Skip to main content
Erschienen in:

27.01.2022 | Original Article

Multi-label classification of pelvic organ prolapse using stress magnetic resonance imaging with deep learning

verfasst von: Xinyi Wang, Da He, Fei Feng, James A. Ashton-Miller, John O. L. DeLancey, Jiajia Luo

Erschienen in: International Urogynecology Journal | Ausgabe 10/2022

Einloggen, um Zugang zu erhalten

Abstract

Introduction and hypothesis

We aimed to develop a deep learning-based multi-label classification model to simultaneously diagnose three types of pelvic organ prolapse using stress magnetic resonance imaging (MRI).

Methods

Our dataset consisted of 213 midsagittal labeled MR images at maximum Valsalva. For each MR image, the two endpoints of the sacrococcygeal inferior-pubic point line were auto-localized. Based on this line, a region of interest was automatically selected as input to a modified deep learning model, ResNet-50, for diagnosis. An unlabeled MRI dataset, a public dataset, and a synthetic dataset were used along with the labeled image dataset to train the model through a novel training strategy. We conducted a fivefold cross-validation and evaluated the classification results using precision, recall, F1 score, and area under the curve (AUC).

Results

The average precision, recall, F1 score, and AUC of our proposed multi-label classification model for the three types of prolapse were 0.84, 0.72, 0.77, and 0.91 respectively, which were improved from 0.64, 0.53, 0.57, and 0.83 from the original ResNet-50. Classification took 0.18 s to diagnose one patient.

Conclusions

The proposed deep learning-based model were demonstrated feasible and fast in simultaneously diagnosing three types of prolapse based on pelvic floor stress MRI, which could facilitate computer-aided prolapse diagnosis and treatment planning.
Literatur
1.
Zurück zum Zitat Haylen BT, Maher CF, Barber MD, et al. An International Urogynecological Association (IUGA)/International Continence Society (ICS) joint report on the terminology for female pelvic organ prolapse (POP). Int Urogynecol J. 2016;27(4):655–84.CrossRef Haylen BT, Maher CF, Barber MD, et al. An International Urogynecological Association (IUGA)/International Continence Society (ICS) joint report on the terminology for female pelvic organ prolapse (POP). Int Urogynecol J. 2016;27(4):655–84.CrossRef
2.
Zurück zum Zitat Fialkow MF, Newton KM, Lentz GM, Weiss NS. Lifetime risk of surgical management for pelvic organ prolapse or urinary incontinence. Int Urogynecol J. 2008;19(3):437–40.CrossRef Fialkow MF, Newton KM, Lentz GM, Weiss NS. Lifetime risk of surgical management for pelvic organ prolapse or urinary incontinence. Int Urogynecol J. 2008;19(3):437–40.CrossRef
3.
Zurück zum Zitat Wu JM, Hundley AF, Fulton RG, Myers ER. Forecasting the prevalence of pelvic floor disorders in US women 2010 to 2050. Obstet Gynecol. 2009;114(6):1278–83.CrossRef Wu JM, Hundley AF, Fulton RG, Myers ER. Forecasting the prevalence of pelvic floor disorders in US women 2010 to 2050. Obstet Gynecol. 2009;114(6):1278–83.CrossRef
4.
Zurück zum Zitat Pannu HK, Kaufman HS, Cundiff GW, Genadry R, Bluemke DA, Fishman EK. Dynamic MR imaging of pelvic organ prolapse: spectrum of abnormalities. Radiographics. 2000;20(6):1567–82.CrossRef Pannu HK, Kaufman HS, Cundiff GW, Genadry R, Bluemke DA, Fishman EK. Dynamic MR imaging of pelvic organ prolapse: spectrum of abnormalities. Radiographics. 2000;20(6):1567–82.CrossRef
5.
Zurück zum Zitat Yang A, Mostwin JL, Rosenshein NB, Zerhouni EA. Pelvic floor descent in women: dynamic evaluation with fast MR imaging and cinematic display. Radiology. 1991;179(1):25–33.CrossRef Yang A, Mostwin JL, Rosenshein NB, Zerhouni EA. Pelvic floor descent in women: dynamic evaluation with fast MR imaging and cinematic display. Radiology. 1991;179(1):25–33.CrossRef
6.
Zurück zum Zitat Comiter CV, Vasavada SP, Barbaric ZL, Gousse AE, Raz S. Grading pelvic prolapse and pelvic floor relaxation using dynamic magnetic resonance imaging. Urology. 1999;54(3):454–7.CrossRef Comiter CV, Vasavada SP, Barbaric ZL, Gousse AE, Raz S. Grading pelvic prolapse and pelvic floor relaxation using dynamic magnetic resonance imaging. Urology. 1999;54(3):454–7.CrossRef
7.
Zurück zum Zitat Luo J, Chen L, Fenner DE, Ashton-Miller JA, DeLancey JO. A multi-compartment 3-D finite element model of rectocele and its interaction with cystocele. J Biomech. 2015;48(9):1580–6.CrossRef Luo J, Chen L, Fenner DE, Ashton-Miller JA, DeLancey JO. A multi-compartment 3-D finite element model of rectocele and its interaction with cystocele. J Biomech. 2015;48(9):1580–6.CrossRef
8.
Zurück zum Zitat Dietz HP. Ultrasound in the assessment of pelvic organ prolapse. Best Pract Res Clin Obstet Gynaecol. 2019;54:12–30.CrossRef Dietz HP. Ultrasound in the assessment of pelvic organ prolapse. Best Pract Res Clin Obstet Gynaecol. 2019;54:12–30.CrossRef
9.
Zurück zum Zitat Dietz HP. Pelvic floor ultrasound: a review. Am J Obstet Gynecol. 2010;202(4):321–34.CrossRef Dietz HP. Pelvic floor ultrasound: a review. Am J Obstet Gynecol. 2010;202(4):321–34.CrossRef
10.
Zurück zum Zitat Noll LE, Hutch JA. The SCIPP line–an aid in interpreting the voiding lateral cystourethrogram. Obstet Gynecol. 1969;33(5):680–9.PubMed Noll LE, Hutch JA. The SCIPP line–an aid in interpreting the voiding lateral cystourethrogram. Obstet Gynecol. 1969;33(5):680–9.PubMed
11.
Zurück zum Zitat Yuan J, Liao H, Luo R, Luo J. Automatic radiology report generation based on multi-view image fusion and medical concept enrichment. In: Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention, 2019. pp 721–729. Yuan J, Liao H, Luo R, Luo J. Automatic radiology report generation based on multi-view image fusion and medical concept enrichment. In: Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention, 2019. pp 721–729.
12.
Zurück zum Zitat Zhang Y, Wang X, Xu Z, Yu Q, Yuille A, Xu D. When radiology report generation meets knowledge graph. In: Proceedings of the AAAI Conference on Artificial Intelligence, 2020;07:12910–12917. Zhang Y, Wang X, Xu Z, Yu Q, Yuille A, Xu D. When radiology report generation meets knowledge graph. In: Proceedings of the AAAI Conference on Artificial Intelligence, 2020;07:12910–12917.
13.
Zurück zum Zitat Monshi MMA, Poon J, Chung V. Deep learning in generating radiology reports: a survey. Artif Intell Med. 2020;106:101878. CrossRef Monshi MMA, Poon J, Chung V. Deep learning in generating radiology reports: a survey. Artif Intell Med. 2020;106:101878. CrossRef
14.
Zurück zum Zitat Robinson CJ, Swift S, Johnson DD, Almeida JS. Prediction of pelvic organ prolapse using an artificial neural network. Am J Obstet Gynecol. 2008;199(2):193.e1–6.CrossRef Robinson CJ, Swift S, Johnson DD, Almeida JS. Prediction of pelvic organ prolapse using an artificial neural network. Am J Obstet Gynecol. 2008;199(2):193.e1–6.CrossRef
15.
Zurück zum Zitat Onal S, Lai-Yuen S, Bao P, Weitzenfeld A, Hogue D, Hart S. Quantitative assessment of new MRI-based measurements to differentiate low and high stages of pelvic organ prolapse using support vector machines. Int Urogynecol J. 2015;26(5):707–13.CrossRef Onal S, Lai-Yuen S, Bao P, Weitzenfeld A, Hogue D, Hart S. Quantitative assessment of new MRI-based measurements to differentiate low and high stages of pelvic organ prolapse using support vector machines. Int Urogynecol J. 2015;26(5):707–13.CrossRef
16.
Zurück zum Zitat Yuan Y, Qin W, Buyyounouski M, et al. Prostate cancer classification with multiparametric MRI transfer learning model. Med Phys. 2019;46(2):756–65.CrossRef Yuan Y, Qin W, Buyyounouski M, et al. Prostate cancer classification with multiparametric MRI transfer learning model. Med Phys. 2019;46(2):756–65.CrossRef
17.
Zurück zum Zitat Baltruschat IM, Nickisch H, Grass M, Knopp T, Saalbach A. Comparison of deep learning approaches for multi-label chest X-ray classification. Sci Rep. 2019;9(1):1–10.CrossRef Baltruschat IM, Nickisch H, Grass M, Knopp T, Saalbach A. Comparison of deep learning approaches for multi-label chest X-ray classification. Sci Rep. 2019;9(1):1–10.CrossRef
18.
Zurück zum Zitat Larson KA, Luo J, Guire KE, Chen L, Ashton-Miller JA, DeLancey JOL. 3D analysis of cystoceles using magnetic resonance imaging assessing midline, paravaginal, and apical defects. Int Urogynecol J. 2012;23(3):285–93.CrossRef Larson KA, Luo J, Guire KE, Chen L, Ashton-Miller JA, DeLancey JOL. 3D analysis of cystoceles using magnetic resonance imaging assessing midline, paravaginal, and apical defects. Int Urogynecol J. 2012;23(3):285–93.CrossRef
19.
Zurück zum Zitat Tumbarello JA, Hsu Y, Lewicky-Gaupp C, Rohrer S, DeLancey JO. Do repetitive Valsalva maneuvers change maximum prolapse on dynamic MRI? Int Urogynecol J. 2010;21(10):1247–51.CrossRef Tumbarello JA, Hsu Y, Lewicky-Gaupp C, Rohrer S, DeLancey JO. Do repetitive Valsalva maneuvers change maximum prolapse on dynamic MRI? Int Urogynecol J. 2010;21(10):1247–51.CrossRef
20.
Zurück zum Zitat Trowbridge E, Fultz N, Patel D, DeLancey J, Fenner D. Distribution of pelvic organ support measures in a population-based sample of middle-aged, community-dwelling African American and white women in southeastern Michigan. Am J Obstet Gynecol. 2008;198(5):548.e1–6.CrossRef Trowbridge E, Fultz N, Patel D, DeLancey J, Fenner D. Distribution of pelvic organ support measures in a population-based sample of middle-aged, community-dwelling African American and white women in southeastern Michigan. Am J Obstet Gynecol. 2008;198(5):548.e1–6.CrossRef
21.
Zurück zum Zitat Swenson C, Smith T, Luo J, Kolenic G, Ashton-Miller J, DeLancey J. Intraoperative cervix location and apical support stiffness in women with and without pelvic organ prolapse. Am J Obstet Gynecol. 2017;216(2):155.e1–8.CrossRef Swenson C, Smith T, Luo J, Kolenic G, Ashton-Miller J, DeLancey J. Intraoperative cervix location and apical support stiffness in women with and without pelvic organ prolapse. Am J Obstet Gynecol. 2017;216(2):155.e1–8.CrossRef
22.
Zurück zum Zitat Clark K, Vendt B, Smith K, et al. The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging. 2013;26(6):1045–57.CrossRef Clark K, Vendt B, Smith K, et al. The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging. 2013;26(6):1045–57.CrossRef
23.
Zurück zum Zitat Karras T, Laine S, Aittala M, Hellsten J, Lehtinen J, Aila T. Analyzing and improving the image quality of StyleGAN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020. pp 8110–8119. Karras T, Laine S, Aittala M, Hellsten J, Lehtinen J, Aila T. Analyzing and improving the image quality of StyleGAN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020. pp 8110–8119.
24.
Zurück zum Zitat Feng F, Ashton-Miller JA, DeLancey JO, Luo J (2021) Feasibility of a deep learning-based method for automated localization of pelvic floor landmarks using stress MR images. Int Urogynecol J32:3069–75.CrossRef Feng F, Ashton-Miller JA, DeLancey JO, Luo J (2021) Feasibility of a deep learning-based method for automated localization of pelvic floor landmarks using stress MR images. Int Urogynecol J32:3069–75.CrossRef
25.
Zurück zum Zitat Betschart C, Chen L, Ashton-Miller J, DeLancey JO. On pelvic reference lines and the MR evaluation of genital prolapse: a proposal for standardization using the Pelvic Inclination Correction System. Int Urogynecol J. 2013;24:1421–8.CrossRef Betschart C, Chen L, Ashton-Miller J, DeLancey JO. On pelvic reference lines and the MR evaluation of genital prolapse: a proposal for standardization using the Pelvic Inclination Correction System. Int Urogynecol J. 2013;24:1421–8.CrossRef
26.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. pp 770–778. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. pp 770–778.
27.
Zurück zum Zitat Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L. Imagenet: a large-scale hierarchical image database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009. pp 248–255. Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L. Imagenet: a large-scale hierarchical image database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009. pp 248–255.
28.
Zurück zum Zitat Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv preprint arXiv:14126980. Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv preprint arXiv:14126980.
29.
Zurück zum Zitat Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: visual explanations from deep networks via gradient-based localization. Int J Comput Vision. 2020;128(2):336–59.CrossRef Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: visual explanations from deep networks via gradient-based localization. Int J Comput Vision. 2020;128(2):336–59.CrossRef
30.
Zurück zum Zitat Chen L, Lisse SA, Larson KA, Berger M, Ashton-Miller J, DeLancey J. Structural failure sites in anterior vaginal wall prolapse: identification of a collinear triad. Obstet Gynecol. 2016;128(85S):862. Chen L, Lisse SA, Larson KA, Berger M, Ashton-Miller J, DeLancey J. Structural failure sites in anterior vaginal wall prolapse: identification of a collinear triad. Obstet Gynecol. 2016;128(85S):862.
31.
Zurück zum Zitat Hsu Y, Chen L, Summers A, Ashton-Miller J, DeLancey JO. Anterior vaginal wall length and degree of anterior compartment prolapse seen on dynamic MRI. Int Urogynecol J. 2007;19:137–42.CrossRef Hsu Y, Chen L, Summers A, Ashton-Miller J, DeLancey JO. Anterior vaginal wall length and degree of anterior compartment prolapse seen on dynamic MRI. Int Urogynecol J. 2007;19:137–42.CrossRef
32.
Zurück zum Zitat Swenson C, Simmen AM, Berger M, Morgan D, DeLancey J. The long and short of it: anterior vaginal wall length before and after anterior repair. Int Urogynecol J. 2015;26:1035–9.CrossRef Swenson C, Simmen AM, Berger M, Morgan D, DeLancey J. The long and short of it: anterior vaginal wall length before and after anterior repair. Int Urogynecol J. 2015;26:1035–9.CrossRef
33.
Zurück zum Zitat Irvin J, Rajpurkar P, Ko M, Yu Y, Ciurea-Ilcus S, Chute C, Marklund H, Haghgoo B, Ball R, Shpanskaya K. Chexpert: a large chest radiograph dataset with uncertainty labels and expert comparison. In: Proceedings of the AAAI Conference on Artificial Intelligence, 2019. pp 590–597. Irvin J, Rajpurkar P, Ko M, Yu Y, Ciurea-Ilcus S, Chute C, Marklund H, Haghgoo B, Ball R, Shpanskaya K. Chexpert: a large chest radiograph dataset with uncertainty labels and expert comparison. In: Proceedings of the AAAI Conference on Artificial Intelligence, 2019. pp 590–597.
Metadaten
Titel
Multi-label classification of pelvic organ prolapse using stress magnetic resonance imaging with deep learning
verfasst von
Xinyi Wang
Da He
Fei Feng
James A. Ashton-Miller
John O. L. DeLancey
Jiajia Luo
Publikationsdatum
27.01.2022
Verlag
Springer International Publishing
Erschienen in
International Urogynecology Journal / Ausgabe 10/2022
Print ISSN: 0937-3462
Elektronische ISSN: 1433-3023
DOI
https://doi.org/10.1007/s00192-021-05064-7

Neu im Fachgebiet Gynäkologie und Geburtshilfe

Keine eingeschränkten Kassenleistungen bei Schwangerschaft nach IVF

Nach privat bezahlter In-vitro-Fertilisation muss die gesetzliche Krankenkasse ein Arzneimittel zum Erhalt der Schwangerschaft bezahlen, so ein Urteil des Sozialgerichts in München.

Medikamente verändern wohl Nährstoffzusammensetzung der Muttermilch

Einige Medikamente wie selektive Serotonin-Wiederaufnahmehemmer können offenbar die Makronährstoffzusammensetzung der Muttermilch verändern. Das birgt möglicherweise gesundheitliche Risiken für manche gestillte Kinder.

CDK4/6-Inhibitoren bei Brustkrebs in die Zweitlinie aufschieben?

Ergebnisse einer Phase-III-Studie sprechen dafür, dass die Behandlung mit CDK4/6-Inhibitoren bei fortgeschrittenem HR-positivem, HER2-negativem Brustkrebs auch auf die Zweitlinie verschoben werden könnte, ohne die onkologischen Ergebnisse zu kompromittieren.

Cannabisextrakt verbessert Antiemese bei Chemotherapie

Sprechen Krebskranke auf die übliche Antiemese während einer Chemotherapie nicht ausreichend an, lohnt sich möglicherweise eine Behandlung mit Cannabisextrakt. In einer Phase-2/3-Studie ließ sich die antiemetische Response mit einem solchen Extrakt erheblich verbessern.

Update Gynäkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.