Skip to main content
Erschienen in: Journal of NeuroVirology 3/2023

Open Access 29.05.2023 | Mini-Review

Multi-functional auto-fluorescent nanogels for theranostics

verfasst von: Arti Vashist, Andrea D. Raymond, Prem Chapagain, Atul Vashist, Adriana Yndart Arias, Nagesh Kolishetti, Madhavan Nair

Erschienen in: Journal of NeuroVirology | Ausgabe 3/2023

Abstract

Here in the present article, the state of art for nanotechnology-enabled nanogel theranostics and the upcoming concepts in nanogel-based therapeutics are summarized. The benefits, innovation, and prospects of nanogel technology are also briefly presented.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Nanotechnology has advanced tremendously for therapeutic delivery and diagnostic application in recent years. Several nanocarriers have been tested for translation to clinics (Marrache et al. 2013). These nanocarriers include liposomes, dendrimers, polymeric nanocarriers, hydrogels, and nanogels. This review will highlight the intelligent nanocarriers, “nanogels,” used for theranostics (therapy and diagnostics) applications. Nanogels are nanomaterials in the nanometer range (10 to 100 nm) and formed via a three-dimensional network of crosslinked polymer chains or materials from gel-like structures. Nanogels have advanced properties as compared to other existing nanocarriers. The limitation associated with different nanocarriers, such as liposomes, is their stability over time and polydispersibility. Polylactic-co-glycolic acid (PLGA) and chitosan nanoparticles are accompanied by drug burst release. The inorganic particles showed toxicity issues and immune responses in clinical trials (Zhang et al. 2022). Keeping these limitations in mind, nanogels have conducted improved features. According to the standard nomenclature, IUPAC nanogel is a gel nanoparticle of any shape with a diameter of 1–100 nm (Gold et al. 1997; Kar et al. 2017). These are formed by physical or chemical cross-linked polymers. The research has expanded over the years, and nanogels have gained attention in the material science (Asadian-Birjand et al. 2012; Topuz and Uyar 2022; Vashist et al. 2017) for the theranostics application. Recently, the theranostics application of nanocarriers has been utilized to treat various diseases where the diagnostic and therapeutic are integrated with a single platform (Wang et al. 2018a). Funkhouser first defined the term “theranostics” in 2002. Since then, a lot of progress has been made in developing nanocarriers in a hybrid format to have a combinatory effect. Various nanofillers like carbon dots (Zhao et al. 2022), metal nanoparticles (Lux et al. 2015), SPIONs (Mauro et al. 2019), carbon-based materials (Wang et al. 2018b), and quantum dots (Yang et al. 2014) have been used to develop nanogels for theranostics.
The current strategy of developing bio-polymeric theranostic agents has a pronounced conviction of incorporating inherent features of non-toxicity, biodegradability, biocompatibility, and high sensitivity. Literature reveals that the nano-range is preferred for various anti-cancer therapies (Cho et al. 2020a; Pei et al. 2018) and other biomedical applications (Kaewruethai et al. 2021; Vashist et al. 2018). The focus is on developing nanogels that are easy to synthesize with low-cost materials and result in biocompatibility and biodegradability and give no toxicity to the cellular microenvironment with intrinsic photoluminescence and increased photostability. A study demonstrated nanogels based on biodegradable photoluminescent polymer templates that are derived from compatible monomers like citric acid, maleic acid, L-cysteine, and polyethylene glycol (Gyawali et al. 2018). These nanogels possess strong potential for theranostics medicine and can be used for real-time fluorescence-based imaging. They are also deployed for the cell labeling (Gyawali et al. 2018). Nanogels are better candidates selected for enhancing tumor accumulation. A recent study showed the development of fucoidan-based theranostic nanogel, which has the unique feature of recovering its photoactivity in response to intracellular redox potential when internalized into cancer cells. This study gives an excellent platform for selecting near-IR imaging and improved photothermal therapy of tumors (Cho et al. 2020b).

Auto-fluorescent nanogels for theranostics

Researchers across the globe have put sincere efforts forward to develop efficient nanogel- based delivery systems to deliver hydrophobic drugs, cancer immunotherapy (Ma et al. 2022), oligonucleotides, and other bioactives across the BBB (Vinogradov et al. 2004). Recent research work on magneto-electric nanoparticles (MENP) from our group suggested that MENP-mediated drug delivery has the potential to improve the outcomes of anti-retroviral (ARV) therapy significantly and can transport neuron-resuscitating agents to cross BBB without altering the blood–brain barrier integrity (Kaushik et al. 2019, Kolishetti et al. 2022). Despite the tremendous success of the combined antiretroviral therapy (cART) in reducing the mortality rate in HIV-infected individuals, viral persistence remains a daunting challenge posing a significant barrier to HIV cure. The most critical challenge in existing therapies is that HIV infection requires lifelong adherence to daily dosing of ART, which may result in drug resistance. Besides this constant threat of the emergence of drug-resistant viral variants and overall cost compounded with adverse effects associated with ART necessitates the development of novel therapies. These therapies are aimed at targeting the integrated provirus within the host cellular DNA to eliminate the HIV viral reservoirs (Kaushik et al. 2019; Osborne et al. 2020). To address these challenges, our research group has developed and patented a very simple and stable bio-polymeric micro/nanogel system, which can be used for in vitro and in vivo theranostics applications for various diseases (Fig. 1). Owing to their novel characteristics, biopolymers, such as chitosan and hydroxyethyl cellulose (HEC), have gained huge importance for developing nanotechnology-based therapeutics and imaging tools. Bio-polymeric auto-fluorescent hydrogels in both micro- and nanoscales were developed using completely natural polymers chitosan, HEC, and sustainable resource polyol exhibiting complete biocompatibility (in the concentration range 10–100 µg/ml) tested over a wide range of host cells like astrocytes, PBMCs, and microglia (Vashist et al. 2020).
Moreover, their intrinsic fluorescence over a wide dynamic range of emission wavelengths (450–750 nm) and (710–810 nm) micro/nanogel particles (Fig. 2) obviates the requirement of an external fluorescent dye/reagent for their use in in vivo imaging-based theranostic applications (Vashist et al. 2020, 2019). The developed nanogel particles were detected with a 405-nm excitation laser and emission at 505–560 nm, demonstrating the maximum fluorescence intensity with 50 μg/ml of nanogel concentration. Our preliminary animal studies in Balb/c mice injected subcutaneously with 20 mg/kg of micro/nanogel particles revealed in vivo fluorescence of micro/nanogel particles using Ami HT-Spectral Instruments-based imaging (unpublished data not shown) underpinning them as a novel tool for in vivo imaging. Interestingly, the developed micro/nanogels significantly inhibited both viral transcription and viral release disrupting the HIV life cycle in T-cell enriched PBMCs, astrocytes, and macrophages, suggesting an inherent anti-HIV activity of synthesized micro/nanogels. Hence, the developed auto-fluorescent nanogels are anticipated to act as an anti-viral agent for HIV treatment and are proposed to be tested as a prophylactic agent against HIV in high-risk groups (Nair et al. 2022).

Nanogel-based theranostics for CNS diseases and delivery across blood–brain barrier

Nanogels hold great potential as a drug delivery system for CNS diseases. The characteristic features of nanogels which make them unique are their high stability in physiological solutions, high drug encapsulation efficiency, biodegradability, biocompatibility, core–shell structures, and high permeability and stimuli responsiveness. These properties make them better nanocarriers than other existing nanocarriers and can thus cross the blood–brain barrier to a greater extent. Nanogels are a promising carrier for achieving effective therapeutic doses across the BBB. Nanogels have been deployed for managing various brain diseases like Alzheimer’s, Parkinson’s, multiple sclerosis, brain tumor, and neuroAIDS. The presence of tough BBB and blood-cerebrospinal fluid barrier (BCSFB) makes brain drug delivery very challenging. In this regard, nanogels can be engineered so that they can be transmigrated across BBB in a non-invasive manner (Cuggino et al. 2019). It is well known that therapeutics > 500 Da cannot cross the BBB. The therapeutic has to transmigrate across the BBB to treat brain diseases effectively. In one exciting study, fluorescently labeled poly(N-isopropylmethacrylamide) (p(NIPMAM)) nanogels were tested for their stiffness and their transport. It was observed that the more densely cross-linked nanogels were uptaken by brain endothelial cells. On the contrary, the less densely cross-linked nanogels showed the highest transcytosis property (Ribovski et al. 2021). Figure 3 demonstrates that nanogels with different stiffnesses tend to interact with the apical region of polarized brain endothelial cells (Ribovski et al. 2021). Another essential aspect in these years is nasal delivery of the nanogels for enhanced brain drug delivery. Hydrogen bond-enhanced nanogel for delivery of albiflorin to treat Parkinson’s disease (PD) was reported. Glycyrrhizic acid was utilized as a hydrogen bond crosslinker, preventing the drug’s premature release. These studies demonstrate the potential of nanogels for selective brain distribution and accumulation and are promising carriers for treating PD (Chen et al. 2022). Oxytocin-loaded angiopep-2-modified chitosan nanogels have been developed to address early intervention for Alzheimer's disease (AD). These nanogels inhibit the innate inflammatory response. Oxytocin was released and explicitly bound to upregulated oxytocin receptor and thus inhibiting the microglial activation and reducing the inflammatory cytokine levels (Ye et al. 2022). Numerous other recent studies have been reported showing the potential of nanogel-based theranostics for CNS diseases and delivery across blood–brain barrier (Arjun et al. 2022; Vdovchenko 2022; Vinogradov et al. 2004).

Future prospects and conclusion

The ideal nanocarrier can be sustained in the human body for a longer circulation time to deliver the therapeutics with minimum or no side effects. The observed non-target effects can be reduced by passive targeting (Kitayama et al. 2022) or antibody-mediated active targeting of diseased tissue or organs (Li and Qi 2021). Tagging the nanocarrier with ligands and cell-penetrating peptides may facilitate their intracellular delivery (Khalil and Harashima 2023; Liu et al. 2022). Thus, nanogels are tunable and can be functionalized to make them transmigrate across physiological barriers (Zhao et al. 2021) such as gut barrier (Lee et al. 2020), blood–brain barrier (Ribovski et al. 2021), corneal epithelial barrier (Lin et al. 2021), and skin barrier (Cuggino et al. 2019). Smart nanogel may be designed with a capacity to circulate for longer intervals with sustained release, and droplet-based microfluidic development of nanogels for controlled drug delivery can be used to achieve efficiency. Using fluorescent probes and dyes in nanocarriers for imaging purposes bears severe limitations, such as experimental artifacts, toxicity, rapid clearance, photobleaching, and low specificity. In this regard, our nanogel technology has organic biopolymers with the least toxicity and more accuracy with detectable sensitivity. There is a wide range of applications for nanogels ranging from diagnostics to therapeutics. The developed nanogels can be deployed to deliver various biologics, nucleic acids, drugs, and RNA/DNA for the treatment of brain tumors and other carcinomas in the human body, in addition to HIV therapeutics. The existing imaging technologies, such as CT, MRI, PET, and FMT, have their strength and limitations (Lim et al. 2015). The advancements in nanomaterials used for theranostics include nanofillers like CNT, graphene, superparamagnetic nanoparticles, and Au nanoparticles that enhance MRI contrast. Thus, nanogels enable superior imaging with improved diagnostic efficacy. The other important parameter for nanogel-based therapeutics is to optimize the PK and PD properties of drugs loaded inside the nanogel. Thus, clinical translation is still a big challenge. Yet, the advancement in nanogel technology and research team collaborations from multidisciplinary areas may prove to be instrumental in developing a new class of nanogels for clinical use.

Acknowledgements

Madhavan Nair thanks the support from the National Institutes of Health grants DA052271, DA042706, DA040537, DA037838, DA034547, and Florida Department of Health grant 8AZ04 and Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, FIorida International University, Miami, FL.

Declarations

Conflict of interest

US patent for “Micro/Nano Magnetic Hydrogels with Autofluorescence for Therapeutic and Diagnostic Applications” (US 10,344,100) 2019 with Arti Vashist, Ajeet K Kaushik, Madhavan P Nair as inventors. US non-provisional patent application for “Biotherapy for Viral infections using Biopolymer based Micro/Nanogels.” (US 17/615,940) 2022, with Madhavan P Nair, Arti Vashist, Andrea Raymond as inventors.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

© Springer Medizin

Bis 11. April 2024 bestellen und im ersten Jahr 50 % sparen!

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

© Springer Medizin

Bis 11. April 2024 bestellen und im ersten Jahr 50 % sparen!

e.Med Neurologie & Psychiatrie

Kombi-Abonnement

Mit e.Med Neurologie & Psychiatrie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

© Springer Medizin

Bis 11. April 2024 bestellen und im ersten Jahr 50 % sparen!

Weitere Produktempfehlungen anzeigen
Literatur
Zurück zum Zitat Arjun P, Freeman JL, Kannan RR (2022) Neurospecific fabrication and toxicity assessment of a PNIPAM nanogel encapsulated with trans-tephrostachin for blood-brain-barrier permeability in zebrafish model. Heliyon 8:e10237CrossRefPubMedPubMedCentral Arjun P, Freeman JL, Kannan RR (2022) Neurospecific fabrication and toxicity assessment of a PNIPAM nanogel encapsulated with trans-tephrostachin for blood-brain-barrier permeability in zebrafish model. Heliyon 8:e10237CrossRefPubMedPubMedCentral
Zurück zum Zitat Asadian-Birjand M, Sousa-Herves A, Steinhilber D, Cuggino JC, Calderon M (2012) Functional nanogels for biomedical applications. Curr Med Chem 19:5029–5043CrossRefPubMed Asadian-Birjand M, Sousa-Herves A, Steinhilber D, Cuggino JC, Calderon M (2012) Functional nanogels for biomedical applications. Curr Med Chem 19:5029–5043CrossRefPubMed
Zurück zum Zitat Chen Y-B, Qiao T, Wang Y-Q, Cui Y-L, Wang Q-S (2022) Hydrogen bond-enhanced nanogel delivery system for potential intranasal therapy of Parkinson’s disease. Mater Des 219:110741CrossRef Chen Y-B, Qiao T, Wang Y-Q, Cui Y-L, Wang Q-S (2022) Hydrogen bond-enhanced nanogel delivery system for potential intranasal therapy of Parkinson’s disease. Mater Des 219:110741CrossRef
Zurück zum Zitat Cho MH, Li Y, Lo P-C, Lee H, Choi Y (2020a) Fucoidan-based theranostic nanogel for enhancing imaging and photodynamic therapy of cancer. Nano-Micro Letters 12:47CrossRefPubMedPubMedCentral Cho MH, Li Y, Lo P-C, Lee H, Choi Y (2020a) Fucoidan-based theranostic nanogel for enhancing imaging and photodynamic therapy of cancer. Nano-Micro Letters 12:47CrossRefPubMedPubMedCentral
Zurück zum Zitat Cho MH, Li Y, Lo P-C, Lee H, Choi Y (2020b) Fucoidan-based theranostic nanogel for enhancing imaging and photodynamic therapy of cancer. Nano-Micro Letters 12:1–15CrossRef Cho MH, Li Y, Lo P-C, Lee H, Choi Y (2020b) Fucoidan-based theranostic nanogel for enhancing imaging and photodynamic therapy of cancer. Nano-Micro Letters 12:1–15CrossRef
Zurück zum Zitat Cuggino JC, Blanco ERO, Gugliotta LM, Igarzabal CIA, Calderon M (2019) Crossing biological barriers with nanogels to improve drug delivery performance. J Control Release 307:221–246CrossRefPubMed Cuggino JC, Blanco ERO, Gugliotta LM, Igarzabal CIA, Calderon M (2019) Crossing biological barriers with nanogels to improve drug delivery performance. J Control Release 307:221–246CrossRefPubMed
Zurück zum Zitat Gold V, Loening KL, McNaught AD, Shemi P (1997) IUPAC compendium of chemical terminology, 2nd edn. Blackwell Science, Oxford Gold V, Loening KL, McNaught AD, Shemi P (1997) IUPAC compendium of chemical terminology, 2nd edn. Blackwell Science, Oxford
Zurück zum Zitat Gyawali D, Kim JP, Yang J (2018) Highly photostable nanogels for fluorescence-based theranostics. Bioactive Materials 3:39–47CrossRefPubMed Gyawali D, Kim JP, Yang J (2018) Highly photostable nanogels for fluorescence-based theranostics. Bioactive Materials 3:39–47CrossRefPubMed
Zurück zum Zitat Kar M, Fechner L, Nagel G, Glitscher E, Rimondino GN, Calderón M (2017) Responsive nanogels for anti-cancer Therapy. Nanogels Biomed Appl 30:210CrossRef Kar M, Fechner L, Nagel G, Glitscher E, Rimondino GN, Calderón M (2017) Responsive nanogels for anti-cancer Therapy. Nanogels Biomed Appl 30:210CrossRef
Zurück zum Zitat Kaushik A, Yndart A, Atluri V, Tiwari S, Tomitaka A, Gupta P, Jayant RD, Alvarez-Carbonell D, Khalili K, Nair M (2019) Magnetically guided non-invasive CRISPR-Cas9/gRNA delivery across blood-brain barrier to eradicate latent HIV-1 infection. Sci Rep 9:3928CrossRefPubMedPubMedCentral Kaushik A, Yndart A, Atluri V, Tiwari S, Tomitaka A, Gupta P, Jayant RD, Alvarez-Carbonell D, Khalili K, Nair M (2019) Magnetically guided non-invasive CRISPR-Cas9/gRNA delivery across blood-brain barrier to eradicate latent HIV-1 infection. Sci Rep 9:3928CrossRefPubMedPubMedCentral
Zurück zum Zitat Khalil IA, Harashima H (2023) Lipid‐based nanoparticles using cell‐penetrating peptides. Cell‐Penetrating Peptides: Design, Development and Applications 315–328 Khalil IA, Harashima H (2023) Lipid‐based nanoparticles using cell‐penetrating peptides. Cell‐Penetrating Peptides: Design, Development and Applications 315–328
Zurück zum Zitat Kitayama Y, Yamada T, Kiguchi K, Yoshida A, Hayashi S, Akasaka H, Igarashi K, Nishimura Y, Matsumoto Y, Sasaki R (2022) In vivo stealthified molecularly imprinted polymer nanogels incorporated with gold nanoparticles for radiation therapy. J Mater Chem B 10:6784–6791CrossRefPubMed Kitayama Y, Yamada T, Kiguchi K, Yoshida A, Hayashi S, Akasaka H, Igarashi K, Nishimura Y, Matsumoto Y, Sasaki R (2022) In vivo stealthified molecularly imprinted polymer nanogels incorporated with gold nanoparticles for radiation therapy. J Mater Chem B 10:6784–6791CrossRefPubMed
Zurück zum Zitat Lee Y, Sugihara K, Gillilland MG III, Jon S, Kamada N, Moon JJ (2020) Hyaluronic acid–bilirubin nanomedicine for targeted modulation of dysregulated intestinal barrier, microbiome and immune responses in colitis. Nat Mater 19:118–126CrossRefPubMed Lee Y, Sugihara K, Gillilland MG III, Jon S, Kamada N, Moon JJ (2020) Hyaluronic acid–bilirubin nanomedicine for targeted modulation of dysregulated intestinal barrier, microbiome and immune responses in colitis. Nat Mater 19:118–126CrossRefPubMed
Zurück zum Zitat Li L, Qi Z (2021) Recent advances in cell‐mediated drug delivery systems for nanomedicine and imaging. Fund Drug Deliv 263–284 Li L, Qi Z (2021) Recent advances in cell‐mediated drug delivery systems for nanomedicine and imaging. Fund Drug Deliv 263–284
Zurück zum Zitat Lim E-K, Kim T, Paik S, Haam S, Huh Y-M, Lee K (2015) Nanomaterials for theranostics: recent advances and future challenges. Chem Rev 115:327–394CrossRefPubMed Lim E-K, Kim T, Paik S, Haam S, Huh Y-M, Lee K (2015) Nanomaterials for theranostics: recent advances and future challenges. Chem Rev 115:327–394CrossRefPubMed
Zurück zum Zitat Lin H-Y, Wang S-W, Mao J-Y, Chang H-T, Harroun SG, Lin H-J, Huang C-C, Lai J-Y (2021) Carbonized nanogels for simultaneous antibacterial and antioxidant treatment of bacterial keratitis. Chem Eng J 411:128469CrossRef Lin H-Y, Wang S-W, Mao J-Y, Chang H-T, Harroun SG, Lin H-J, Huang C-C, Lai J-Y (2021) Carbonized nanogels for simultaneous antibacterial and antioxidant treatment of bacterial keratitis. Chem Eng J 411:128469CrossRef
Zurück zum Zitat Liu Y, Zhao Z, Li M (2022) Overcoming the cellular barriers and beyond: recent progress on cell penetrating peptide modified nanomedicine in combating physiological and pathological barriers. Asian J Pharma Sci 17(4):523–543CrossRef Liu Y, Zhao Z, Li M (2022) Overcoming the cellular barriers and beyond: recent progress on cell penetrating peptide modified nanomedicine in combating physiological and pathological barriers. Asian J Pharma Sci 17(4):523–543CrossRef
Zurück zum Zitat Lux J, White AG, Chan M, Anderson CJ, Almutairi A (2015) Nanogels from metal-chelating crosslinkers as versatile platforms applied to copper-64 PET imaging of tumors and metastases. Theranostics 5:277–288CrossRefPubMedPubMedCentral Lux J, White AG, Chan M, Anderson CJ, Almutairi A (2015) Nanogels from metal-chelating crosslinkers as versatile platforms applied to copper-64 PET imaging of tumors and metastases. Theranostics 5:277–288CrossRefPubMedPubMedCentral
Zurück zum Zitat Ma X, Li S-J, Liu Y, Zhang T, Xue P, Kang Y, Sun Z-J, Xu Z (2022). Bioengineered nanogels for cancer immunotherapy. Chem Soc Rev Ma X, Li S-J, Liu Y, Zhang T, Xue P, Kang Y, Sun Z-J, Xu Z (2022). Bioengineered nanogels for cancer immunotherapy. Chem Soc Rev
Zurück zum Zitat Marrache S, Kumar Pathak R, Darley L, K, H Choi J, Zaver D, Kolishetti N, Dhar S (2013) Nanocarriers for tracking and treating diseases. Curr Med Chem 20:3500–3514CrossRefPubMedPubMedCentral Marrache S, Kumar Pathak R, Darley L, K, H Choi J, Zaver D, Kolishetti N, Dhar S (2013) Nanocarriers for tracking and treating diseases. Curr Med Chem 20:3500–3514CrossRefPubMedPubMedCentral
Zurück zum Zitat Mauro N, Scialabba C, Puleio R, Varvarà P, Licciardi M, Cavallaro G, Giammona G (2019) SPIONs embedded in polyamino acid nanogels to synergistically treat tumor microenvironment and breast cancer cells. Int J Pharm 555:207–219CrossRefPubMed Mauro N, Scialabba C, Puleio R, Varvarà P, Licciardi M, Cavallaro G, Giammona G (2019) SPIONs embedded in polyamino acid nanogels to synergistically treat tumor microenvironment and breast cancer cells. Int J Pharm 555:207–219CrossRefPubMed
Zurück zum Zitat Nair M, Raymond A, Vashist A (2022) Biotherapy for viral infections using biopolymer based micro/nanogels. US Patent App 17/615,940 Nair M, Raymond A, Vashist A (2022) Biotherapy for viral infections using biopolymer based micro/nanogels. US Patent App 17/615,940
Zurück zum Zitat Osborne O, Peyravian N, Nair M, Daunert S, Toborek M (2020) The paradox of HIV blood–brain barrier penetrance and antiretroviral drug delivery deficiencies. Trends Neurosci 43:695–708CrossRefPubMedPubMedCentral Osborne O, Peyravian N, Nair M, Daunert S, Toborek M (2020) The paradox of HIV blood–brain barrier penetrance and antiretroviral drug delivery deficiencies. Trends Neurosci 43:695–708CrossRefPubMedPubMedCentral
Zurück zum Zitat Pei M, Jia X, Zhao X, Li J, Liu P (2018) Alginate-based cancer-associated, stimuli-driven and turn-on theranostic prodrug nanogel for cancer detection and treatment. Carbohyd Polym 183:131–139CrossRef Pei M, Jia X, Zhao X, Li J, Liu P (2018) Alginate-based cancer-associated, stimuli-driven and turn-on theranostic prodrug nanogel for cancer detection and treatment. Carbohyd Polym 183:131–139CrossRef
Zurück zum Zitat Ribovski L, de Jong E, Mergel O, Zu G, Keskin D, van Rijn P, Zuhorn IS (2021) Low nanogel stiffness favors nanogel transcytosis across an in vitro blood–brain barrier. Nanomed Nanotechnol Biol Med 34:102377 Ribovski L, de Jong E, Mergel O, Zu G, Keskin D, van Rijn P, Zuhorn IS (2021) Low nanogel stiffness favors nanogel transcytosis across an in vitro blood–brain barrier. Nanomed Nanotechnol Biol Med 34:102377
Zurück zum Zitat Topuz F, Uyar T (2022) Advances in the development of cyclodextrin-based nanogels/microgels for biomedical applications: drug delivery and beyond. Carbo Polym 120033 Topuz F, Uyar T (2022) Advances in the development of cyclodextrin-based nanogels/microgels for biomedical applications: drug delivery and beyond. Carbo Polym 120033
Zurück zum Zitat Vashist A, Atluri V, Raymond A, Kaushik A, Parira T, Huang Z, Durygin A, Tomitaka A, Nikkhah-Moshaie R, Vashist A, Agudelo M, Chand HS, Saytashev I, Ramella-Roman JC, Nair M (2020) Development of multifunctional biopolymeric auto-fluorescent micro- and nanogels as a platform for biomedical applications. Front Bioeng Biotechnol 8 Vashist A, Atluri V, Raymond A, Kaushik A, Parira T, Huang Z, Durygin A, Tomitaka A, Nikkhah-Moshaie R, Vashist A, Agudelo M, Chand HS, Saytashev I, Ramella-Roman JC, Nair M (2020) Development of multifunctional biopolymeric auto-fluorescent micro- and nanogels as a platform for biomedical applications. Front Bioeng Biotechnol 8
Zurück zum Zitat Vashist A, Kaushik A, Madhavan NAIR, Florida International University FIU (2019) Micro/nano magnetic hydrogels with autofluorescence for therapeutic and diagnostic applications. U.S. Patent 10,344,100 Vashist A, Kaushik A, Madhavan NAIR, Florida International University FIU (2019) Micro/nano magnetic hydrogels with autofluorescence for therapeutic and diagnostic applications. U.S. Patent 10,344,100
Zurück zum Zitat Vashist A, Kaushik A, Vashist A, Bala J, Nikkhah-Moshaie R, Sagar V, Nair M (2018) Nanogels as potential drug nanocarriers for CNS drug delivery. Drug Discov Today 23(7):1436–1443CrossRefPubMedPubMedCentral Vashist A, Kaushik A, Vashist A, Bala J, Nikkhah-Moshaie R, Sagar V, Nair M (2018) Nanogels as potential drug nanocarriers for CNS drug delivery. Drug Discov Today 23(7):1436–1443CrossRefPubMedPubMedCentral
Zurück zum Zitat Vashist A, Kaushik AK, Ahmad S, Nair M (2017) Nanogels for biomedical applications. Royal Society of ChemistryCrossRef Vashist A, Kaushik AK, Ahmad S, Nair M (2017) Nanogels for biomedical applications. Royal Society of ChemistryCrossRef
Zurück zum Zitat Vdovchenko A (2022) Thermoresponsive poly-N-isopropylacrylamide nanogels for brain drug delivery Vdovchenko A (2022) Thermoresponsive poly-N-isopropylacrylamide nanogels for brain drug delivery
Zurück zum Zitat Wang F, Xiao J, Chen S, Sun H, Yang B, Jiang J, Zhou X, Du J (2018a) Polymer vesicles: modular platforms for cancer theranostics. Adv Mater 30:1705674CrossRef Wang F, Xiao J, Chen S, Sun H, Yang B, Jiang J, Zhou X, Du J (2018a) Polymer vesicles: modular platforms for cancer theranostics. Adv Mater 30:1705674CrossRef
Zurück zum Zitat Wang H, Chen Q, Zhou S (2018b) Carbon-based hybrid nanogels: a synergistic nanoplatform for combined biosensing, bioimaging, and responsive drug delivery. Chem Soc Rev 47:4198–4232CrossRefPubMed Wang H, Chen Q, Zhou S (2018b) Carbon-based hybrid nanogels: a synergistic nanoplatform for combined biosensing, bioimaging, and responsive drug delivery. Chem Soc Rev 47:4198–4232CrossRefPubMed
Zurück zum Zitat Yang J, Yao MH, Wen L, Song JT, Zhang MZ, Zhao YD, Liu B (2014) Multifunctional quantum dot-polypeptide hybrid nanogel for targeted imaging and drug delivery. Nanoscale 6:11282–11292CrossRefPubMed Yang J, Yao MH, Wen L, Song JT, Zhang MZ, Zhao YD, Liu B (2014) Multifunctional quantum dot-polypeptide hybrid nanogel for targeted imaging and drug delivery. Nanoscale 6:11282–11292CrossRefPubMed
Zurück zum Zitat Ye C, Cheng M, Ma L, Zhang T, Sun Z, Yu C, Wang J, Dou Y (2022) Oxytocin nanogels inhibit innate inflammatory response for early intervention in Alzheimer’s disease. ACS Appl Mater Interfaces 14:21822–21835CrossRefPubMed Ye C, Cheng M, Ma L, Zhang T, Sun Z, Yu C, Wang J, Dou Y (2022) Oxytocin nanogels inhibit innate inflammatory response for early intervention in Alzheimer’s disease. ACS Appl Mater Interfaces 14:21822–21835CrossRefPubMed
Zurück zum Zitat Zhang Y, Zou Z, Liu S, Miao S, Liu H (2022) Nanogels as novel nanocarrier systems for efficient delivery of CNS therapeutics. Front Bioeng Biotechnol 10 Zhang Y, Zou Z, Liu S, Miao S, Liu H (2022) Nanogels as novel nanocarrier systems for efficient delivery of CNS therapeutics. Front Bioeng Biotechnol 10
Zurück zum Zitat Zhao C, Sun S, Li S, Am Lv, Chen Q, Jiang K, Jiang Z, Li Z, Wu A, Lin H (2022) Programmed stimuli-responsive carbon dot-nanogel hybrids for imaging-guided enhanced tumor phototherapy. ACS Appl Mater Interfaces 14:10142–10153CrossRefPubMed Zhao C, Sun S, Li S, Am Lv, Chen Q, Jiang K, Jiang Z, Li Z, Wu A, Lin H (2022) Programmed stimuli-responsive carbon dot-nanogel hybrids for imaging-guided enhanced tumor phototherapy. ACS Appl Mater Interfaces 14:10142–10153CrossRefPubMed
Zurück zum Zitat Zhao Q, Zhang S, Wu F, Li D, Zhang X, Chen W, Xing B (2021) Rational design of nanogels for overcoming the biological barriers in various administration routes. Angew Chem Int Ed 60:14760–14778CrossRef Zhao Q, Zhang S, Wu F, Li D, Zhang X, Chen W, Xing B (2021) Rational design of nanogels for overcoming the biological barriers in various administration routes. Angew Chem Int Ed 60:14760–14778CrossRef
Metadaten
Titel
Multi-functional auto-fluorescent nanogels for theranostics
verfasst von
Arti Vashist
Andrea D. Raymond
Prem Chapagain
Atul Vashist
Adriana Yndart Arias
Nagesh Kolishetti
Madhavan Nair
Publikationsdatum
29.05.2023
Verlag
Springer International Publishing
Erschienen in
Journal of NeuroVirology / Ausgabe 3/2023
Print ISSN: 1355-0284
Elektronische ISSN: 1538-2443
DOI
https://doi.org/10.1007/s13365-023-01138-y

Weitere Artikel der Ausgabe 3/2023

Journal of NeuroVirology 3/2023 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Neu im Fachgebiet Neurologie

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.