC and 14000 deaths due to RCC [1]. RCC has the propensity to extend into the renal vein, inferior vena cava (IVC) and up to the right atrium in up to 23 %, 10 %, and 1 % of cases, respectively [2, 3]. Refinements in clinical imaging, with CT and MRI, have improved accurate evaluation of primary tumors and the level of venous tumor thrombus (VTT) [2, 4]. Radical nephrectomy (RN) and IVC thrombectomy (IVCT) is challenging, particularly with a high VTT level [35].
Throughout the course of our experience, we have continued to improve our technique employing several modifications. We believe the most important modification we have made has been constantly ensuring we have the same urologic oncologists, cardiac anesthesia team, cardiac surgeons, and a dedicated cardiac scrub team at all cases. This brings familiarity to these challenging cases, which helps better manage both intraoperative and postoperative complications. Additionally, we have deferred from preforming sternotomies for high level 3 cases to avoid the morbidity of a sternotomy. With effective liver mobilization and use of pericardial windows extirpation of high level 3 is facilitated both safely and effectively. This has equated to improved patient recovery in the postoperative setting.
Herein, we review the management of RCC with VTT in the last 15 years, aiming to outline prognostic factors, outcomes, and complication rates in the context of a dedicated multidisciplinary surgical team.

Methods

Patient selection

Clinical data from electronic medical records of patients treated by radical nephrectomy (RN) for RCC with renal vein or IVC thrombus at our institution from January 1998 to June 2012 were retrospectively analyzed and placed into a UT Southwestern Medical Center IRB approved database. Research was carried out in compliance with the Helsinki Declaration. We did not obtain informed consent from patients, as this was a retrospective study. Relevant clinical data, pathological features, surgical techniques, hospital stay, perioperative morbidity and mortality, follow up and survival data were collected.

Preoperative evaluation and surgical techniques

The tumors were routinely staged by using abdominal and chest CT scans and chest radiography. MRI was used for better evaluation of VTT level at the discretion of the treating physician. Bone scans were used selectively when clinically indicated. Tumor thrombus extension was classified into 4 levels: level I, extension into the renal vein; level II, extension into the infrahepatic IVC; level III, IVC extension to the level of hepatic veins but below the diaphragm; and level IV, IVC extension above the diaphragm [6].
Preoperative renal artery angioembolization was performed at the discretion of the surgeon to facilitate arterial vascular control in patients with bulky tumor thrombus, hilar adenopathy, or hypervascularity. Surgeries were managed by a multidisciplinary team which included an experienced urologic oncology surgeon, cardiothoracic surgeon and cardiac anesthesiologist, and cardiac scrub team. Trans-esophageal echocardiography was used intraoperatively by the anesthesiologist to verify the cephalad extent of the thrombus, to monitor for tumor emboli, to confirm the complete removal of VTT, and to assess hemodynamic stability. Data regarding the duration of surgery, estimated blood loss and intraoperative complications were recorded.

Pathologic evaluation

Pathologic staging was assigned according to the 2010 TNM staging system [7]. Grading of the tumors was evaluated according to Fuhrman classification [8]. Additionally, pathological tumor size, adrenal involvement, regional lymph node (LN) involvement, tumor necrosis, histopathological cell type and the presence of sarcomatoid differentiation were recorded.

Outcome evaluation and statistical analysis

Perioperative morbidity and mortality within the first 30 and 90 days were recorded and graded according to the Clavien-Dindo grading system [9]. Patients without metastases were routinely followed after surgery every 3 months in the first year, every 6 months in the second year and then annually. Follow up included history, physical examination, metabolic panel, liver function tests, chest x-ray and an abdominal CT scan. Bone scan, chest CT, positron emission tomography or MRI were performed when clinically indicated.
Survival time was calculated from the date of the operation to the date of last follow up or date of death. Disease recurrence was defined as local failure in the RN bed or regional LNs, or distant metastasis. Disease-free survival (DFS) was defined as the time between the date of surgery and the development of local recurrence or distant metastasis. Censored survival values represent patients who were alive without clinical evidence of disease at the last follow up. Cancer-specific survival (CSS) and overall survival (OS) were defined as the time between the date of surgery and death due to cancer (CSS) or due to any cause (OS). The following factors that could potentially affect outcomes were analyzed: age, gender, body mass index and performance status; T stage, VTT level, pathological tumor size, nodal involvement, metastasis at presentation, grade, sarcomatoid differentiation, histological subtype, fat invasion, adrenal involvement and tumor necrosis. Endpoints were CSS and OS. DFS was analyzed only in M0 patients. Finally, independent predictors of disease recurrence and cancer specific mortality were determined using multivariate Cox Regression analyses including only factors significant in univariate analyses. Statistically significant difference was set at p < .05. All statistical tests were performed with SPSS version 19.0.

Results

Clinico-pathological features

Patient demographics and clinical characteristics of the 146 patients included in the study are shown in Table 1. Hematuria and flank pain were the most common presenting symptoms (46 % and 38 % respectively). Overall, 42 (29 %) presented with distant metastases (M+), 29 patients (20 %) had LN+. and there was no significant relation between the VTT level and presence of M+ or LN+ disease (p = 0.3). Metastatic sites included: lungs (11 patients), liver (5 patients), bone (5 patients), adrenal (5 patients; 4 in the ipsilateral and 1 in the contralateral adrenal) and multiple sites (5 patients).
Table 1
Patient demographics and clinical characteristics
 
All (%)
Era 1 (%)
Era 2 (%)
All patients (%)
146 (100)
64 (44)
82 (56)
Age, median (range) y
61 ± 12
57 ± 12
64 ± 11
 
(24–82)
(35–83)
(24–82)
Sex
 Male
97 (66)
42 (66)
55 (67)
 Female
49 (34)
22 (34)
27 (33)
Side
 Right
82 (56)
34 (53)
48 (59)
 Left
64 (44)
30 (47)
34 (41)
Race or ethnic group
 Caucasian
96 (66)
41 (64)
55 (67)
 Hispanic
25 (17)
15 (23)
10 (12)
 Black
15 (10)
4 (6)
11 (13)
 Other
10 (7)
4 (6)
6 (7)
Presenting symptoms
 Asymptomatic
22 (15)
7 (11)
15 (18)
 Flank pain
56 (38)
27 (42)
29 (35)
 Hematuria
67 (46)
34 (53)
33 (40)
 Weight loss
43 (30)
16 (25)
27 (33)
 Lower extremity swelling
13 (9)
6 (9)
7 (9)
 Change in appetite
13 (9)
4 (6)
9 (11)
 Feeling of fullness
9 (6)
4 (6)
5 (6)
 Distended subcutaneous veins
2 (1)
0 (0)
2 (2)
 DVT/PE
8 (6)
4 (6)
4 (5)
Smoking
51 (35)
14 (22)
37 (45)
BMI median
28 ± 5.6
28 ± 4.9
26 ± 6.0
(range)
(17–56)
(19–46)
(17–56)
Obese (BMI ≥ 30)
34 (23)
17 (27)
17 (21)
ECOG
 0
27 (18)
17 (27)
10 (12)
 1
93 (64)
43 (67)
50 (61)
 2
20 (14)
2 (3)
18 (22)
 3
6 (4)
2 (3)
4 (5)
ASA
 2
51 (35)
24 (38)
27 (33)
 3
73 (50)
32 (50)
41 (50)
 4
22 (15)
8 (12)
14 (17)
MRI was performed in 95 (65 %) patients for better determination of VTT level. Patients with IVC thrombus had a 26 % incidence of LN+ disease versus 14 % in those with RV only thrombus (p = .07). The mean number of removed and positive LNs were 5 (range, 0–33) and 1 (range, 1–22); respectively. Detailed pathological features are shown in Table 2.
Table 2
Pathological Features of Entire Cohort
Characteristic
Total (%)
Level I (%)
Level II (%)
Level III (%)
Level IV (%)
P value
 
146 (100)
77 (53)
48 (33)
12 (8)
9 (6)
 
T stage
     
<0.001
 T3a
75 (51)
75 (97)
0
0
0
 
 T3b
51 (35)
0
40 (83)
11 (92)
0
 
 T3c
8 (6)
0
0
0
8 (89)
 
 T4
12 (8)
2 (3)
8 (17)
1 (8)
1 (11)
 
Grade
     
0.015
 1
1 (1)
0
0
1 (8)
0
 
 2
24 (16)
17 (22)
5 (10)
1 (8)
1 (11)
 
 3
86 (59)
39 (51)
32 (67)
10 (84)
5 (56)
 
 4
35 (24)
21 (27)
1 (23)
0
3 (33)
 
Path tumor size (cm)
10.2 ± 4.5
9.2 ± 4.3
11.7 ± 4.6
10 ± 2.9
12 ± 6.3
0.02
(2–25)
(2–23)
(3.5-25)
(5.5-15)
(5–22)
 
Metastasis
     
0.3
 Absent
104 (71)
56 (73)
31 (65)
11 (92)
6 (67)
 
 Present
42 (29)
21 (27)
17 (35)
1 (8)
3 (33)
 
LN
     
0.01
 N0
69 (47)
30 (39)
29 (60)
5 (42)
5 (56)
 
 Nx
48 (33)
36 (47)
6 (13)
4 (33)
2 (22)
 
 N+
29 (20)
11 (14)
13 (27)
3 (25)
2 (22)
 
Sarcomatoid Differentiation
     
0.3
 Absent
127 (87)
68 (88)
39 (81)
12 (100)
8 (89)
 
 Present
19 (13)
9 (1)
9 (19)
0
1 (11)
 
Adrenal Involvement
     
0.08
 Absent
128 (88)
72 (94)
38 (79)
11 (92)
7 (78)
 Present
18 (12)
5 (6)
10 (21)
1 (8)
2 (22)
Tumor Necrosis
     
0.4
 Absent
52 (36)
32 (42)
15 (31)
3 (25)
2 (22)
 Present
94 (64)
45 (58)
33 (69)
9 (75)
7 (78)
Fat Invasion
     
0.3
 Absent
28 (19)
18 (23)
7 (15)
3 (25)
0 (0)
 Present
118 (81)
59 (77)
41 (85)
9 (75)
9 (100)
Histological Subtype
     
0.7
 Non clear cell
11 (8)
5 (6)
5 (10)
1 (8)
0 (0)
 Clear cell
135 (92)
72 (94)
43 (90)
11 (92)
9 (100)

Surgical intervention

Surgical parameters and postoperative hospital stay data are included in the Additional file 1: Table S1. Preoperative renal artery angioembolization was performed in 27.4 % of all patients with any venous thrombus, and in 49.3 % of patients with level 2–4 thrombi. Chevron incision was the most common approach and was performed in all patients with level III and IV VTT (with midline strenotomy in cases where cardio-pulmonary bypass was needed). IVC clamping was used in most cases of level II and III VTT. Suprahepatic control of the IVC and control of porta hepatis were gained in level III VTT. More aggressive cardiothoracic procedures were reserved for patients with level IV and 3 patients with level III VTT who were hemodynamically unstable during the initial cross-clamping of the IVC. Right heart venovenous bypass was used to assist in removal of VTT in these 3 patients. Cardio-pulmonary bypass was needed in 5 patients with level IV VTT with mean bypass, aortic cross clamping and circulatory arrest times of 124, 59 and 25 min respectively.
Mean estimated blood loss was 1.5 L and blood loss was greatest in patients with level IV VTT. The mean operative time was around 5 h and it was correlated to level of thrombus (5.5, 6 and 6.5 h in level II, III and IV; respectively). Mean hospital stay was 8.8 days (range, 1–63) and mean ICU stay was 3 days (range, 0–51). Three patients had a complicated postoperative course and required longer care.

Peri-operative morbidity and mortality

Out of 146 patients, 4 (2.7 %) and 5 (3.4 %) patients died within 30 and 90 days after surgery, respectively. The causes of death included: pulmonary embolism, coagulopathy, bleeding and pneumonia. Complications occurred in 77 (53 %) of patients and only 15 patients (10 %) had high grade (Clavien III-V) complications (Tables 3 and 4). The most common perioperative complication was prolonged ileus (12 %). The occurrence of complications did not correlate with VTT level or other clinical parameters including patient age, performance status, smoking and preoperative renal artery embolization (p > 0.05). However, correlation was seen with duration of surgery (p = 0.04) and intraoperative blood loss (p = 0.016). Most importantly, there was a lower incidence of overall and high grade complications (45 % and 8 %, respectively) in the last 6 years compared to the earlier surgeries included in the study (67 % and 13 % respectively) (p = .008 and .03, respectively) (Table 5).
Table 3
Overall complications and grading according to Clavien-Dindo system
 
Total (%)
Level I (%)
Level II (%)
Level III (%)
Level IV (%)
P value
 
146 (100)
77 (52.7)
48 (32.9)
12 (8.2)
9 (6.2)
 
Overall Complications
77 (53)
38 (49)
27 (56)
7 (58)
5 (56)
.86
 Ileus/bowel
18 (12)
10 (13)
4 (8)
4 (33)
0 (0)
.07
 DVT
5 (3)
1 (1)
1 (2)
2 (17)
1 (11)
.03
 Pleural effusion
8 (6)
3 (4)
5 (10)
0
0 (0)
.4
 Acute renal failure
7 (5)
4 (5)
2 (4)
0
1 (11)
.7
 Coagulopathy
5 (3)
1 (1)
3 (6)
0
1 (11)
.2
 PE
10 (7)
2 (3)
1 (2)
4 (33)
3 (33)
.001
 Pneumonia
2 (1)
1 (1)
1 (2)
0
0 (0)
.9
 Perioperative mortality
11 (8)
3 (4)
7(15)
0
1 (11)
0.1
Clavien I-II
63 (43)
33 (43)
21 (44)
7 (58)
2 (22)
.02
Clavien III-V
15 (10)
5 (6)
6 (13)
0
4 (44)
Table 4
Overall complications and grading according to Clavien-Dindo system by Era
 
Total (%)
Era I (%)
Era II (%)
P value
 
146 (100)
64 (44)
82 (56)
 
Overall Complications
77 (53)
43 (67)
34 (42)
.002
 Ileus/bowel
18 (12)
10 (16)
8 (10)
.3
 DVT
5 (3)
2 (3)
3 (4)
.9
 Pleural effusion
8 (6)
3 (5)
5 (6)
.7
 Acute renal failure
7 (5)
4 (6)
3 (4)
.5
 Coagulopathy
5 (3)
5 (8)
0 (0)
.01
 PE
10 (7)
1 (2)
9 (11)
.025
 Pneumonia
2 (1)
1 (2)
1 (1)
.9
 Perioperative mortality
11 (8)
2 (3)
9 (11)
0.08
Clavien I-II
63 (43)
35 (55)
28 (34)
.02
Clavien III-V
15(10)
8 (13)
7 (8)
Table 5
Overall High Grade Complication Rate by ERA
 
Surgery Era
1998-2006
2006-2012
p value
Overall Complication Rate
 
67 %
45 %
.008
High Grade Complications
Clavien III - V
 
13 %
8 %
.030

Oncological outcomes

Patients were followed up after RN for a median of 16 months (mean 26, range 0–163 months). At the time of the analysis, overall mortality was 44 % with a median survival of 47 ± 4 months (range 38–56 months) and 34 % cancer specific mortality with a median CSS of 62 ± 17 months (range 29–94 months). Kaplan-Meier Survival analysis showed CSS at 2,3 and 5 years to be 70 %, 62 % and 51 %; OS at 2, 3 and 5 years to be 64 %, 57 % and 40 %; respectively (Fig. 1a). There was no significant difference in survival comparing the last 6 years to an earlier period with 3Y- CSS 62 % in both eras.

Prognostic factors

Kaplan-Meier survival analysis (Fig. 1b) demonstrated a significant difference between CSS rates in M0 and M+ patients (5Y-CSS was 68 % and 17 % in M0 and M+ patients; respectively, p < 0.001). Median CSS was 11 ± 4 months for M+ patients, while it was not yet reached for M0 patients. Multivariate Cox regression analyses (data not shown) demonstrated that M+ was the only independent predictor factor for CSS (HR 3.8, CI 1.9-7.6 and p < .001) and OS (HR 2.6, CI 1.5-4.7 and p = .001). LN+ was associated with a trend toward a poor CSS (HR 1.9, CI .97-3.6 and p = .06). In M+ patients, LN+ was the only factor significantly associated with poor oncological outcomes as shown from CSS analysis (HR 2.3, CI 1–5 and P = .03), and in OS analysis (HR 2, CI .96 – 4.3 and P = .06). In M0 patients, high VTT level (III and IV compared to I and II) was among the independent predictors of disease recurrence (HR 4.4, CI 2.1-9.4 and P < .001) and cancer specific mortality (HR 6.5, CI 2–21.2; p = .002) in multivariate Cox regression analysis. Other independent predictors of poor oncological outcomes included larger tumor size (>13 cm) and sarcomatoid differentiation (data not shown).

Discussion

Aggressive surgical resection is indicated in RCC with VTT as nephrectomy alone is associated with dismal prognosis [10]. Through an experienced team, consisting of a urologic oncology surgeon, cardiothoracic surgeon, cardiac anesthesiologist, and cardiac scrub team we were able to achieve satisfactory surgical and oncological outcomes and decrease the incidence of complications.
We noticed a significant reduction in the rate of overall and high grade complications (45 % and 8 %, respectively) in the last 6 years compared to the earlier surgeries included in the study (67 % and 13 % respectively) [p = .008 and .03, respectively]. We believe this reduction may be due to our multidisciplinary team approach, which provides uniform and consistent management of patients with VTT. The team approach further supports meticulous perioperative and postoperative planning and delivery of care, refinement of surgical technique, and improved anesthesia.
In terms of oncological outcomes, metastasis was found to be the strongest independent predictor of survival. Patients with M+ had a 3.8 times risk of cancer specific mortality compared to M0 patients (p < .001). While M0 patients had 5-Y CSS of 68 % and median survival that was not reached yet, M+ patients had a 17 % 5-Y CSS and 11 months median survival. Our survival rates were superior to those reported in the literature for M0 patients [35, 1124] but they were similarly poor in M+ patients who were reported to have 4-30 % 5Y-CSS and 11–20 months median survival [35, 1118, 21]. In this study, 29 % of patients had metastasis at presentation. This incidence was even higher in other series [14, 16]. Surgery might be indicated not only to improve oncological outcomes but also to relieve symptoms and provide better quality of life. However, performance status and associated comorbidities should be considered [10].
Overall, LN+ showed a trend toward poor CSS (HR 1.9, CI and p = .06) and achieved prognostic significance only in M+ patients (HR 2.3 and p = .03). Perhaps, statistical significance, in the analysis involving all patients, would be reached if the sample size was larger and/or follow up was longer. The independent prognostic role of LN+ was reported in other RN and IVCT series [12, 14, 21, 24]. Previous studies support the role of aggressive debulking of regional nodal disease at the time of cytoreductive RN for metastatic RCC [2, 25, 26].
There has been wide variation in reporting different prognostic factors and the prognostic value of VTT level has been debated. Our prognostic factors were similar to those reported in the largest European study that included 1192 patients from 13 European centers [12] and the US based analysis including 1875 patients with RCC and VTT from the SEER database [27]. In both studies, metastasis was the most important independent predictor of worse survival.
Interestingly, analysis of data for all patients showed that metastasis was the only independent predictor of oncological outcomes. However, in M0 patients, features associated with aggressive tumor behavior (high level VTT, large tumor size, and sarcomatoid differentiation) had an independent prognostic role. The size of the tumor has been implicated in staging of RCC. Large tumor size was among the strongest predictors of worse survival in the international RCC-VTT consortium that included 1215 RN and IVCT from 11 American and European institutions [21] as well as in a population based analysis including 1875 patients with RCC and VTT from the SEER database [27]. Sarcomatoid differentiation was reported with an incidence of 9 % and was among the independent predictors of worse survival in RN and IVCT series [3, 14, 20]. We found sarcomatoid differentiation in 13 % of tumors and it did not correlate with higher VTT levels, as 95 % of tumors with sarcomatoid differentiation had level I or II VTT.
We acknowledge several limitations in this review. First, is the retrospective design with its inherited bias. Second, while our multidisciplinary approach has lead to a decrease in the rate of complications, other factors may have also lead to improved outcomes. Improvement in surgical technique, enhanced understanding of the biology of the disease, and improved delivery of medical care throughout the course of the study may have also lead to improved patient outcomes. Lastly, the impact of venous wall invasion by thrombus could not be evaluated, as it was not reported by consistent pathologic criteria over the period under review.

Conclusions

RN and VTT is a challenging surgery and while, improvements in surgical techniques and perioperative care have decreased surgical morbidity and mortality, we strongly advocate for management of these patients with an experienced multidisciplinary team. Our approach has resulted in improved overall complications and most importantly, high grade complications. A strong working relationship between all team members helps develop meticulous perioperative and postoperative planning and delivery of care, refinement of surgical technique, and improved anesthesia.

Abbreviations

IVC, Inferior vena cava; IVCT, Radical nephrectomy (RN) and IVC thrombectomy; LN, Lymph node; RCC, Renal Cell Carcinoma; RN, Radical nephrectomy; VTT, Renal Cell Carcinoma (RCC) with venous tumor thrombus

Acknowledgements

None.

Funding

No funding was obtained for this study.

Availability of data and materials

All data supporting our results can be found in confidential and deidentified databases located in the Department of Urology at UT Southwestern Medical center. Additionally, data supporting our findings is contained throughout our manuscript.

Authors’ contributions

BG conception and design, acquisition of data, analysis and interpretation of data; drafting of manuscript. RY conception and design, acquisition of data, or analysis and interpretation of data; drafting of manuscript. OD conception and design, acquisition of data, analysis and interpretation of data; drafting of manuscript. PK acquisition of data, analysis and interpretation of data. AB conception and design, acquisition of data, analysis and interpretation of data. JB conception and design, analysis and interpretation of data. GR conception and design, acquisition of data, analysis and interpretation of data. MD conception and design, acquisition of data, analysis and interpretation of data. AS conception and design, acquisition of data, analysis and interpretation of data. VM conception and design, acquisition of data, analysis and interpretation of data; drafting of manuscript. All authors have read and approved the final version of this manuscript.

Competing interests

None of the authors have any financial interests or conflicts of interests to disclose.
Not applicable.
The University of Texas Southwestern Medical Center IRB approved this study. Since this study was a retrospective study, there was no requirement for a formal ethics approval.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
2.
Zurück zum Zitat Margulis V, Master VA, Cost NG, et al. International consultation on urologic diseases and the European Association of Urology international consultation on locally advanced renal cell carcinoma. Eur Urol. 2011;60(4):673–83.CrossRefPubMed Margulis V, Master VA, Cost NG, et al. International consultation on urologic diseases and the European Association of Urology international consultation on locally advanced renal cell carcinoma. Eur Urol. 2011;60(4):673–83.CrossRefPubMed
3.
Zurück zum Zitat Karnes RJ, Blute ML. Surgery insight: management of renal cell carcinoma with associated inferior vena cava thrombus. Nat Clin Pract Urol. 2008;5(6):329–39.PubMed Karnes RJ, Blute ML. Surgery insight: management of renal cell carcinoma with associated inferior vena cava thrombus. Nat Clin Pract Urol. 2008;5(6):329–39.PubMed
4.
Zurück zum Zitat Gonzalez J. Update on surgical management of renal cell carcinoma with venous extension. Curr Urol Rep. 2012;13(1):8–15.CrossRefPubMed Gonzalez J. Update on surgical management of renal cell carcinoma with venous extension. Curr Urol Rep. 2012;13(1):8–15.CrossRefPubMed
5.
Zurück zum Zitat Pouliot F, Shuch B, Larochelle JC, Pantuck A, Belldegrun AS. Contemporary management of renal tumors with venous tumor thrombus. J Urol. 2010;184(3):833–41. quiz 1235.CrossRefPubMed Pouliot F, Shuch B, Larochelle JC, Pantuck A, Belldegrun AS. Contemporary management of renal tumors with venous tumor thrombus. J Urol. 2010;184(3):833–41. quiz 1235.CrossRefPubMed
6.
Zurück zum Zitat Neves RJ, Zincke H. Surgical treatment of renal cancer with vena cava extension. Br J Urol. 1987;59(5):390–5.CrossRefPubMed Neves RJ, Zincke H. Surgical treatment of renal cancer with vena cava extension. Br J Urol. 1987;59(5):390–5.CrossRefPubMed
7.
Zurück zum Zitat Edge SB, Compton CC. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol. 2010;17(6):1471–4.CrossRefPubMed Edge SB, Compton CC. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol. 2010;17(6):1471–4.CrossRefPubMed
8.
Zurück zum Zitat Fuhrman SA, Lasky LC, Limas C. Prognostic significance of morphologic parameters in renal cell carcinoma. Am J Surg Pathol. 1982;6(7):655–63.CrossRefPubMed Fuhrman SA, Lasky LC, Limas C. Prognostic significance of morphologic parameters in renal cell carcinoma. Am J Surg Pathol. 1982;6(7):655–63.CrossRefPubMed
9.
Zurück zum Zitat Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004;240(2):205–13.CrossRefPubMedPubMedCentral Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004;240(2):205–13.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Kirkali Z, Van Poppel H. A critical analysis of surgery for kidney cancer with vena cava invasion. Eur Urol. 2007;52(3):658–62.CrossRefPubMed Kirkali Z, Van Poppel H. A critical analysis of surgery for kidney cancer with vena cava invasion. Eur Urol. 2007;52(3):658–62.CrossRefPubMed
11.
Zurück zum Zitat Ciancio G, Manoharan M, Katkoori D, De Los SR, Soloway MS. Long-term survival in patients undergoing radical nephrectomy and inferior vena cava thrombectomy: single-center experience. Eur Urol. 2010;57(4):667–72.CrossRefPubMed Ciancio G, Manoharan M, Katkoori D, De Los SR, Soloway MS. Long-term survival in patients undergoing radical nephrectomy and inferior vena cava thrombectomy: single-center experience. Eur Urol. 2010;57(4):667–72.CrossRefPubMed
12.
Zurück zum Zitat Wagner B, Patard JJ, Mejean A, et al. Prognostic value of renal vein and inferior vena cava involvement in renal cell carcinoma. Eur Urol. 2009;55(2):452–9.CrossRefPubMed Wagner B, Patard JJ, Mejean A, et al. Prognostic value of renal vein and inferior vena cava involvement in renal cell carcinoma. Eur Urol. 2009;55(2):452–9.CrossRefPubMed
13.
Zurück zum Zitat Lambert EH, Pierorazio PM, Shabsigh A, Olsson CA, Benson MC, McKiernan JM. Prognostic risk stratification and clinical outcomes in patients undergoing surgical treatment for renal cell carcinoma with vascular tumor thrombus. Urology. 2007;69(6):1054–8.CrossRefPubMed Lambert EH, Pierorazio PM, Shabsigh A, Olsson CA, Benson MC, McKiernan JM. Prognostic risk stratification and clinical outcomes in patients undergoing surgical treatment for renal cell carcinoma with vascular tumor thrombus. Urology. 2007;69(6):1054–8.CrossRefPubMed
14.
Zurück zum Zitat Klatte T, Pantuck AJ, Riggs SB, et al. Prognostic factors for renal cell carcinoma with tumor thrombus extension. J Urol. 2007;178(4 Pt 1):1189–95. discussion 95.CrossRefPubMed Klatte T, Pantuck AJ, Riggs SB, et al. Prognostic factors for renal cell carcinoma with tumor thrombus extension. J Urol. 2007;178(4 Pt 1):1189–95. discussion 95.CrossRefPubMed
15.
Zurück zum Zitat Haferkamp A, Bastian PJ, Jakobi H, et al. Renal cell carcinoma with tumor thrombus extension into the vena cava: prospective long-term followup. J Urol. 2007;177(5):1703–8.CrossRefPubMed Haferkamp A, Bastian PJ, Jakobi H, et al. Renal cell carcinoma with tumor thrombus extension into the vena cava: prospective long-term followup. J Urol. 2007;177(5):1703–8.CrossRefPubMed
16.
Zurück zum Zitat Moinzadeh A, Libertino JA. Prognostic significance of tumor thrombus level in patients with renal cell carcinoma and venous tumor thrombus extension. Is all T3b the same? J Urol. 2004;171(2 Pt 1):598–601.CrossRefPubMed Moinzadeh A, Libertino JA. Prognostic significance of tumor thrombus level in patients with renal cell carcinoma and venous tumor thrombus extension. Is all T3b the same? J Urol. 2004;171(2 Pt 1):598–601.CrossRefPubMed
17.
Zurück zum Zitat Sweeney P, Wood CG, Pisters LL, et al. Surgical management of renal cell carcinoma associated with complex inferior vena caval thrombi. Urol Oncol. 2003;21(5):327–33.CrossRefPubMed Sweeney P, Wood CG, Pisters LL, et al. Surgical management of renal cell carcinoma associated with complex inferior vena caval thrombi. Urol Oncol. 2003;21(5):327–33.CrossRefPubMed
18.
Zurück zum Zitat Ali AS, Vasdev N, Shanmuganathan S, et al. The surgical management and prognosis of renal cell cancer with IVC tumor thrombus: 15-years of experience using a multi-specialty approach at a single UK referral center. Urol Oncol. 2013;31(7):1298–304.CrossRefPubMed Ali AS, Vasdev N, Shanmuganathan S, et al. The surgical management and prognosis of renal cell cancer with IVC tumor thrombus: 15-years of experience using a multi-specialty approach at a single UK referral center. Urol Oncol. 2013;31(7):1298–304.CrossRefPubMed
19.
Zurück zum Zitat Parekh DJ, Cookson MS, Chapman W, et al. Renal cell carcinoma with renal vein and inferior vena caval involvement: clinicopathological features, surgical techniques and outcomes. J Urol. 2005;173(6):1897–902.CrossRefPubMed Parekh DJ, Cookson MS, Chapman W, et al. Renal cell carcinoma with renal vein and inferior vena caval involvement: clinicopathological features, surgical techniques and outcomes. J Urol. 2005;173(6):1897–902.CrossRefPubMed
20.
Zurück zum Zitat Blute ML, Leibovich BC, Lohse CM, Cheville JC, Zincke H. The Mayo Clinic experience with surgical management, complications and outcome for patients with renal cell carcinoma and venous tumour thrombus. BJU Int. 2004;94(1):33–41.CrossRefPubMed Blute ML, Leibovich BC, Lohse CM, Cheville JC, Zincke H. The Mayo Clinic experience with surgical management, complications and outcome for patients with renal cell carcinoma and venous tumour thrombus. BJU Int. 2004;94(1):33–41.CrossRefPubMed
21.
Zurück zum Zitat Martinez-Salamanca JI, Huang WC, Millan I, et al. Prognostic impact of the 2009 UICC/AJCC TNM staging system for renal cell carcinoma with venous extension. Eur Urol. 2011;59(1):120–7.CrossRefPubMed Martinez-Salamanca JI, Huang WC, Millan I, et al. Prognostic impact of the 2009 UICC/AJCC TNM staging system for renal cell carcinoma with venous extension. Eur Urol. 2011;59(1):120–7.CrossRefPubMed
22.
Zurück zum Zitat Al Otaibi M, Abou Youssif T, Alkhaldi A, et al. Renal cell carcinoma with inferior vena caval extention: impact of tumour extent on surgical outcome. BJU Int. 2009;104(10):1467–70.CrossRefPubMed Al Otaibi M, Abou Youssif T, Alkhaldi A, et al. Renal cell carcinoma with inferior vena caval extention: impact of tumour extent on surgical outcome. BJU Int. 2009;104(10):1467–70.CrossRefPubMed
23.
Zurück zum Zitat Glazer AA, Novick AC. Long-term followup after surgical treatment for renal cell carcinoma extending into the right atrium. J Urol. 1996;155(2):448–50.CrossRefPubMed Glazer AA, Novick AC. Long-term followup after surgical treatment for renal cell carcinoma extending into the right atrium. J Urol. 1996;155(2):448–50.CrossRefPubMed
24.
Zurück zum Zitat Vergho DC, Loeser A, Kocot A, Spahn M, Riedmiller H. Tumor thrombus of inferior vena cava in patients with renal cell carcinoma - clinical and oncological outcome of 50 patients after surgery. BMC Res Notes. 2012;5(1):264.CrossRefPubMedCentral Vergho DC, Loeser A, Kocot A, Spahn M, Riedmiller H. Tumor thrombus of inferior vena cava in patients with renal cell carcinoma - clinical and oncological outcome of 50 patients after surgery. BMC Res Notes. 2012;5(1):264.CrossRefPubMedCentral
25.
Zurück zum Zitat Pantuck AJ, Zisman A, Dorey F, et al. Renal cell carcinoma with retroperitoneal lymph nodes: role of lymph node dissection. J Urol. 2003;169(6):2076–83.CrossRefPubMed Pantuck AJ, Zisman A, Dorey F, et al. Renal cell carcinoma with retroperitoneal lymph nodes: role of lymph node dissection. J Urol. 2003;169(6):2076–83.CrossRefPubMed
26.
Zurück zum Zitat Vasselli JR, Yang JC, Linehan WM, White DE, Rosenberg SA, Walther MM. Lack of retroperitoneal lymphadenopathy predicts survival of patients with metastatic renal cell carcinoma. J Urol. 2001;166(1):68–72.CrossRefPubMed Vasselli JR, Yang JC, Linehan WM, White DE, Rosenberg SA, Walther MM. Lack of retroperitoneal lymphadenopathy predicts survival of patients with metastatic renal cell carcinoma. J Urol. 2001;166(1):68–72.CrossRefPubMed
27.
Zurück zum Zitat Whitson JM, Reese AC, Meng MV. Population based analysis of survival in patients with renal cell carcinoma and venous tumor thrombus. Urol Oncol. 2013;31(2):259–63.CrossRefPubMed Whitson JM, Reese AC, Meng MV. Population based analysis of survival in patients with renal cell carcinoma and venous tumor thrombus. Urol Oncol. 2013;31(2):259–63.CrossRefPubMed
Metadaten
Titel
Multi-disciplinary surgical approach to the management of patients with renal cell carcinoma with venous tumor thrombus: 15 year experience and lessons learned
verfasst von
Bishoy A. Gayed
Ramy Youssef
Oussama Darwish
Payal Kapur
Aditya Bagrodia
James Brugarolas
Ganesh Raj
J. Michael DiMaio
Arthur Sagalowsky
Vitaly Margulis
Publikationsdatum
01.12.2016
Verlag
BioMed Central
Erschienen in
BMC Urology / Ausgabe 1/2016
Elektronische ISSN: 1471-2490
DOI
https://doi.org/10.1186/s12894-016-0157-3

Weitere Artikel der Ausgabe 1/2016

BMC Urology 1/2016 Zur Ausgabe

Update Urologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.