Skip to main content
Erschienen in:

24.07.2024 | Computed Tomography

Multi-reader multiparametric DECT study evaluating different strengths of iterative and deep learning-based image reconstruction techniques

verfasst von: Jinjin Cao, Nayla Mroueh, Simon Lennartz, Nathaniel D. Mercaldo, Nisanard Pisuchpen, Sasiprang Kongboonvijit, Shravya Srinivas Rao, Kampon Yuenyongsinchai, Theodore T. Pierce, Madeleine Sertic, Ryan Chung, Avinash R. Kambadakone

Erschienen in: European Radiology | Ausgabe 2/2025

Einloggen, um Zugang zu erhalten

Abstract

Objectives

To perform a multi-reader comparison of multiparametric dual-energy computed tomography (DECT) images reconstructed with deep-learning image reconstruction (DLIR) and standard-of-care adaptive statistical iterative reconstruction-V (ASIR-V).

Methods

This retrospective study included 100 patients undergoing portal venous phase abdominal CT on a rapid kVp switching DECT scanner. Six reconstructed DECT sets (ASIR-V and DLIR, each at three strengths) were generated. Each DECT set included 65 keV monoenergetic, iodine, and virtual unenhanced (VUE) images. Using a Likert scale, three radiologists performed qualitative assessments for image noise, contrast, small structure visibility, sharpness, artifact, and image preference. Quantitative assessment was performed by measuring attenuation, image noise, and contrast-to-noise ratios (CNR). For the qualitative analysis, Gwet’s AC2 estimates were used to assess agreement.

Results

DECT images reconstructed with DLIR yielded better qualitative scores than ASIR-V images except for artifacts, where both groups were comparable. DLIR-H images were rated higher than other reconstructions on all parameters (p-value < 0.05). On quantitative analysis, there was no significant difference in the attenuation values between ASIR-V and DLIR groups. DLIR images had higher CNR values for the liver and portal vein, and lower image noise, compared to ASIR-V images (p-value < 0.05). The subgroup analysis of patients with large body habitus (weight ≥ 90 kg) showed similar results to the study population. Inter-reader agreement was good-to-very good overall.

Conclusion

Multiparametric post-processed DECT datasets reconstructed with DLIR were preferred over ASIR-V images with DLIR-H yielding the highest image quality scores.

Clinical relevance statement

Deep-learning image reconstruction in dual-energy CT demonstrated significant benefits in qualitative and quantitative image metrics compared to adaptive statistical iterative reconstruction-V.

Key Points

  • Dual-energy CT (DECT) images reconstructed using deep-learning image reconstruction (DLIR) showed superior qualitative scores compared to adaptive statistical iterative reconstruction-V (ASIR-V) reconstructed images, except for artifacts where both reconstructions were rated comparable.
  • While there was no significant difference in attenuation values between ASIR-V and DLIR groups, DLIR images showed higher contrast-to-noise ratios (CNR) for liver and portal vein, and lower image noise (p value < 0.05).
  • Subgroup analysis of patients with large body habitus (weight ≥ 90 kg) yielded similar findings to the overall study population.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat McCollough CH, Leng S, Yu L, Fletcher JG (2015) Dual- and multi-energy CT: principles, technical approaches, and clinical applications. Radiology 276:637–653CrossRefPubMed McCollough CH, Leng S, Yu L, Fletcher JG (2015) Dual- and multi-energy CT: principles, technical approaches, and clinical applications. Radiology 276:637–653CrossRefPubMed
2.
Zurück zum Zitat Mileto A, Ananthakrishnan L, Morgan DE, Yeh BM, Marin D, Kambadakone AR (2021) Clinical implementation of dual-energy CT for gastrointestinal imaging. AJR Am J Roentgenol 217:651–663CrossRefPubMed Mileto A, Ananthakrishnan L, Morgan DE, Yeh BM, Marin D, Kambadakone AR (2021) Clinical implementation of dual-energy CT for gastrointestinal imaging. AJR Am J Roentgenol 217:651–663CrossRefPubMed
5.
Zurück zum Zitat Noda Y, Tochigi T, Parakh A, Joseph E, Hahn PF, Kambadakone A (2021) Low keV portal venous phase as a surrogate for pancreatic phase in a pancreatic protocol dual-energy CT: feasibility, image quality, and lesion conspicuity. Eur Radiol 31:6898–6908. https://doi.org/10.1007/s00330-021-07744-w Noda Y, Tochigi T, Parakh A, Joseph E, Hahn PF, Kambadakone A (2021) Low keV portal venous phase as a surrogate for pancreatic phase in a pancreatic protocol dual-energy CT: feasibility, image quality, and lesion conspicuity. Eur Radiol 31:6898–6908. https://​doi.​org/​10.​1007/​s00330-021-07744-w
8.
Zurück zum Zitat Yu L, Leng S, McCollough CH (2012) Dual-energy CT-based monochromatic imaging. AJR Am J Roentgenol 199:S9–S15.CrossRefPubMed Yu L, Leng S, McCollough CH (2012) Dual-energy CT-based monochromatic imaging. AJR Am J Roentgenol 199:S9–S15.CrossRefPubMed
12.
Zurück zum Zitat Jensen CT, Liu X, Tamm EP et al (2020) Image quality assessment of abdominal CT by use of new deep learning image reconstruction: initial experience. AJR Am J Roentgenol 215:50–57CrossRefPubMed Jensen CT, Liu X, Tamm EP et al (2020) Image quality assessment of abdominal CT by use of new deep learning image reconstruction: initial experience. AJR Am J Roentgenol 215:50–57CrossRefPubMed
13.
Zurück zum Zitat Kaga T, Noda Y, Fujimoto K et al (2021) Deep-learning-based image reconstruction in dynamic contrast-enhanced abdominal CT: image quality and lesion detection among reconstruction strength levels. Clin Radiol 76:710.e15–710.e24CrossRefPubMed Kaga T, Noda Y, Fujimoto K et al (2021) Deep-learning-based image reconstruction in dynamic contrast-enhanced abdominal CT: image quality and lesion detection among reconstruction strength levels. Clin Radiol 76:710.e15–710.e24CrossRefPubMed
15.
Zurück zum Zitat Parakh A, Cao J, Pierce TT, Blake MA, Savage CA, Kambadakone AR (2021) Sinogram-based deep learning image reconstruction technique in abdominal CT: image quality considerations. Eur Radiol 31:8342–8353CrossRefPubMed Parakh A, Cao J, Pierce TT, Blake MA, Savage CA, Kambadakone AR (2021) Sinogram-based deep learning image reconstruction technique in abdominal CT: image quality considerations. Eur Radiol 31:8342–8353CrossRefPubMed
20.
Zurück zum Zitat Cao L, Liu X, Li J et al (2021) A study of using a deep learning image reconstruction to improve the image quality of extremely low-dose contrast-enhanced abdominal CT for patients with hepatic lesions. Br J Radiol 94:20201086CrossRefPubMed Cao L, Liu X, Li J et al (2021) A study of using a deep learning image reconstruction to improve the image quality of extremely low-dose contrast-enhanced abdominal CT for patients with hepatic lesions. Br J Radiol 94:20201086CrossRefPubMed
22.
26.
Zurück zum Zitat Gwet KL (2014, ISBN:978-0970806284) Handbook of inter-rater reliability. 4th edn. Advanced Analytics, LLC Gwet KL (2014, ISBN:978-0970806284) Handbook of inter-rater reliability. 4th edn. Advanced Analytics, LLC
27.
Zurück zum Zitat Yamada Y, Jinzaki M, Hosokawa T, Tanami Y, Abe T, Kuribayashi S (2014) Abdominal CT: an intra-individual comparison between virtual monochromatic spectral and polychromatic 120-kVp images obtained during the same examination. Eur J Radiol 83:1715–1722CrossRefPubMed Yamada Y, Jinzaki M, Hosokawa T, Tanami Y, Abe T, Kuribayashi S (2014) Abdominal CT: an intra-individual comparison between virtual monochromatic spectral and polychromatic 120-kVp images obtained during the same examination. Eur J Radiol 83:1715–1722CrossRefPubMed
28.
Zurück zum Zitat Yoo J, Lee JM, Yoon JH et al (2021) Comparison of low kVp CT and dual-energy CT for the evaluation of hypervascular hepatocellular carcinoma. Abdom Radiol (NY) 46:3217–3226CrossRefPubMed Yoo J, Lee JM, Yoon JH et al (2021) Comparison of low kVp CT and dual-energy CT for the evaluation of hypervascular hepatocellular carcinoma. Abdom Radiol (NY) 46:3217–3226CrossRefPubMed
29.
Zurück zum Zitat Fair E, Profio M, Kulkarni N et al (2022) Image quality evaluation in dual-energy CT of the chest, abdomen, and pelvis in obese patients with deep learning image reconstruction. J Comput Assist Tomogr 46:604–611CrossRefPubMed Fair E, Profio M, Kulkarni N et al (2022) Image quality evaluation in dual-energy CT of the chest, abdomen, and pelvis in obese patients with deep learning image reconstruction. J Comput Assist Tomogr 46:604–611CrossRefPubMed
Metadaten
Titel
Multi-reader multiparametric DECT study evaluating different strengths of iterative and deep learning-based image reconstruction techniques
verfasst von
Jinjin Cao
Nayla Mroueh
Simon Lennartz
Nathaniel D. Mercaldo
Nisanard Pisuchpen
Sasiprang Kongboonvijit
Shravya Srinivas Rao
Kampon Yuenyongsinchai
Theodore T. Pierce
Madeleine Sertic
Ryan Chung
Avinash R. Kambadakone
Publikationsdatum
24.07.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 2/2025
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-024-10974-3

Neu im Fachgebiet Radiologie

Ringen um den richtigen Umgang mit Zufallsbefunden

Wenn 2026 in Deutschland das Lungenkrebsscreening mittels Low-Dose-Computertomografie (LDCT) eingeführt wird, wird es auch viele Zufallsbefunde ans Licht bringen. Das birgt Chancen und Risiken.

Bald 5% der Krebserkrankungen durch CT verursacht

Die jährlich rund 93 Millionen CTs in den USA könnten künftig zu über 100.000 zusätzlichen Krebserkrankungen führen, geht aus einer Modellrechnung hervor. Damit würde eine von 20 Krebserkrankungen auf die ionisierende Strahlung bei CT-Untersuchungen zurückgehen.

Röntgen-Thorax oder LDCT fürs Lungenscreening nach HNSCC?

Personen, die an einem Plattenepithelkarzinom im Kopf-Hals-Bereich erkrankt sind, haben ein erhöhtes Risiko für Metastasen oder zweite Primärmalignome der Lunge. Eine Studie hat untersucht, wie die radiologische Überwachung aussehen sollte.

Statine: Was der G-BA-Beschluss für Praxen bedeutet

Nach dem G-BA-Beschluss zur erweiterten Verordnungsfähigkeit von Lipidsenkern rechnet die DEGAM mit 200 bis 300 neuen Dauerpatienten pro Praxis. Im Interview erläutert Präsidiumsmitglied Erika Baum, wie Hausärztinnen und Hausärzte am besten vorgehen.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.