Skip to main content
Erschienen in: Medical Oncology 5/2016

01.05.2016 | Review Paper

Multi-kinase inhibitors, AURKs and cancer

verfasst von: Jonas Cicenas, Erikas Cicenas

Erschienen in: Medical Oncology | Ausgabe 5/2016

Einloggen, um Zugang zu erhalten

Abstract

Inhibitors that impact function of kinases are valuable both for the biological research as well as therapy of kinase-associated diseases, such as different cancers. There are quite a number of inhibitors, which are quite specific for certain kinases and several of them are either already approved for the cancer therapy or are in clinical studies of various phases. However, that does not mean that each single kinase inhibitor is suitable for targeted therapy. Some of them are not effective others might be toxic or fail some other criteria for the use in vivo. On the other hand, even in case of successful therapy, many responders eventually develop resistance to the inhibitors. The limitations of various single kinase inhibitors can be fought using compounds which target multiple kinases. This tactics can increase effectiveness of the inhibitors by the synergistic effect or help to diminish the likelihood of drug resistance. To date, several families of kinases are quite popular targets of the inhibition in cancers, such as tyrosine kinases, cycle-dependent kinases, mitogen-activated protein kinases, phosphoinositide 3-kinases as well as their pathway “players” and aurora kinases. Aurora kinases play an important role in the control of the mitosis and are often altered in diverse human cancers. Here, we will describe the most interesting multi-kinase inhibitors which inhibit aurora kinases among other targets and their use in preclinical and clinical cancer studies.
Literatur
2.
Zurück zum Zitat Cicenas J, Urban P, Küng W, et al. Phosphorylation of tyrosine 1248-ERBB2 measured by chemiluminescence-linked immunoassay is an independent predictor of poor prognosis in primary breast cancer patients. Eur J Cancer. 2006;42(5):636–45.CrossRefPubMed Cicenas J, Urban P, Küng W, et al. Phosphorylation of tyrosine 1248-ERBB2 measured by chemiluminescence-linked immunoassay is an independent predictor of poor prognosis in primary breast cancer patients. Eur J Cancer. 2006;42(5):636–45.CrossRefPubMed
3.
Zurück zum Zitat Cicenas J, Urban P, Vuaroqueaux V, et al. Increased level of phosphorylated akt measured by chemiluminescence-linked immunosorbent assay is a predictor of poor prognosis in primary breast cancer overexpressing ErbB-2. Breast Cancer Res. 2005;7(4):R394–401.CrossRefPubMedPubMedCentral Cicenas J, Urban P, Vuaroqueaux V, et al. Increased level of phosphorylated akt measured by chemiluminescence-linked immunosorbent assay is a predictor of poor prognosis in primary breast cancer overexpressing ErbB-2. Breast Cancer Res. 2005;7(4):R394–401.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Paternot S, Bockstaele L, Bisteau X, et al. Rb inactivation in cell cycle and cancer: the puzzle of highly regulated activating phosphorylation of CDK4 versus constitutively active CDK-activating kinase. Cell Cycle. 2010;9(4):689–99.CrossRefPubMed Paternot S, Bockstaele L, Bisteau X, et al. Rb inactivation in cell cycle and cancer: the puzzle of highly regulated activating phosphorylation of CDK4 versus constitutively active CDK-activating kinase. Cell Cycle. 2010;9(4):689–99.CrossRefPubMed
5.
Zurück zum Zitat Fan XJ, Wan XB, Fu XH, et al. Phosphorylated p38, a negative prognostic biomarker, complements TNM staging prognostication in colorectal cancer. Tumour Biol. 2014;35(10):10487–95.CrossRefPubMed Fan XJ, Wan XB, Fu XH, et al. Phosphorylated p38, a negative prognostic biomarker, complements TNM staging prognostication in colorectal cancer. Tumour Biol. 2014;35(10):10487–95.CrossRefPubMed
6.
Zurück zum Zitat Amsterdam A, Shezen E, Raanan C, et al. Nuclear localization of phosphorylated ERK1 and ERK2 as markers for the progression of ovarian cancer. Int J Oncol. 2011;39(3):649–56.PubMed Amsterdam A, Shezen E, Raanan C, et al. Nuclear localization of phosphorylated ERK1 and ERK2 as markers for the progression of ovarian cancer. Int J Oncol. 2011;39(3):649–56.PubMed
7.
Zurück zum Zitat Tai CJ, Chang CC, Jiang MC, et al. Clinical–pathological correlation of K-Ras mutation and ERK phosphorylation in colorectal cancer. Pol J Pathol. 2012;63(2):93–100.PubMed Tai CJ, Chang CC, Jiang MC, et al. Clinical–pathological correlation of K-Ras mutation and ERK phosphorylation in colorectal cancer. Pol J Pathol. 2012;63(2):93–100.PubMed
8.
Zurück zum Zitat Chen TC, Liu YW, Huang YH, et al. Protein phosphorylation profiling using an in situ proximity ligation assay: phosphorylation of AURKA-elicited EGFR-Thr654 and EGFR-Ser1046 in lung cancer cells. PLoS One. 2013;8(3):e55657.CrossRefPubMedPubMedCentral Chen TC, Liu YW, Huang YH, et al. Protein phosphorylation profiling using an in situ proximity ligation assay: phosphorylation of AURKA-elicited EGFR-Thr654 and EGFR-Ser1046 in lung cancer cells. PLoS One. 2013;8(3):e55657.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Kitajima S, Kudo Y, Ogawa I, et al. Constitutive phosphorylation of aurora-a on ser51 induces its stabilization and consequent overexpression in cancer. PLoS One. 2007;2(9):e944.CrossRefPubMedPubMedCentral Kitajima S, Kudo Y, Ogawa I, et al. Constitutive phosphorylation of aurora-a on ser51 induces its stabilization and consequent overexpression in cancer. PLoS One. 2007;2(9):e944.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Manning G, Whyte DB, Martinez R, et al. The protein kinase complement of the human genome. Science. 2002;298(5600):1912–34.CrossRefPubMed Manning G, Whyte DB, Martinez R, et al. The protein kinase complement of the human genome. Science. 2002;298(5600):1912–34.CrossRefPubMed
11.
Zurück zum Zitat Gharwan H, Groninger H. Kinase inhibitors and monoclonal antibodies in oncology: clinical implications. Nat Rev Clin Oncol. 2015 (Epub ahead of print). Gharwan H, Groninger H. Kinase inhibitors and monoclonal antibodies in oncology: clinical implications. Nat Rev Clin Oncol. 2015 (Epub ahead of print).
12.
Zurück zum Zitat Druker BJ. STI571 (Gleevec) as a paradigm for cancer therapy. Trends Mol Med. 2002;8(4 Suppl):S14–8.CrossRefPubMed Druker BJ. STI571 (Gleevec) as a paradigm for cancer therapy. Trends Mol Med. 2002;8(4 Suppl):S14–8.CrossRefPubMed
14.
Zurück zum Zitat Talpaz M, Shah NP, Kantarjian H, et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med. 2006;354(24):2531–41.CrossRefPubMed Talpaz M, Shah NP, Kantarjian H, et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med. 2006;354(24):2531–41.CrossRefPubMed
15.
Zurück zum Zitat Reboursiere E, Chantepie S, Gac AC, et al. Rare but authentic Philadelphia-positive acute myeloblastic leukemia: two case reports and a literature review of characteristics, treatment and outcome. Hematol Oncol Stem Cell Ther. 2015;8(1):28–33.CrossRefPubMed Reboursiere E, Chantepie S, Gac AC, et al. Rare but authentic Philadelphia-positive acute myeloblastic leukemia: two case reports and a literature review of characteristics, treatment and outcome. Hematol Oncol Stem Cell Ther. 2015;8(1):28–33.CrossRefPubMed
16.
Zurück zum Zitat Ullrich A, Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell. 1990;61(2):203–12.CrossRefPubMed Ullrich A, Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell. 1990;61(2):203–12.CrossRefPubMed
17.
Zurück zum Zitat Cicenas J, Valius M. The CDK inhibitors in cancer research and therapy. J Cancer Res Clin Oncol. 2011;137(10):1409–18.CrossRefPubMed Cicenas J, Valius M. The CDK inhibitors in cancer research and therapy. J Cancer Res Clin Oncol. 2011;137(10):1409–18.CrossRefPubMed
18.
Zurück zum Zitat Cicenas J, Kalyan K, Sorokinas A, et al. Highlights of the latest advances in research on CDK inhibitors. Cancers (Basel). 2014;6(4):2224–42.CrossRef Cicenas J, Kalyan K, Sorokinas A, et al. Highlights of the latest advances in research on CDK inhibitors. Cancers (Basel). 2014;6(4):2224–42.CrossRef
19.
Zurück zum Zitat Cicenas J, Kalyan K, Sorokinas A, et al. Roscovitine in cancer and other diseases. Ann Transl Med. 2015;3(10):135.PubMedPubMedCentral Cicenas J, Kalyan K, Sorokinas A, et al. Roscovitine in cancer and other diseases. Ann Transl Med. 2015;3(10):135.PubMedPubMedCentral
20.
Zurück zum Zitat Ducat D, Zheng Y. Aurora kinases in spindle assembly and chromosome segregation. Exp Cell Res. 2004;301(1):60–7.CrossRefPubMed Ducat D, Zheng Y. Aurora kinases in spindle assembly and chromosome segregation. Exp Cell Res. 2004;301(1):60–7.CrossRefPubMed
21.
Zurück zum Zitat Cicenas J. The aurora kinase inhibitors in cancer research and therapy. J Cancer Res Clin Oncol. 2016. (Epub ahead of print). Cicenas J. The aurora kinase inhibitors in cancer research and therapy. J Cancer Res Clin Oncol. 2016. (Epub ahead of print).
22.
Zurück zum Zitat Howard S, Berdini V, Boulstridge JA, et al. Fragment-based discovery of the pyrazol-4-yl urea (AT9283), a multitargeted kinase inhibitor with potent aurora kinase activity. J Med Chem. 2009;52(2):379–88.CrossRefPubMed Howard S, Berdini V, Boulstridge JA, et al. Fragment-based discovery of the pyrazol-4-yl urea (AT9283), a multitargeted kinase inhibitor with potent aurora kinase activity. J Med Chem. 2009;52(2):379–88.CrossRefPubMed
23.
Zurück zum Zitat Dawson MA, Curry JE, Barber K, et al. AT9283, a potent inhibitor of the aurora kinases and Jak2, has therapeutic potential in myeloproliferative disorders. Br J Haematol. 2010;150(1):46–57.PubMed Dawson MA, Curry JE, Barber K, et al. AT9283, a potent inhibitor of the aurora kinases and Jak2, has therapeutic potential in myeloproliferative disorders. Br J Haematol. 2010;150(1):46–57.PubMed
24.
Zurück zum Zitat Tanaka R, Squires MS, et al. Activity of the multitargeted kinase inhibitor, AT9283, in imatinib-resistant BCR–ABL-positive leukemic cells. Blood. 2010;116(12):2089–95.CrossRefPubMed Tanaka R, Squires MS, et al. Activity of the multitargeted kinase inhibitor, AT9283, in imatinib-resistant BCR–ABL-positive leukemic cells. Blood. 2010;116(12):2089–95.CrossRefPubMed
25.
Zurück zum Zitat Santo L, Hideshima T, Cirstea D, et al. Antimyeloma activity of a multitargeted kinase inhibitor, AT9283, via potent aurora kinase and STAT3 inhibition either alone or in combination with lenalidomide. Clin Cancer Res. 2011;17(10):3259–71.CrossRefPubMedPubMedCentral Santo L, Hideshima T, Cirstea D, et al. Antimyeloma activity of a multitargeted kinase inhibitor, AT9283, via potent aurora kinase and STAT3 inhibition either alone or in combination with lenalidomide. Clin Cancer Res. 2011;17(10):3259–71.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Qi W, Liu X, Cooke LS, et al. AT9283, a novel aurora kinase inhibitor, suppresses tumor growth in aggressive B-cell lymphomas. Int J Cancer. 2012;130(12):2997–3005.CrossRefPubMed Qi W, Liu X, Cooke LS, et al. AT9283, a novel aurora kinase inhibitor, suppresses tumor growth in aggressive B-cell lymphomas. Int J Cancer. 2012;130(12):2997–3005.CrossRefPubMed
27.
Zurück zum Zitat Petersen W, Liu J, Yuan L, et al. Dasatinib suppression of medulloblastoma survival and migration is markedly enhanced by combining treatment with the aurora kinase inhibitor AT9283. Cancer Lett. 2014;354(1):68–76.CrossRefPubMedPubMedCentral Petersen W, Liu J, Yuan L, et al. Dasatinib suppression of medulloblastoma survival and migration is markedly enhanced by combining treatment with the aurora kinase inhibitor AT9283. Cancer Lett. 2014;354(1):68–76.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Jayanthan A, Cooper TM, Hoeksema KA, et al. Occurrence and modulation of therapeutic targets of aurora kinase inhibition in pediatric acute leukemia cells. Leuk Lymphoma. 2013;54(7):1505–16.CrossRefPubMed Jayanthan A, Cooper TM, Hoeksema KA, et al. Occurrence and modulation of therapeutic targets of aurora kinase inhibition in pediatric acute leukemia cells. Leuk Lymphoma. 2013;54(7):1505–16.CrossRefPubMed
29.
Zurück zum Zitat Arkenau HT, Plummer R, Molife LR, et al. A phase I dose escalation study of AT9283, a small molecule inhibitor of aurora kinases, in patients with advanced solid malignancies. Ann Oncol. 2012;23(5):1307–13.CrossRefPubMed Arkenau HT, Plummer R, Molife LR, et al. A phase I dose escalation study of AT9283, a small molecule inhibitor of aurora kinases, in patients with advanced solid malignancies. Ann Oncol. 2012;23(5):1307–13.CrossRefPubMed
30.
Zurück zum Zitat Dent SF, Gelmon KA, Chi KN, et al. NCIC CTG IND.181: phase I study of AT9283 given as a weekly 24 hour infusion in advanced malignancies. Invest New Drugs. 2013;31(6):1522–9.CrossRefPubMed Dent SF, Gelmon KA, Chi KN, et al. NCIC CTG IND.181: phase I study of AT9283 given as a weekly 24 hour infusion in advanced malignancies. Invest New Drugs. 2013;31(6):1522–9.CrossRefPubMed
31.
Zurück zum Zitat Foran J, Ravandi F, Wierda W, et al. A phase I and pharmacodynamic study of AT9283, a small-molecule inhibitor of aurora kinases in patients with relapsed/refractory leukemia or myelofibrosis. Clin Lymphoma Myeloma Leuk. 2014;14(3):223–30.CrossRefPubMedPubMedCentral Foran J, Ravandi F, Wierda W, et al. A phase I and pharmacodynamic study of AT9283, a small-molecule inhibitor of aurora kinases in patients with relapsed/refractory leukemia or myelofibrosis. Clin Lymphoma Myeloma Leuk. 2014;14(3):223–30.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Moreno L, Marshall LV, Pearson AD, et al. A phase I trial of AT9283 (a selective inhibitor of aurora kinases) in children and adolescents with solid tumors: a Cancer Research UK study. Clin Cancer Res. 2015;21(2):267–73.CrossRefPubMed Moreno L, Marshall LV, Pearson AD, et al. A phase I trial of AT9283 (a selective inhibitor of aurora kinases) in children and adolescents with solid tumors: a Cancer Research UK study. Clin Cancer Res. 2015;21(2):267–73.CrossRefPubMed
33.
Zurück zum Zitat Hay AE, Murugesan A, DiPasquale AM, et al. A phase II study of AT9283, an aurora kinase inhibitor, in patients with relapsed or refractory multiple myeloma: NCIC clinical trials group IND.191. Leuk Lymphoma. 2015;15:1–4. Hay AE, Murugesan A, DiPasquale AM, et al. A phase II study of AT9283, an aurora kinase inhibitor, in patients with relapsed or refractory multiple myeloma: NCIC clinical trials group IND.191. Leuk Lymphoma. 2015;15:1–4.
34.
Zurück zum Zitat Wang S, Midgley CA, Scaërou F, et al. Discovery of N-phenyl-4-(thiazol-5-yl)pyrimidin-2-amine aurora kinase inhibitors. J Med Chem. 2010;53(11):4367–78.CrossRefPubMed Wang S, Midgley CA, Scaërou F, et al. Discovery of N-phenyl-4-(thiazol-5-yl)pyrimidin-2-amine aurora kinase inhibitors. J Med Chem. 2010;53(11):4367–78.CrossRefPubMed
35.
Zurück zum Zitat Hrabakova R, Kollareddy M, Tyleckova J, et al. Cancer cell resistance to aurora kinase inhibitors: identification of novel targets for cancer therapy. J Proteome Res. 2013;12(1):455–69.CrossRefPubMed Hrabakova R, Kollareddy M, Tyleckova J, et al. Cancer cell resistance to aurora kinase inhibitors: identification of novel targets for cancer therapy. J Proteome Res. 2013;12(1):455–69.CrossRefPubMed
38.
Zurück zum Zitat Fletcher GC, Brokx RD, Denny TA, et al. ENMD-2076 is an orally active kinase inhibitor with antiangiogenic and antiproliferative mechanisms of action. Mol Cancer Ther. 2011;10(1):126–37.CrossRefPubMed Fletcher GC, Brokx RD, Denny TA, et al. ENMD-2076 is an orally active kinase inhibitor with antiangiogenic and antiproliferative mechanisms of action. Mol Cancer Ther. 2011;10(1):126–37.CrossRefPubMed
39.
Zurück zum Zitat Wang X, Sinn AL, Pollok K, et al. Preclinical activity of a novel multiple tyrosine kinase and aurora kinase inhibitor, ENMD-2076, against multiple myeloma. Br J Haematol. 2010;150(3):313–25.CrossRefPubMed Wang X, Sinn AL, Pollok K, et al. Preclinical activity of a novel multiple tyrosine kinase and aurora kinase inhibitor, ENMD-2076, against multiple myeloma. Br J Haematol. 2010;150(3):313–25.CrossRefPubMed
40.
Zurück zum Zitat Tentler JJ, Bradshaw-Pierce EL, Serkova NJ, et al. Assessment of the in vivo antitumor effects of ENMD-2076, a novel multitargeted kinase inhibitor, against primary and cell line-derived human colorectal cancer xenograft models. Clin Cancer Res. 2010;16(11):2989–98.CrossRefPubMedPubMedCentral Tentler JJ, Bradshaw-Pierce EL, Serkova NJ, et al. Assessment of the in vivo antitumor effects of ENMD-2076, a novel multitargeted kinase inhibitor, against primary and cell line-derived human colorectal cancer xenograft models. Clin Cancer Res. 2010;16(11):2989–98.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Cao H, Li M, Qian WB. Killing effect of aurora kinase inhibitor ENMD-2076 on acute myelogenous leukemia cells. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2012;41(5):479–84.PubMed Cao H, Li M, Qian WB. Killing effect of aurora kinase inhibitor ENMD-2076 on acute myelogenous leukemia cells. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2012;41(5):479–84.PubMed
42.
Zurück zum Zitat Diamond JR, Eckhardt SG, Tan AC, et al. Predictive biomarkers of sensitivity to the aurora and angiogenic kinase inhibitor ENMD-2076 in preclinical breast cancer models. Clin Cancer Res. 2013;19(1):291–303.CrossRefPubMedPubMedCentral Diamond JR, Eckhardt SG, Tan AC, et al. Predictive biomarkers of sensitivity to the aurora and angiogenic kinase inhibitor ENMD-2076 in preclinical breast cancer models. Clin Cancer Res. 2013;19(1):291–303.CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Diamond JR, Bastos BR, Hansen RJ, et al. Phase I safety, pharmacokinetic, and pharmacodynamics study of ENMD-2076, a novel angiogenic and aurora kinase inhibitor, in patients with advanced solid tumors. Clin Cancer Res. 2011;17(4):849–60.CrossRefPubMed Diamond JR, Bastos BR, Hansen RJ, et al. Phase I safety, pharmacokinetic, and pharmacodynamics study of ENMD-2076, a novel angiogenic and aurora kinase inhibitor, in patients with advanced solid tumors. Clin Cancer Res. 2011;17(4):849–60.CrossRefPubMed
45.
Zurück zum Zitat Emanuel S, Rugg CA, Gruninger RH, et al. The in vitro and in vivo effects of JNJ-7706621: a dual inhibitor of cyclin-dependent kinases and aurora kinases. Cancer Res. 2005;65(19):9038–46.CrossRefPubMed Emanuel S, Rugg CA, Gruninger RH, et al. The in vitro and in vivo effects of JNJ-7706621: a dual inhibitor of cyclin-dependent kinases and aurora kinases. Cancer Res. 2005;65(19):9038–46.CrossRefPubMed
46.
Zurück zum Zitat Seamon JA, Rugg CA, Emanuel S, et al. Role of the ABCG2 drug transporter in the resistance and oral bioavailability of a potent cyclin-dependent kinase/aurora kinase inhibitor. Mol Cancer Ther. 2006;5(10):2459–67.CrossRefPubMed Seamon JA, Rugg CA, Emanuel S, et al. Role of the ABCG2 drug transporter in the resistance and oral bioavailability of a potent cyclin-dependent kinase/aurora kinase inhibitor. Mol Cancer Ther. 2006;5(10):2459–67.CrossRefPubMed
47.
Zurück zum Zitat Danhier F, Ucakar B, Magotteaux N, et al. Active and passive tumor targeting of a novel poorly soluble cyclin dependent kinase inhibitor, JNJ-7706621. Int J Pharm. 2010;392(1–2):20–8.CrossRefPubMed Danhier F, Ucakar B, Magotteaux N, et al. Active and passive tumor targeting of a novel poorly soluble cyclin dependent kinase inhibitor, JNJ-7706621. Int J Pharm. 2010;392(1–2):20–8.CrossRefPubMed
48.
Zurück zum Zitat Matsuhashi A, Ohno T, Kimura M, et al. Growth suppression and mitotic defect induced by JNJ-7706621, an inhibitor of cyclin-dependent kinases and aurora kinases. Curr Cancer Drug Targets. 2012;12(6):625–39.CrossRefPubMed Matsuhashi A, Ohno T, Kimura M, et al. Growth suppression and mitotic defect induced by JNJ-7706621, an inhibitor of cyclin-dependent kinases and aurora kinases. Curr Cancer Drug Targets. 2012;12(6):625–39.CrossRefPubMed
49.
Zurück zum Zitat Thrane S, Pedersen AM, Thomsen MB, et al. A kinase inhibitor screen identifies Mcl-1 and aurora kinase a as novel treatment targets in antiestrogen-resistant breast cancer cells. Oncogene. 2015;34(32):4199–210.CrossRefPubMed Thrane S, Pedersen AM, Thomsen MB, et al. A kinase inhibitor screen identifies Mcl-1 and aurora kinase a as novel treatment targets in antiestrogen-resistant breast cancer cells. Oncogene. 2015;34(32):4199–210.CrossRefPubMed
50.
Zurück zum Zitat Shiotsu Y, Kiyoi H, Ishikawa Y, et al. KW-2449, a novel multikinase inhibitor, suppresses the growth of leukemia cells with FLT3 mutations or T315I-mutated BCR/ABL translocation. Blood. 2009;114(8):1607–17.CrossRefPubMed Shiotsu Y, Kiyoi H, Ishikawa Y, et al. KW-2449, a novel multikinase inhibitor, suppresses the growth of leukemia cells with FLT3 mutations or T315I-mutated BCR/ABL translocation. Blood. 2009;114(8):1607–17.CrossRefPubMed
51.
Zurück zum Zitat Pratz KW, Sato T, Murphy KM, et al. FLT3-mutant allelic burden and clinical status are predictive of response to FLT3 inhibitors in AML. Blood. 2010;115(7):1425–32.CrossRefPubMedPubMedCentral Pratz KW, Sato T, Murphy KM, et al. FLT3-mutant allelic burden and clinical status are predictive of response to FLT3 inhibitors in AML. Blood. 2010;115(7):1425–32.CrossRefPubMedPubMedCentral
52.
53.
Zurück zum Zitat Nguyen T, Dai Y, Attkisson E, et al. HDAC inhibitors potentiate the activity of the BCR/ABL kinase inhibitor KW-2449 in imatinib-sensitive or-resistant BCR/ABL+ leukemia cells in vitro and in vivo. Clin Cancer Res. 2011;17(10):3219–32.CrossRefPubMedPubMedCentral Nguyen T, Dai Y, Attkisson E, et al. HDAC inhibitors potentiate the activity of the BCR/ABL kinase inhibitor KW-2449 in imatinib-sensitive or-resistant BCR/ABL+ leukemia cells in vitro and in vivo. Clin Cancer Res. 2011;17(10):3219–32.CrossRefPubMedPubMedCentral
54.
Zurück zum Zitat Pratz KW, Cortes J, Roboz GJ, et al. A pharmacodynamic study of the FLT3 inhibitor KW-2449 yields insight into the basis for clinical response. Blood. 2009;113(17):3938–46.CrossRefPubMedPubMedCentral Pratz KW, Cortes J, Roboz GJ, et al. A pharmacodynamic study of the FLT3 inhibitor KW-2449 yields insight into the basis for clinical response. Blood. 2009;113(17):3938–46.CrossRefPubMedPubMedCentral
56.
Zurück zum Zitat Carpinelli P, Ceruti R, Giorgini ML, et al. PHA-739358, a potent inhibitor of Aurora kinases with a selective target inhibition profile relevant to cancer. Mol Cancer Ther. 2007;6(12 Pt 1):3158–68.CrossRefPubMed Carpinelli P, Ceruti R, Giorgini ML, et al. PHA-739358, a potent inhibitor of Aurora kinases with a selective target inhibition profile relevant to cancer. Mol Cancer Ther. 2007;6(12 Pt 1):3158–68.CrossRefPubMed
57.
Zurück zum Zitat Gontarewicz A, Balabanov S, Keller G, et al. Simultaneous targeting of aurora kinases and BCR–ABL kinase by the small molecule inhibitor PHA-739358 is effective against imatinib-resistant BCR–ABL mutations including T315I. Blood. 2008;111(8):4355–64.CrossRefPubMed Gontarewicz A, Balabanov S, Keller G, et al. Simultaneous targeting of aurora kinases and BCR–ABL kinase by the small molecule inhibitor PHA-739358 is effective against imatinib-resistant BCR–ABL mutations including T315I. Blood. 2008;111(8):4355–64.CrossRefPubMed
58.
Zurück zum Zitat Fei F, Lim M, Schmidhuber S, et al. Treatment of human pre-B acute lymphoblastic leukemia with the aurora kinase inhibitor PHA-739358 (Danusertib). Mol Cancer. 2012;11:42.CrossRefPubMedPubMedCentral Fei F, Lim M, Schmidhuber S, et al. Treatment of human pre-B acute lymphoblastic leukemia with the aurora kinase inhibitor PHA-739358 (Danusertib). Mol Cancer. 2012;11:42.CrossRefPubMedPubMedCentral
59.
Zurück zum Zitat Benten D, Keller G, Quaas A, et al. Aurora kinase inhibitor PHA-739358 suppresses growth of hepatocellular carcinoma in vitro and in a xenograft mouse model. Neoplasia. 2009;11(9):934–44.CrossRefPubMedPubMedCentral Benten D, Keller G, Quaas A, et al. Aurora kinase inhibitor PHA-739358 suppresses growth of hepatocellular carcinoma in vitro and in a xenograft mouse model. Neoplasia. 2009;11(9):934–44.CrossRefPubMedPubMedCentral
60.
Zurück zum Zitat Fraedrich K, Schrader J, Ittrich H, et al. Targeting aurora kinases with danusertib (PHA-739358) inhibits growth of liver metastases from gastroenteropancreatic neuroendocrine tumors in an orthotopic xenograft model. Clin Cancer Res. 2012;18(17):4621–32.CrossRefPubMed Fraedrich K, Schrader J, Ittrich H, et al. Targeting aurora kinases with danusertib (PHA-739358) inhibits growth of liver metastases from gastroenteropancreatic neuroendocrine tumors in an orthotopic xenograft model. Clin Cancer Res. 2012;18(17):4621–32.CrossRefPubMed
61.
Zurück zum Zitat Zi D, Zhou ZW, Yang YJ, et al. Danusertib induces apoptosis, cell cycle arrest, and autophagy but inhibits epithelial to mesenchymal transition involving PI3K/Akt/mTOR signaling pathway in human ovarian cancer cells. Int J Mol Sci. 2015;16(11):27228–51.CrossRefPubMedPubMedCentral Zi D, Zhou ZW, Yang YJ, et al. Danusertib induces apoptosis, cell cycle arrest, and autophagy but inhibits epithelial to mesenchymal transition involving PI3K/Akt/mTOR signaling pathway in human ovarian cancer cells. Int J Mol Sci. 2015;16(11):27228–51.CrossRefPubMedPubMedCentral
62.
Zurück zum Zitat Xie L, Meyskens FL Jr. The pan-aurora kinase inhibitor, PHA-739358, induces apoptosis and inhibits migration in melanoma cell lines. Melanoma Res. 2013;23(2):102–13.CrossRefPubMedPubMedCentral Xie L, Meyskens FL Jr. The pan-aurora kinase inhibitor, PHA-739358, induces apoptosis and inhibits migration in melanoma cell lines. Melanoma Res. 2013;23(2):102–13.CrossRefPubMedPubMedCentral
63.
Zurück zum Zitat Steeghs N, Eskens FA, Gelderblom H, et al. Phase I pharmacokinetic and pharmacodynamic study of the aurora kinase inhibitor danusertib in patients with advanced or metastatic solid tumors. J Clin Oncol. 2009;27(30):5094–101.CrossRefPubMed Steeghs N, Eskens FA, Gelderblom H, et al. Phase I pharmacokinetic and pharmacodynamic study of the aurora kinase inhibitor danusertib in patients with advanced or metastatic solid tumors. J Clin Oncol. 2009;27(30):5094–101.CrossRefPubMed
64.
Zurück zum Zitat Cohen RB, Jones SF, Aggarwal C, et al. A phase I dose-escalation study of danusertib (PHA-739358) administered as a 24-hour infusion with and without granulocyte colony-stimulating factor in a 14-day cycle in patients with advanced solid tumors. Clin Cancer Res. 2009;15(21):6694–701.CrossRefPubMedPubMedCentral Cohen RB, Jones SF, Aggarwal C, et al. A phase I dose-escalation study of danusertib (PHA-739358) administered as a 24-hour infusion with and without granulocyte colony-stimulating factor in a 14-day cycle in patients with advanced solid tumors. Clin Cancer Res. 2009;15(21):6694–701.CrossRefPubMedPubMedCentral
65.
Zurück zum Zitat Borthakur G, Dombret H, Schafhausen P, et al. A phase I study of danusertib (PHA-739358) in adult patients with accelerated or blastic phase chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia resistant or intolerant to imatinib and/or other second generation c-ABL therapy. Haematologica. 2015;100(7):898–904.CrossRefPubMedPubMedCentral Borthakur G, Dombret H, Schafhausen P, et al. A phase I study of danusertib (PHA-739358) in adult patients with accelerated or blastic phase chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia resistant or intolerant to imatinib and/or other second generation c-ABL therapy. Haematologica. 2015;100(7):898–904.CrossRefPubMedPubMedCentral
66.
Zurück zum Zitat Meulenbeld HJ, Bleuse JP, Vinci EM, et al. Randomized phase II study of danusertib in patients with metastatic castration-resistant prostate cancer after docetaxel failure. BJU Int. 2013;111(1):44–52.CrossRefPubMed Meulenbeld HJ, Bleuse JP, Vinci EM, et al. Randomized phase II study of danusertib in patients with metastatic castration-resistant prostate cancer after docetaxel failure. BJU Int. 2013;111(1):44–52.CrossRefPubMed
67.
Zurück zum Zitat Schöffski P, Besse B, Gauler T, et al. Efficacy and safety of biweekly i.v. administrations of the aurora kinase inhibitor danusertib hydrochloride in independent cohorts of patients with advanced or metastatic breast, ovarian, colorectal, pancreatic, small-cell and non-small-cell lung cancer: a multi-tumour, multi-institutional phase II study. Ann Oncol. 2015;26(3):598–607.CrossRefPubMed Schöffski P, Besse B, Gauler T, et al. Efficacy and safety of biweekly i.v. administrations of the aurora kinase inhibitor danusertib hydrochloride in independent cohorts of patients with advanced or metastatic breast, ovarian, colorectal, pancreatic, small-cell and non-small-cell lung cancer: a multi-tumour, multi-institutional phase II study. Ann Oncol. 2015;26(3):598–607.CrossRefPubMed
68.
Zurück zum Zitat McLaughlin J, Markovtsov V, Li H, et al. Preclinical characterization of aurora kinase inhibitor R763/AS703569 identified through an image-based phenotypic screen. J Cancer Res Clin Oncol. 2010;136(1):99–113.CrossRefPubMed McLaughlin J, Markovtsov V, Li H, et al. Preclinical characterization of aurora kinase inhibitor R763/AS703569 identified through an image-based phenotypic screen. J Cancer Res Clin Oncol. 2010;136(1):99–113.CrossRefPubMed
69.
Zurück zum Zitat Romanelli A, Clark A, Assayag F, et al. Inhibiting aurora kinases reduces tumor growth and suppresses tumor recurrence after chemotherapy in patient-derived triple-negative breast cancer xenografts. Mol Cancer Ther. 2012;11(12):2693–703.CrossRefPubMed Romanelli A, Clark A, Assayag F, et al. Inhibiting aurora kinases reduces tumor growth and suppresses tumor recurrence after chemotherapy in patient-derived triple-negative breast cancer xenografts. Mol Cancer Ther. 2012;11(12):2693–703.CrossRefPubMed
70.
Zurück zum Zitat Illert AL, Seitz AK, Rummelt C, et al. Inhibition of aurora kinase B is important for biologic activity of the dual inhibitors of BCR–ABL and aurora kinases R763/AS703569 and PHA-739358 in BCR–ABL transformed cells. PLoS One. 2014;9(11):e112318.CrossRefPubMedPubMedCentral Illert AL, Seitz AK, Rummelt C, et al. Inhibition of aurora kinase B is important for biologic activity of the dual inhibitors of BCR–ABL and aurora kinases R763/AS703569 and PHA-739358 in BCR–ABL transformed cells. PLoS One. 2014;9(11):e112318.CrossRefPubMedPubMedCentral
71.
Zurück zum Zitat Graux C, Sonet A, Maertens J, et al. A phase I dose-escalation study of MSC1992371A, an oral inhibitor of aurora and other kinases, in advanced hematologic malignancies. Leuk Res. 2013;37(9):1100–6.CrossRefPubMed Graux C, Sonet A, Maertens J, et al. A phase I dose-escalation study of MSC1992371A, an oral inhibitor of aurora and other kinases, in advanced hematologic malignancies. Leuk Res. 2013;37(9):1100–6.CrossRefPubMed
72.
Zurück zum Zitat Mita M, Gordon M, Rejeb N, et al. A phase I study of three different dosing schedules of the oral aurora kinase inhibitor MSC1992371A in patients with solid tumors. Target Oncol. 2014;9(3):215–24.CrossRefPubMed Mita M, Gordon M, Rejeb N, et al. A phase I study of three different dosing schedules of the oral aurora kinase inhibitor MSC1992371A in patients with solid tumors. Target Oncol. 2014;9(3):215–24.CrossRefPubMed
73.
Zurück zum Zitat Raymond E, Alexandre J, Faivre S, et al. A phase I schedule dependency study of the aurora kinase inhibitor MSC1992371A in combination with gemcitabine in patients with solid tumors. Invest New Drugs. 2014;32(1):94–103.CrossRefPubMed Raymond E, Alexandre J, Faivre S, et al. A phase I schedule dependency study of the aurora kinase inhibitor MSC1992371A in combination with gemcitabine in patients with solid tumors. Invest New Drugs. 2014;32(1):94–103.CrossRefPubMed
74.
Zurück zum Zitat Sun L, Tran N, Liang C, et al. Design, synthesis, and evaluations of substituted 3-[(3- or 4-carboxyethylpyrrol-2-yl)methylidenyl]indolin-2-ones as inhibitors of VEGF, FGF, and PDGF receptor tyrosine kinases. J Med Chem. 1999;42(25):5120–30.CrossRefPubMed Sun L, Tran N, Liang C, et al. Design, synthesis, and evaluations of substituted 3-[(3- or 4-carboxyethylpyrrol-2-yl)methylidenyl]indolin-2-ones as inhibitors of VEGF, FGF, and PDGF receptor tyrosine kinases. J Med Chem. 1999;42(25):5120–30.CrossRefPubMed
75.
Zurück zum Zitat Shaheen RM, Davis DW, Liu W, et al. Antiangiogenic therapy targeting the tyrosine kinase receptor for vascular endothelial growth factor receptor inhibits the growth of colon cancer liver metastasis and induces tumor and endothelial cell apoptosis. Cancer Res. 1999;59(21):5412–6.PubMed Shaheen RM, Davis DW, Liu W, et al. Antiangiogenic therapy targeting the tyrosine kinase receptor for vascular endothelial growth factor receptor inhibits the growth of colon cancer liver metastasis and induces tumor and endothelial cell apoptosis. Cancer Res. 1999;59(21):5412–6.PubMed
76.
Zurück zum Zitat Laird AD, Vajkoczy P, Shawver LK, et al. SU6668 is a potent antiangiogenic and antitumor agent that induces regression of established tumors. Cancer Res. 2000;60(15):4152–60.PubMed Laird AD, Vajkoczy P, Shawver LK, et al. SU6668 is a potent antiangiogenic and antitumor agent that induces regression of established tumors. Cancer Res. 2000;60(15):4152–60.PubMed
77.
Zurück zum Zitat Huang X, Wong MK, Yi H, et al. Combined therapy of local and metastatic 4T1 breast tumor in mice using SU6668, an inhibitor of angiogenic receptor tyrosine kinases, and the immunostimulator B7.2-IgG fusion protein. Cancer Res. 2002;62(20):5727–35.PubMed Huang X, Wong MK, Yi H, et al. Combined therapy of local and metastatic 4T1 breast tumor in mice using SU6668, an inhibitor of angiogenic receptor tyrosine kinases, and the immunostimulator B7.2-IgG fusion protein. Cancer Res. 2002;62(20):5727–35.PubMed
78.
Zurück zum Zitat Garofalo A, Naumova E, Manenti L, et al. The combination of the tyrosine kinase receptor inhibitor SU6668 with paclitaxel affects ascites formation and tumor spread in ovarian carcinoma xenografts growing orthotopically. Clin Cancer Res. 2003;9(9):3476–85.PubMed Garofalo A, Naumova E, Manenti L, et al. The combination of the tyrosine kinase receptor inhibitor SU6668 with paclitaxel affects ascites formation and tumor spread in ovarian carcinoma xenografts growing orthotopically. Clin Cancer Res. 2003;9(9):3476–85.PubMed
79.
Zurück zum Zitat Machida S, Saga Y, Takei Y, et al. Combination therapy of tyrosine kinase receptor inhibitor TSU-68 (SU6668) and paclitaxel inhibits subcutaneous xenografts of endometrial cancer. Mol Med Rep. 2008;1(6):843–6.PubMed Machida S, Saga Y, Takei Y, et al. Combination therapy of tyrosine kinase receptor inhibitor TSU-68 (SU6668) and paclitaxel inhibits subcutaneous xenografts of endometrial cancer. Mol Med Rep. 2008;1(6):843–6.PubMed
80.
Zurück zum Zitat Marzola P, Degrassi A, Calderan L, et al. In vivo assessment of antiangiogenic activity of SU6668 in an experimental colon carcinoma model. Clin Cancer Res. 2004;10(2):739–50.CrossRefPubMed Marzola P, Degrassi A, Calderan L, et al. In vivo assessment of antiangiogenic activity of SU6668 in an experimental colon carcinoma model. Clin Cancer Res. 2004;10(2):739–50.CrossRefPubMed
81.
Zurück zum Zitat Tokuyama J, Kubota T, Saikawa Y, et al. Tyrosine kinase inhibitor SU6668 inhibits peritoneal dissemination of gastric cancer via suppression of tumor angiogenesis. Anticancer Res. 2005;25(1A):17–22.PubMed Tokuyama J, Kubota T, Saikawa Y, et al. Tyrosine kinase inhibitor SU6668 inhibits peritoneal dissemination of gastric cancer via suppression of tumor angiogenesis. Anticancer Res. 2005;25(1A):17–22.PubMed
82.
Zurück zum Zitat Nakamura T, Ozawa S, Kitagawa Y, et al. Antiangiogenic agent SU6668 suppresses the tumor growth of xenografted A-431 cells. Oncol Rep. 2006;15(1):79–83.PubMed Nakamura T, Ozawa S, Kitagawa Y, et al. Antiangiogenic agent SU6668 suppresses the tumor growth of xenografted A-431 cells. Oncol Rep. 2006;15(1):79–83.PubMed
83.
Zurück zum Zitat Van TT, Hanibuchi M, Goto H, et al. SU6668, a multiple tyrosine kinase inhibitor, inhibits progression of human malignant pleural mesothelioma in an orthotopic model. Respirology. 2012;17(6):984–90.CrossRefPubMed Van TT, Hanibuchi M, Goto H, et al. SU6668, a multiple tyrosine kinase inhibitor, inhibits progression of human malignant pleural mesothelioma in an orthotopic model. Respirology. 2012;17(6):984–90.CrossRefPubMed
84.
Zurück zum Zitat Wang L, Liu Z, Ma D, et al. SU6668 suppresses proliferation of triple negative breast cancer cells through down-regulating MTDH expression. Cancer Cell Int. 2013;13(1):88.CrossRefPubMedPubMedCentral Wang L, Liu Z, Ma D, et al. SU6668 suppresses proliferation of triple negative breast cancer cells through down-regulating MTDH expression. Cancer Cell Int. 2013;13(1):88.CrossRefPubMedPubMedCentral
85.
Zurück zum Zitat Ge Y, Ding Y, Zhang J, et al. Effect of angiogenesis inhibitor SU6668 in combination with 5-Fu on liver metastasis from transplantation tumors of human colorectal cancer in nude mice. Int J Clin Exp Med. 2014;7(10):3578–82.PubMedPubMedCentral Ge Y, Ding Y, Zhang J, et al. Effect of angiogenesis inhibitor SU6668 in combination with 5-Fu on liver metastasis from transplantation tumors of human colorectal cancer in nude mice. Int J Clin Exp Med. 2014;7(10):3578–82.PubMedPubMedCentral
86.
Zurück zum Zitat Fabbro D, Manley PW. Su-6668. SUGEN. Curr Opin Investig Drugs. 2001;2(8):1142–8.PubMed Fabbro D, Manley PW. Su-6668. SUGEN. Curr Opin Investig Drugs. 2001;2(8):1142–8.PubMed
87.
Zurück zum Zitat Asad Y, Cropp G, Adams A, et al. Validation of liquid chromatography assay for the quantitation of (Z)-3-[2,4-dimethyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrol-3-yl]pr opionic acid (SU006668) in human plasma and its application to a phase I clinical trial. J Chromatogr B Analyt Technol Biomed Life Sci. 2003;785(1):175–86.CrossRefPubMed Asad Y, Cropp G, Adams A, et al. Validation of liquid chromatography assay for the quantitation of (Z)-3-[2,4-dimethyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrol-3-yl]pr opionic acid (SU006668) in human plasma and its application to a phase I clinical trial. J Chromatogr B Analyt Technol Biomed Life Sci. 2003;785(1):175–86.CrossRefPubMed
88.
Zurück zum Zitat Xiong HQ, Herbst R, Faria SC, et al. A phase I surrogate endpoint study of SU6668 in patients with solid tumors. Invest New Drugs. 2004;22(4):459–66.CrossRefPubMed Xiong HQ, Herbst R, Faria SC, et al. A phase I surrogate endpoint study of SU6668 in patients with solid tumors. Invest New Drugs. 2004;22(4):459–66.CrossRefPubMed
89.
Zurück zum Zitat Kuenen BC, Giaccone G, Ruijter R, et al. Dose-finding study of the multitargeted tyrosine kinase inhibitor SU6668 in patients with advanced malignancies. Clin Cancer Res. 2005;11(17):6240–6.CrossRefPubMed Kuenen BC, Giaccone G, Ruijter R, et al. Dose-finding study of the multitargeted tyrosine kinase inhibitor SU6668 in patients with advanced malignancies. Clin Cancer Res. 2005;11(17):6240–6.CrossRefPubMed
90.
Zurück zum Zitat Sessa C, Viganò L, Grasselli G, et al. Phase I clinical and pharmacological evaluation of the multi-tyrosine kinase inhibitor SU006668 by chronic oral dosing. Eur J Cancer. 2006;42(2):171–8.CrossRefPubMed Sessa C, Viganò L, Grasselli G, et al. Phase I clinical and pharmacological evaluation of the multi-tyrosine kinase inhibitor SU006668 by chronic oral dosing. Eur J Cancer. 2006;42(2):171–8.CrossRefPubMed
91.
Zurück zum Zitat Kanai F, Yoshida H, Tateishi R, et al. A phase I/II trial of the oral antiangiogenic agent TSU-68 in patients with advanced hepatocellular carcinoma. Cancer Chemother Pharmacol. 2011;67(2):315–24.CrossRefPubMed Kanai F, Yoshida H, Tateishi R, et al. A phase I/II trial of the oral antiangiogenic agent TSU-68 in patients with advanced hepatocellular carcinoma. Cancer Chemother Pharmacol. 2011;67(2):315–24.CrossRefPubMed
95.
Zurück zum Zitat Faivre S, Djelloul S, Raymond E. New paradigms in anticancer therapy: targeting multiple signaling pathways with kinase inhibitors. Semin Oncol. 2006;33(4):407–20.CrossRefPubMed Faivre S, Djelloul S, Raymond E. New paradigms in anticancer therapy: targeting multiple signaling pathways with kinase inhibitors. Semin Oncol. 2006;33(4):407–20.CrossRefPubMed
96.
Zurück zum Zitat Passaro A, Cortesi E, de Marinis F. Second-line treatment of non-small-cell lung cancer: chemotherapy or tyrosine kinase inhibitors? Expert Rev Anticancer Ther. 2011;11(10):1587–97.CrossRefPubMed Passaro A, Cortesi E, de Marinis F. Second-line treatment of non-small-cell lung cancer: chemotherapy or tyrosine kinase inhibitors? Expert Rev Anticancer Ther. 2011;11(10):1587–97.CrossRefPubMed
Metadaten
Titel
Multi-kinase inhibitors, AURKs and cancer
verfasst von
Jonas Cicenas
Erikas Cicenas
Publikationsdatum
01.05.2016
Verlag
Springer US
Erschienen in
Medical Oncology / Ausgabe 5/2016
Print ISSN: 1357-0560
Elektronische ISSN: 1559-131X
DOI
https://doi.org/10.1007/s12032-016-0758-4

Weitere Artikel der Ausgabe 5/2016

Medical Oncology 5/2016 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.