Skip to main content
Erschienen in: Acta Neurologica Belgica 1/2021

28.09.2020 | Review article

Multidimensional review of cognitive impairment after spinal cord injury

verfasst von: Fang Li, Su Huo, Weiqun Song

Erschienen in: Acta Neurologica Belgica | Ausgabe 1/2021

Einloggen, um Zugang zu erhalten

Abstract

Cognitive impairment is highly prevalent in the population with spinal cord injury (SCI) and exerts a significant impact on functional independence and quality of life in this population. A number of neuroscientists have conducted preliminary investigations of cognitive deficits after SCI, but achieved marginally contradictory results due to some limitations such as the heterogeneity in the sample population, sample size, types of tests utilized, study design, and time since SCI. Therefore, this review mainly focuses on the characteristics, assessments, potential causality and treatment of cognitive impairment for better understanding such deficits in the SCI population.
Literatur
1.
Zurück zum Zitat Molina B, Segura A, Serrano JP et al (2018) Cognitive performance of people with traumatic spinal cord injury: a cross-sectional study comparing people with subacute and chronic injuries[J]. Spinal Cord 56(8):796–805PubMed Molina B, Segura A, Serrano JP et al (2018) Cognitive performance of people with traumatic spinal cord injury: a cross-sectional study comparing people with subacute and chronic injuries[J]. Spinal Cord 56(8):796–805PubMed
2.
Zurück zum Zitat Pacheco N, Mollayeva S, Jacob B et al (2019) Interventions and cognitive functioning in adults with traumatic spinal cord injuries: a systematic review and meta-analysis[J]. Disabil Rehabil 9:1–17 Pacheco N, Mollayeva S, Jacob B et al (2019) Interventions and cognitive functioning in adults with traumatic spinal cord injuries: a systematic review and meta-analysis[J]. Disabil Rehabil 9:1–17
3.
Zurück zum Zitat Devivo MJ (2012) Epidemiology of traumatic spinal cord injury: trends and future implications[J]. Spinal Cord 50(5):365–372PubMed Devivo MJ (2012) Epidemiology of traumatic spinal cord injury: trends and future implications[J]. Spinal Cord 50(5):365–372PubMed
4.
Zurück zum Zitat Chiaravalloti ND, Weber E, Wylie G et al (2019) The impact of level of injury on patterns of cognitive dysfunction in individuals with spinal cord injury[J]. J Spinal Cord Med 9:1–9 Chiaravalloti ND, Weber E, Wylie G et al (2019) The impact of level of injury on patterns of cognitive dysfunction in individuals with spinal cord injury[J]. J Spinal Cord Med 9:1–9
5.
Zurück zum Zitat Sachdeva R, Gao F, Chan C et al (2018) Cognitive function after spinal cord injury: a systematic review[J]. Neurology 91(13):611–621PubMedPubMedCentral Sachdeva R, Gao F, Chan C et al (2018) Cognitive function after spinal cord injury: a systematic review[J]. Neurology 91(13):611–621PubMedPubMedCentral
6.
Zurück zum Zitat Nightingale TE, Lim C, Sachdeva R et al (2019) Reliability of cognitive measures in individuals with a chronic spinal cord injury[J]. PM R 11(12):1278–1286PubMed Nightingale TE, Lim C, Sachdeva R et al (2019) Reliability of cognitive measures in individuals with a chronic spinal cord injury[J]. PM R 11(12):1278–1286PubMed
7.
Zurück zum Zitat Craig A, Guest R, Tran Y et al (2017) Cognitive impairment and mood states after spinal cord injury[J]. J Neurotrauma 34(6):1156–1163PubMed Craig A, Guest R, Tran Y et al (2017) Cognitive impairment and mood states after spinal cord injury[J]. J Neurotrauma 34(6):1156–1163PubMed
8.
Zurück zum Zitat Chiaravalloti ND, Weber E, Wylie G et al (2020) Patterns of cognitive deficits in persons with spinal cord injury as compared with both age-matched and older individuals without spinal cord injury[J]. J Spinal Cord Med 43(1):88–97PubMed Chiaravalloti ND, Weber E, Wylie G et al (2020) Patterns of cognitive deficits in persons with spinal cord injury as compared with both age-matched and older individuals without spinal cord injury[J]. J Spinal Cord Med 43(1):88–97PubMed
9.
Zurück zum Zitat Wecht JM, Bauman WA (2013) Decentralized cardiovascular autonomic control and cognitive deficits in persons with spinal cord injury[J]. J Spinal Cord Med 36(2):74–81PubMedPubMedCentral Wecht JM, Bauman WA (2013) Decentralized cardiovascular autonomic control and cognitive deficits in persons with spinal cord injury[J]. J Spinal Cord Med 36(2):74–81PubMedPubMedCentral
10.
Zurück zum Zitat Davidoff G, Morris J, Roth E et al (1985) Cognitive dysfunction and mild closed head injury in traumatic spinal cord injury[J]. Arch Phys Med Rehabil 66(8):489–491PubMed Davidoff G, Morris J, Roth E et al (1985) Cognitive dysfunction and mild closed head injury in traumatic spinal cord injury[J]. Arch Phys Med Rehabil 66(8):489–491PubMed
11.
Zurück zum Zitat Richards JS, Brown L, Hagglund K et al (1988) Spinal cord injury and concomitant traumatic brain injury. Results of a longitudinal investigation[J]. Am J Phys Med Rehabil 67(5):211–216PubMed Richards JS, Brown L, Hagglund K et al (1988) Spinal cord injury and concomitant traumatic brain injury. Results of a longitudinal investigation[J]. Am J Phys Med Rehabil 67(5):211–216PubMed
12.
Zurück zum Zitat Lazzaro I, Tran Y, Wijesuriya N et al (2013) Central correlates of impaired information processing in people with spinal cord injury[J]. J Clin Neurophysiol 30(1):59–65PubMed Lazzaro I, Tran Y, Wijesuriya N et al (2013) Central correlates of impaired information processing in people with spinal cord injury[J]. J Clin Neurophysiol 30(1):59–65PubMed
13.
Zurück zum Zitat Wecht JM, Rosado-Rivera D, Jegede A et al (2012) Systemic and cerebral hemodynamics during cognitive testing[J]. Clin Auton Res 22(1):25–33PubMed Wecht JM, Rosado-Rivera D, Jegede A et al (2012) Systemic and cerebral hemodynamics during cognitive testing[J]. Clin Auton Res 22(1):25–33PubMed
14.
Zurück zum Zitat Barbetta DC, Cassemiro LC, Assis MR (2014) The experience of using the scale of functional independence measure in individuals undergoing spinal cord injury rehabilitation in Brazil[J]. Spinal Cord 52(4):276–281PubMed Barbetta DC, Cassemiro LC, Assis MR (2014) The experience of using the scale of functional independence measure in individuals undergoing spinal cord injury rehabilitation in Brazil[J]. Spinal Cord 52(4):276–281PubMed
15.
Zurück zum Zitat Zonfrillo MR, Durbin DR, Winston FK et al (2014) Residual cognitive disability after completion of inpatient rehabilitation among injured children[J]. J Pediatr 164(1):130–135PubMed Zonfrillo MR, Durbin DR, Winston FK et al (2014) Residual cognitive disability after completion of inpatient rehabilitation among injured children[J]. J Pediatr 164(1):130–135PubMed
16.
Zurück zum Zitat Wu J, Zhao Z, Kumar A et al (2016) Endoplasmic reticulum stress and disrupted neurogenesis in the brain are associated with cognitive impairment and depressive-like behavior after spinal cord injury[J]. J Neurotrauma 33(21):1919–1935PubMedPubMedCentral Wu J, Zhao Z, Kumar A et al (2016) Endoplasmic reticulum stress and disrupted neurogenesis in the brain are associated with cognitive impairment and depressive-like behavior after spinal cord injury[J]. J Neurotrauma 33(21):1919–1935PubMedPubMedCentral
17.
Zurück zum Zitat Macciocchi SN, Seel RT, Thompson N (2013) The impact of mild traumatic brain injury on cognitive functioning following co-occurring spinal cord injury[J]. Arch Clin Neuropsychol 28(7):684–691PubMedPubMedCentral Macciocchi SN, Seel RT, Thompson N (2013) The impact of mild traumatic brain injury on cognitive functioning following co-occurring spinal cord injury[J]. Arch Clin Neuropsychol 28(7):684–691PubMedPubMedCentral
18.
Zurück zum Zitat Cohen ML, Tulsky DS, Holdnack JA et al (2017) Cognition among community-dwelling individuals with spinal cord injury[J]. Rehabil Psychol 62(4):425–434PubMedPubMedCentral Cohen ML, Tulsky DS, Holdnack JA et al (2017) Cognition among community-dwelling individuals with spinal cord injury[J]. Rehabil Psychol 62(4):425–434PubMedPubMedCentral
19.
Zurück zum Zitat Davidoff GN, Roth EJ, Haughton JS et al (1990) Cognitive dysfunction in spinal cord injury patients: sensitivity of the functional independence measure subscales vs. neuropsychologic assessment[J]. Arch Phys Med Rehabil 71(5):326–329PubMed Davidoff GN, Roth EJ, Haughton JS et al (1990) Cognitive dysfunction in spinal cord injury patients: sensitivity of the functional independence measure subscales vs. neuropsychologic assessment[J]. Arch Phys Med Rehabil 71(5):326–329PubMed
20.
Zurück zum Zitat Schwamm LH, Van Dyke C, Kiernan RJ et al (1987) The Neurobehavioral cognitive status examination: comparison with the cognitive capacity screening examination and the mini-mental state examination in a neurosurgical population[J]. Ann Intern Med 107(4):486–491PubMed Schwamm LH, Van Dyke C, Kiernan RJ et al (1987) The Neurobehavioral cognitive status examination: comparison with the cognitive capacity screening examination and the mini-mental state examination in a neurosurgical population[J]. Ann Intern Med 107(4):486–491PubMed
21.
Zurück zum Zitat Carlozzi NE, Goodnight S, Umlauf A et al (2017) Motor-free composites from the National Institutes of Health Toolbox Cognition Battery (NIHTB-CB) for people with disabilities[J]. Rehabil Psychol 62(4):464–473PubMedPubMedCentral Carlozzi NE, Goodnight S, Umlauf A et al (2017) Motor-free composites from the National Institutes of Health Toolbox Cognition Battery (NIHTB-CB) for people with disabilities[J]. Rehabil Psychol 62(4):464–473PubMedPubMedCentral
22.
Zurück zum Zitat Dudley-Javoroski S, Lee J, Shields RK (2020) Cognitive function, quality of life, and aging: relationships in individuals with and without spinal cord injury[J]. Physiother Theory Pract 20:1–10 Dudley-Javoroski S, Lee J, Shields RK (2020) Cognitive function, quality of life, and aging: relationships in individuals with and without spinal cord injury[J]. Physiother Theory Pract 20:1–10
23.
Zurück zum Zitat Craig A, Nicholson PK, Guest R et al (2015) Prospective study of the occurrence of psychological disorders and comorbidities after spinal cord injury[J]. Arch Phys Med Rehabil 96(8):1426–1434PubMed Craig A, Nicholson PK, Guest R et al (2015) Prospective study of the occurrence of psychological disorders and comorbidities after spinal cord injury[J]. Arch Phys Med Rehabil 96(8):1426–1434PubMed
24.
Zurück zum Zitat Walterfang M, Siu R, Velakoulis D (2006) The NUCOG: validity and reliability of a brief cognitive screening tool in neuropsychiatric patients[J]. Aust N Z J Psychiatry 40(11–12):995–1002PubMed Walterfang M, Siu R, Velakoulis D (2006) The NUCOG: validity and reliability of a brief cognitive screening tool in neuropsychiatric patients[J]. Aust N Z J Psychiatry 40(11–12):995–1002PubMed
25.
Zurück zum Zitat Phillips AA, Squair JR, Currie KD et al (2017) 2015 parapan american games: autonomic function, but not physical activity, is associated with vascular-cognitive impairment in spinal cord injury[J]. J Neurotrauma 34(6):1283–1288PubMed Phillips AA, Squair JR, Currie KD et al (2017) 2015 parapan american games: autonomic function, but not physical activity, is associated with vascular-cognitive impairment in spinal cord injury[J]. J Neurotrauma 34(6):1283–1288PubMed
26.
Zurück zum Zitat Selingardi P, de Lima RA, Da SV et al (2019) Long-term deep-TMS does not negatively affect cognitive functions in stroke and spinal cord injury patients with central neuropathic pain[J]. BMC Neurol 19(1):319PubMedPubMedCentral Selingardi P, de Lima RA, Da SV et al (2019) Long-term deep-TMS does not negatively affect cognitive functions in stroke and spinal cord injury patients with central neuropathic pain[J]. BMC Neurol 19(1):319PubMedPubMedCentral
27.
Zurück zum Zitat Nightingale TE, Zheng M, Sachdeva R et al (2020) Diverse cognitive impairment after spinal cord injury is associated with orthostatic hypotension symptom burden[J]. Physiol Behav 213:112742PubMed Nightingale TE, Zheng M, Sachdeva R et al (2020) Diverse cognitive impairment after spinal cord injury is associated with orthostatic hypotension symptom burden[J]. Physiol Behav 213:112742PubMed
28.
Zurück zum Zitat Martin TA, Hoffman NM, Donders J (2003) Clinical utility of the trail making test ratio score[J]. Appl Neuropsychol 10(3):163–169PubMed Martin TA, Hoffman NM, Donders J (2003) Clinical utility of the trail making test ratio score[J]. Appl Neuropsychol 10(3):163–169PubMed
29.
Zurück zum Zitat Chiaravalloti ND, Deluca J, Moore NB et al (2005) Treating learning impairments improves memory performance in multiple sclerosis: a randomized clinical trial[J]. Mult Scler 11(1):58–68PubMed Chiaravalloti ND, Deluca J, Moore NB et al (2005) Treating learning impairments improves memory performance in multiple sclerosis: a randomized clinical trial[J]. Mult Scler 11(1):58–68PubMed
30.
Zurück zum Zitat Shem K, Barncord S, Flavin K et al (2018) Adverse cognitive effect of gabapentin in individuals with spinal cord injury: preliminary findings[J]. Spinal Cord Ser Cases 4:9PubMedPubMedCentral Shem K, Barncord S, Flavin K et al (2018) Adverse cognitive effect of gabapentin in individuals with spinal cord injury: preliminary findings[J]. Spinal Cord Ser Cases 4:9PubMedPubMedCentral
31.
Zurück zum Zitat Davidoff GN, Roth EJ, Richards JS (1992) Cognitive deficits in spinal cord injury: epidemiology and outcome[J]. Arch Phys Med Rehabil 73(3):275–284PubMed Davidoff GN, Roth EJ, Richards JS (1992) Cognitive deficits in spinal cord injury: epidemiology and outcome[J]. Arch Phys Med Rehabil 73(3):275–284PubMed
32.
Zurück zum Zitat Wecht JM, Weir JP, Radulovic M et al (2016) Effects of midodrine and L-NAME on systemic and cerebral hemodynamics during cognitive activation in spinal cord injury and intact controls. Physiol Rep 6:4–3 Wecht JM, Weir JP, Radulovic M et al (2016) Effects of midodrine and L-NAME on systemic and cerebral hemodynamics during cognitive activation in spinal cord injury and intact controls. Physiol Rep 6:4–3
33.
Zurück zum Zitat Cohen MJ, Ament PA, Schandler SL et al (1996) Changes in the P300 component of the tactile event-related potential following spinal cord injury[J]. Paraplegia 34(2):107–112PubMed Cohen MJ, Ament PA, Schandler SL et al (1996) Changes in the P300 component of the tactile event-related potential following spinal cord injury[J]. Paraplegia 34(2):107–112PubMed
34.
Zurück zum Zitat Wu J, Zhao Z, Sabirzhanov B et al (2014) Spinal cord injury causes brain inflammation associated with cognitive and affective changes: role of cell cycle pathways[J]. J Neurosci 34(33):10989–11006PubMedPubMedCentral Wu J, Zhao Z, Sabirzhanov B et al (2014) Spinal cord injury causes brain inflammation associated with cognitive and affective changes: role of cell cycle pathways[J]. J Neurosci 34(33):10989–11006PubMedPubMedCentral
35.
Zurück zum Zitat Zhao Z, Loane DJ, Murray MN et al (2012) Comparing the predictive value of multiple cognitive, affective, and motor tasks after rodent traumatic brain injury[J]. J Neurotrauma 29(15):2475–2489PubMedPubMedCentral Zhao Z, Loane DJ, Murray MN et al (2012) Comparing the predictive value of multiple cognitive, affective, and motor tasks after rodent traumatic brain injury[J]. J Neurotrauma 29(15):2475–2489PubMedPubMedCentral
36.
Zurück zum Zitat Sierksma AS, van den Hove DL, Pfau F et al (2014) Improvement of spatial memory function in APPswe/PS1dE9 mice after chronic inhibition of phosphodiesterase type 4D[J]. Neuropharmacology 77:120–130PubMed Sierksma AS, van den Hove DL, Pfau F et al (2014) Improvement of spatial memory function in APPswe/PS1dE9 mice after chronic inhibition of phosphodiesterase type 4D[J]. Neuropharmacology 77:120–130PubMed
37.
Zurück zum Zitat Wu J, Stoica BA, Luo T et al (2014) Isolated spinal cord contusion in rats induces chronic brain neuroinflammation, neurodegeneration, and cognitive impairment. Involvement of cell cycle activation[J]. Cell Cycle 13(15):2446–2458PubMedPubMedCentral Wu J, Stoica BA, Luo T et al (2014) Isolated spinal cord contusion in rats induces chronic brain neuroinflammation, neurodegeneration, and cognitive impairment. Involvement of cell cycle activation[J]. Cell Cycle 13(15):2446–2458PubMedPubMedCentral
38.
Zurück zum Zitat Zhang B, Huang Y, Su Z et al (2011) Neurological, functional, and biomechanical characteristics after high-velocity behind armor blunt trauma of the spine[J]. J Traum Injury Infect Crit Care 71(6):1680–1688 Zhang B, Huang Y, Su Z et al (2011) Neurological, functional, and biomechanical characteristics after high-velocity behind armor blunt trauma of the spine[J]. J Traum Injury Infect Crit Care 71(6):1680–1688
39.
Zurück zum Zitat Mollayeva T, Pacheco N, D'Souza A et al (2017) The course and prognostic factors of cognitive status after central nervous system trauma: a systematic review protocol[J]. BMJ Open 7(9):e17165 Mollayeva T, Pacheco N, D'Souza A et al (2017) The course and prognostic factors of cognitive status after central nervous system trauma: a systematic review protocol[J]. BMJ Open 7(9):e17165
40.
Zurück zum Zitat Wecht JM, Weir JP, Katzelnick CG et al (2018) Systemic and cerebral hemodynamic contribution to cognitive performance in spinal cord injury[J]. J Neurotrauma 35(24):2957–2964PubMed Wecht JM, Weir JP, Katzelnick CG et al (2018) Systemic and cerebral hemodynamic contribution to cognitive performance in spinal cord injury[J]. J Neurotrauma 35(24):2957–2964PubMed
41.
Zurück zum Zitat Tolonen A, Turkka J, Salonen O et al (2007) Traumatic brain injury is under-diagnosed in patients with spinal cord injury[J]. J Rehabil Med 39(8):622–626PubMed Tolonen A, Turkka J, Salonen O et al (2007) Traumatic brain injury is under-diagnosed in patients with spinal cord injury[J]. J Rehabil Med 39(8):622–626PubMed
42.
Zurück zum Zitat Felix MS, Popa N, Djelloul M et al (2012) Alteration of forebrain neurogenesis after cervical spinal cord injury in the adult rat[J]. Front Neurosci 6:45PubMedPubMedCentral Felix MS, Popa N, Djelloul M et al (2012) Alteration of forebrain neurogenesis after cervical spinal cord injury in the adult rat[J]. Front Neurosci 6:45PubMedPubMedCentral
43.
Zurück zum Zitat Wilmot CB, Cope DN, Hall KM et al (1985) Occult head injury: its incidence in spinal cord injury[J]. Arch Phys Med Rehabil 66(4):227–231PubMed Wilmot CB, Cope DN, Hall KM et al (1985) Occult head injury: its incidence in spinal cord injury[J]. Arch Phys Med Rehabil 66(4):227–231PubMed
44.
Zurück zum Zitat Bradbury CL, Wodchis WP, Mikulis DJ et al (2008) Traumatic brain injury in patients with traumatic spinal cord injury: clinical and economic consequences[J]. Arch Phys Med Rehabil 89(12 Suppl):S77–S84PubMed Bradbury CL, Wodchis WP, Mikulis DJ et al (2008) Traumatic brain injury in patients with traumatic spinal cord injury: clinical and economic consequences[J]. Arch Phys Med Rehabil 89(12 Suppl):S77–S84PubMed
45.
Zurück zum Zitat Macciocchi SN, Bowman B, Coker J et al (2004) Effect of co-morbid traumatic brain injury on functional outcome of persons with spinal cord injuries[J]. Am J Phys Med Rehabil 83(1):22–26PubMed Macciocchi SN, Bowman B, Coker J et al (2004) Effect of co-morbid traumatic brain injury on functional outcome of persons with spinal cord injuries[J]. Am J Phys Med Rehabil 83(1):22–26PubMed
46.
Zurück zum Zitat Macciocchi S, Seel RT, Thompson N et al (2008) Spinal cord injury and co-occurring traumatic brain injury: assessment and incidence[J]. Arch Phys Med Rehabil 89(7):1350–1357PubMed Macciocchi S, Seel RT, Thompson N et al (2008) Spinal cord injury and co-occurring traumatic brain injury: assessment and incidence[J]. Arch Phys Med Rehabil 89(7):1350–1357PubMed
47.
Zurück zum Zitat Macciocchi S, Seel RT, Warshowsky A et al (2012) Co-occurring traumatic brain injury and acute spinal cord injury rehabilitation outcomes[J]. Arch Phys Med Rehabil 93(10):1788–1794PubMed Macciocchi S, Seel RT, Warshowsky A et al (2012) Co-occurring traumatic brain injury and acute spinal cord injury rehabilitation outcomes[J]. Arch Phys Med Rehabil 93(10):1788–1794PubMed
48.
Zurück zum Zitat Hess DWMJ (2003) Neuropsychological impairments after spinal cord injury: A comparative study with mild traumatic brain injury[J]. Rehabilit Psychol 48(3):151–156 Hess DWMJ (2003) Neuropsychological impairments after spinal cord injury: A comparative study with mild traumatic brain injury[J]. Rehabilit Psychol 48(3):151–156
49.
Zurück zum Zitat Dowler RN, Harrington DL, Haaland KY et al (1997) Profiles of cognitive functioning in chronic spinal cord injury and the role of moderating variables[J]. J Int Neuropsychol Soc 3(5):464–472PubMed Dowler RN, Harrington DL, Haaland KY et al (1997) Profiles of cognitive functioning in chronic spinal cord injury and the role of moderating variables[J]. J Int Neuropsychol Soc 3(5):464–472PubMed
50.
Zurück zum Zitat Dikmen S, Machamer S et al (1995) Neuropsychological outcome at 1-year post head injury[J]. Head Injury 9(1):80–90 Dikmen S, Machamer S et al (1995) Neuropsychological outcome at 1-year post head injury[J]. Head Injury 9(1):80–90
51.
Zurück zum Zitat Mollayeva T, Hurst M, Escobar M et al (2019) Sex-specific incident dementia in patients with central nervous system trauma[J]. Alzheimers Dement (Amst) 11:355–367 Mollayeva T, Hurst M, Escobar M et al (2019) Sex-specific incident dementia in patients with central nervous system trauma[J]. Alzheimers Dement (Amst) 11:355–367
52.
Zurück zum Zitat Sachdeva R, Nightingale TE, Krassioukov AV (2019) The blood pressure pendulum following spinal cord injury: implications for vascular cognitive impairment[J]. Int J Mol Sci 20:10 Sachdeva R, Nightingale TE, Krassioukov AV (2019) The blood pressure pendulum following spinal cord injury: implications for vascular cognitive impairment[J]. Int J Mol Sci 20:10
53.
Zurück zum Zitat Krassioukov A (2012) Autonomic dysreflexia: current evidence related to unstable arterial blood pressure control among athletes with spinal cord injury[J]. Clin J Sport Med 22(1):39–45PubMed Krassioukov A (2012) Autonomic dysreflexia: current evidence related to unstable arterial blood pressure control among athletes with spinal cord injury[J]. Clin J Sport Med 22(1):39–45PubMed
54.
Zurück zum Zitat Rosado-Rivera D, Radulovic M, Handrakis JP et al (2011) Comparison of 24-hour cardiovascular and autonomic function in paraplegia, tetraplegia, and control groups: implications for cardiovascular risk[J]. J Spinal Cord Med 34(4):395–403PubMedPubMedCentral Rosado-Rivera D, Radulovic M, Handrakis JP et al (2011) Comparison of 24-hour cardiovascular and autonomic function in paraplegia, tetraplegia, and control groups: implications for cardiovascular risk[J]. J Spinal Cord Med 34(4):395–403PubMedPubMedCentral
55.
Zurück zum Zitat Wecht JM, Bauman WA (2018) Implication of altered autonomic control for orthostatic tolerance in SCI[J]. Auton Neurosci 209:51–58PubMed Wecht JM, Bauman WA (2018) Implication of altered autonomic control for orthostatic tolerance in SCI[J]. Auton Neurosci 209:51–58PubMed
56.
Zurück zum Zitat Bleton H, Sejdic E (2015) A cerebral blood flow evaluation during cognitive tasks following a cervical spinal cord injury: a case study using transcranial Doppler recordings[J]. Cogn Neurodyn 9(6):615–626PubMedPubMedCentral Bleton H, Sejdic E (2015) A cerebral blood flow evaluation during cognitive tasks following a cervical spinal cord injury: a case study using transcranial Doppler recordings[J]. Cogn Neurodyn 9(6):615–626PubMedPubMedCentral
58.
Zurück zum Zitat Wan D, Krassioukov AV (2014) Life-threatening outcomes associated with autonomic dysreflexia: a clinical review[J]. J Spinal Cord Med 37(1):2–10PubMedPubMedCentral Wan D, Krassioukov AV (2014) Life-threatening outcomes associated with autonomic dysreflexia: a clinical review[J]. J Spinal Cord Med 37(1):2–10PubMedPubMedCentral
59.
Zurück zum Zitat Hubli M, Gee CM, Krassioukov AV (2015) Refined assessment of blood pressure instability after spinal cord injury[J]. Am J Hypertens 28(2):173–181PubMed Hubli M, Gee CM, Krassioukov AV (2015) Refined assessment of blood pressure instability after spinal cord injury[J]. Am J Hypertens 28(2):173–181PubMed
60.
Zurück zum Zitat Mcgillivray CF, Hitzig SL, Craven BC et al (2009) Evaluating knowledge of autonomic dysreflexia among individuals with spinal cord injury and their families[J]. J Spinal Cord Med 32(1):54–62PubMedPubMedCentral Mcgillivray CF, Hitzig SL, Craven BC et al (2009) Evaluating knowledge of autonomic dysreflexia among individuals with spinal cord injury and their families[J]. J Spinal Cord Med 32(1):54–62PubMedPubMedCentral
61.
Zurück zum Zitat Willie CK, Colino FL, Bailey DM et al (2011) Utility of transcranial Doppler ultrasound for the integrative assessment of cerebrovascular function[J]. J Neurosci Methods 196(2):221–237PubMed Willie CK, Colino FL, Bailey DM et al (2011) Utility of transcranial Doppler ultrasound for the integrative assessment of cerebrovascular function[J]. J Neurosci Methods 196(2):221–237PubMed
62.
Zurück zum Zitat Jegede AB, Rosado-Rivera D, Bauman WA et al (2010) Cognitive performance in hypotensive persons with spinal cord injury[J]. Clin Auton Res 20(1):3–9PubMed Jegede AB, Rosado-Rivera D, Bauman WA et al (2010) Cognitive performance in hypotensive persons with spinal cord injury[J]. Clin Auton Res 20(1):3–9PubMed
63.
Zurück zum Zitat Duschek S, Matthias E, Schandry R (2005) Essential hypotension is accompanied by deficits in attention and working memory[J]. Behav Med 30(4):149–158PubMed Duschek S, Matthias E, Schandry R (2005) Essential hypotension is accompanied by deficits in attention and working memory[J]. Behav Med 30(4):149–158PubMed
64.
Zurück zum Zitat Phillips AA, Warburton DE, Ainslie PN et al (2014) Regional neurovascular coupling and cognitive performance in those with low blood pressure secondary to high-level spinal cord injury: improved by alpha-1 agonist midodrine hydrochloride[J]. J Cereb Blood Flow Metab 34(5):794–801PubMedPubMedCentral Phillips AA, Warburton DE, Ainslie PN et al (2014) Regional neurovascular coupling and cognitive performance in those with low blood pressure secondary to high-level spinal cord injury: improved by alpha-1 agonist midodrine hydrochloride[J]. J Cereb Blood Flow Metab 34(5):794–801PubMedPubMedCentral
65.
Zurück zum Zitat Squair JW, West CR, Krassioukov AV (2015) Neuroprotection, plasticity manipulation, and regenerative strategies to improve cardiovascular function following spinal cord injury[J]. J Neurotrauma 32(9):609–621PubMed Squair JW, West CR, Krassioukov AV (2015) Neuroprotection, plasticity manipulation, and regenerative strategies to improve cardiovascular function following spinal cord injury[J]. J Neurotrauma 32(9):609–621PubMed
66.
Zurück zum Zitat Illman A, Stiller K, Williams M (2000) The prevalence of orthostatic hypotension during physiotherapy treatment in patients with an acute spinal cord injury[J]. Spinal Cord 38(12):741–747PubMed Illman A, Stiller K, Williams M (2000) The prevalence of orthostatic hypotension during physiotherapy treatment in patients with an acute spinal cord injury[J]. Spinal Cord 38(12):741–747PubMed
67.
Zurück zum Zitat Sabharwal S (2019) Addressing cardiometabolic risk in adults with spinal cord injury: acting now despite knowledge gaps[J]. Spinal Cord Ser Cases 5:96PubMedPubMedCentral Sabharwal S (2019) Addressing cardiometabolic risk in adults with spinal cord injury: acting now despite knowledge gaps[J]. Spinal Cord Ser Cases 5:96PubMedPubMedCentral
68.
Zurück zum Zitat Krassioukov A, Claydon VE (2006) The clinical problems in cardiovascular control following spinal cord injury: an overview[J]. Prog Brain Res 152:223–229PubMed Krassioukov A, Claydon VE (2006) The clinical problems in cardiovascular control following spinal cord injury: an overview[J]. Prog Brain Res 152:223–229PubMed
69.
Zurück zum Zitat Cragg JJ, Noonan VK, Krassioukov A et al (2013) Cardiovascular disease and spinal cord injury: results from a national population health survey[J]. Neurology 81(8):723–728PubMedPubMedCentral Cragg JJ, Noonan VK, Krassioukov A et al (2013) Cardiovascular disease and spinal cord injury: results from a national population health survey[J]. Neurology 81(8):723–728PubMedPubMedCentral
70.
Zurück zum Zitat Miyatani M, Szeto M, Moore C et al (2014) Exploring the associations between arterial stiffness and spinal cord impairment: A cross-sectional study[J]. J Spinal Cord Med 37(5):556–564PubMedPubMedCentral Miyatani M, Szeto M, Moore C et al (2014) Exploring the associations between arterial stiffness and spinal cord impairment: A cross-sectional study[J]. J Spinal Cord Med 37(5):556–564PubMedPubMedCentral
71.
Zurück zum Zitat Claydon VE, Steeves JD, Krassioukov A (2006) Orthostatic hypotension following spinal cord injury: understanding clinical pathophysiology[J]. Spinal Cord 44(6):341–351PubMed Claydon VE, Steeves JD, Krassioukov A (2006) Orthostatic hypotension following spinal cord injury: understanding clinical pathophysiology[J]. Spinal Cord 44(6):341–351PubMed
72.
Zurück zum Zitat Allison DJ, Josse AR, Gabriel DA et al (2017) Targeting inflammation to influence cognitive function following spinal cord injury: a randomized clinical trial[J]. Spinal Cord 55(1):26–32PubMed Allison DJ, Josse AR, Gabriel DA et al (2017) Targeting inflammation to influence cognitive function following spinal cord injury: a randomized clinical trial[J]. Spinal Cord 55(1):26–32PubMed
73.
Zurück zum Zitat Allison DJ, Ditor DS (2014) The common inflammatory etiology of depression and cognitive impairment: a therapeutic target[J]. J Neuroinflammation 11:151PubMedPubMedCentral Allison DJ, Ditor DS (2014) The common inflammatory etiology of depression and cognitive impairment: a therapeutic target[J]. J Neuroinflammation 11:151PubMedPubMedCentral
74.
Zurück zum Zitat Knerlich-Lukoschus F, Noack M, von der Ropp-Brenner B et al (2011) Spinal cord injuries induce changes in CB1 cannabinoid receptor and C-C chemokine expression in brain areas underlying circuitry of chronic pain conditions[J]. J Neurotrauma 28(4):619–634PubMed Knerlich-Lukoschus F, Noack M, von der Ropp-Brenner B et al (2011) Spinal cord injuries induce changes in CB1 cannabinoid receptor and C-C chemokine expression in brain areas underlying circuitry of chronic pain conditions[J]. J Neurotrauma 28(4):619–634PubMed
75.
Zurück zum Zitat Katzelnick CG, Weir JP, Chiaravalloti ND et al (2017) Impact of blood pressure, lesion level, and physical activity on aortic augmentation index in persons with spinal cord injury[J]. J Neurotrauma 34(24):3407–3415PubMed Katzelnick CG, Weir JP, Chiaravalloti ND et al (2017) Impact of blood pressure, lesion level, and physical activity on aortic augmentation index in persons with spinal cord injury[J]. J Neurotrauma 34(24):3407–3415PubMed
76.
Zurück zum Zitat Wood RL (2017) Accelerated cognitive aging following severe traumatic brain injury: a review[J]. Brain Inj 31(10):1270–1278PubMed Wood RL (2017) Accelerated cognitive aging following severe traumatic brain injury: a review[J]. Brain Inj 31(10):1270–1278PubMed
77.
Zurück zum Zitat Tzourio C, Laurent S, Debette S (2014) Is hypertension associated with an accelerated aging of the brain?[J]. Hypertension 63(5):894–903PubMed Tzourio C, Laurent S, Debette S (2014) Is hypertension associated with an accelerated aging of the brain?[J]. Hypertension 63(5):894–903PubMed
78.
Zurück zum Zitat Koutsouleris N, Davatzikos C, Borgwardt S et al (2014) Accelerated brain aging in schizophrenia and beyond: a neuroanatomical marker of psychiatric disorders[J]. Schizophr Bull 40(5):1140–1153PubMed Koutsouleris N, Davatzikos C, Borgwardt S et al (2014) Accelerated brain aging in schizophrenia and beyond: a neuroanatomical marker of psychiatric disorders[J]. Schizophr Bull 40(5):1140–1153PubMed
79.
Zurück zum Zitat Lu PH, Lee GJ, Raven EP et al (2011) Age-related slowing in cognitive processing speed is associated with myelin integrity in a very healthy elderly sample[J]. J Clin Exp Neuropsychol 33(10):1059–1068PubMedPubMedCentral Lu PH, Lee GJ, Raven EP et al (2011) Age-related slowing in cognitive processing speed is associated with myelin integrity in a very healthy elderly sample[J]. J Clin Exp Neuropsychol 33(10):1059–1068PubMedPubMedCentral
80.
Zurück zum Zitat Schembri R, Spong J, Graco M et al (2017) Neuropsychological function in patients with acute tetraplegia and sleep disordered breathing[J]. Sleep 40:2 Schembri R, Spong J, Graco M et al (2017) Neuropsychological function in patients with acute tetraplegia and sleep disordered breathing[J]. Sleep 40:2
81.
Zurück zum Zitat Krebs J, Scheel-Sailer A, Oertli R et al (2018) The effects of antimuscarinic treatment on the cognition of spinal cord injured individuals with neurogenic lower urinary tract dysfunction: a prospective controlled before-and-after study[J]. Spinal Cord 56(1):22–27PubMed Krebs J, Scheel-Sailer A, Oertli R et al (2018) The effects of antimuscarinic treatment on the cognition of spinal cord injured individuals with neurogenic lower urinary tract dysfunction: a prospective controlled before-and-after study[J]. Spinal Cord 56(1):22–27PubMed
82.
Zurück zum Zitat Sankari A, Vaughan S, Bascom A et al (2019) Sleep-disordered breathing and spinal cord injury: a state-of-the-art review[J]. Chest 155(2):438–445PubMed Sankari A, Vaughan S, Bascom A et al (2019) Sleep-disordered breathing and spinal cord injury: a state-of-the-art review[J]. Chest 155(2):438–445PubMed
83.
Zurück zum Zitat Shnek ZM, Foley FW, Larocca NG et al (1997) Helplessness, self-efficacy, cognitive distortions, and depression in multiple sclerosis and spinal cord injury[J]. Ann Behav Med 19(3):287–294PubMed Shnek ZM, Foley FW, Larocca NG et al (1997) Helplessness, self-efficacy, cognitive distortions, and depression in multiple sclerosis and spinal cord injury[J]. Ann Behav Med 19(3):287–294PubMed
84.
Zurück zum Zitat Craig A, Nicholson Perry K, Guest R et al (2015) Prospective study of the occurrence of psychological disorders and comorbidities after spinal cord injury[J]. Arch Phys Med Rehabil 96(8):1426–1434PubMed Craig A, Nicholson Perry K, Guest R et al (2015) Prospective study of the occurrence of psychological disorders and comorbidities after spinal cord injury[J]. Arch Phys Med Rehabil 96(8):1426–1434PubMed
85.
Zurück zum Zitat Craig A, Tran Y, Wijesuriya N et al (2012) Fatigue and tiredness in people with spinal cord injury[J]. J Psychosom Res 73(3):205–210PubMed Craig A, Tran Y, Wijesuriya N et al (2012) Fatigue and tiredness in people with spinal cord injury[J]. J Psychosom Res 73(3):205–210PubMed
86.
Zurück zum Zitat Murray RF, Asghari A, Egorov DD et al (2007) Impact of spinal cord injury on self-perceived pre- and postmorbid cognitive, emotional and physical functioning[J]. Spinal Cord 45(6):429–436PubMed Murray RF, Asghari A, Egorov DD et al (2007) Impact of spinal cord injury on self-perceived pre- and postmorbid cognitive, emotional and physical functioning[J]. Spinal Cord 45(6):429–436PubMed
87.
Zurück zum Zitat New PW, Epi MC (2007) Influence of age and gender on rehabilitation outcomes in nontraumatic spinal cord injury[J]. J Spinal Cord Med 30(3):225–237PubMedPubMedCentral New PW, Epi MC (2007) Influence of age and gender on rehabilitation outcomes in nontraumatic spinal cord injury[J]. J Spinal Cord Med 30(3):225–237PubMedPubMedCentral
88.
Zurück zum Zitat Norouzi JA, Sabour H, Latifi S et al (2014) Does consumption of polyunsaturated fatty acids influence on neurorehabilitation in traumatic spinal cord-injured individuals? A double-blinded clinical trial[J]. Spinal Cord 52(5):378–382 Norouzi JA, Sabour H, Latifi S et al (2014) Does consumption of polyunsaturated fatty acids influence on neurorehabilitation in traumatic spinal cord-injured individuals? A double-blinded clinical trial[J]. Spinal Cord 52(5):378–382
89.
Zurück zum Zitat Stampas A, Korupolu R, Zhu L et al (2019) Safety, feasibility, and efficacy of transcutaneous tibial nerve stimulation in acute spinal cord injury neurogenic bladder: a randomized control pilot trial[J]. Neuromodulation 22(6):716–722PubMed Stampas A, Korupolu R, Zhu L et al (2019) Safety, feasibility, and efficacy of transcutaneous tibial nerve stimulation in acute spinal cord injury neurogenic bladder: a randomized control pilot trial[J]. Neuromodulation 22(6):716–722PubMed
90.
Zurück zum Zitat Stampas A, Dominick E, Zhu L (2019) Evaluation of functional outcomes in traumatic spinal cord injury with rehabilitation-acquired urinary tract infections: a retrospective study[J]. J Spinal Cord Med 42(5):579–585PubMed Stampas A, Dominick E, Zhu L (2019) Evaluation of functional outcomes in traumatic spinal cord injury with rehabilitation-acquired urinary tract infections: a retrospective study[J]. J Spinal Cord Med 42(5):579–585PubMed
91.
Zurück zum Zitat Maresca G, Maggio MG, Buda A et al (2018) A novel use of virtual reality in the treatment of cognitive and motor deficit in spinal cord injury: a case report[J]. Medicine (Baltimore) 97(50):e13559 Maresca G, Maggio MG, Buda A et al (2018) A novel use of virtual reality in the treatment of cognitive and motor deficit in spinal cord injury: a case report[J]. Medicine (Baltimore) 97(50):e13559
92.
Zurück zum Zitat Hartmann A, Kegelmeyer D, Kloos A (2018) Use of an errorless learning approach in a person with concomitant traumatic spinal cord injury and brain injury: a case report[J]. J Neurol Phys Ther 42(2):102–109PubMed Hartmann A, Kegelmeyer D, Kloos A (2018) Use of an errorless learning approach in a person with concomitant traumatic spinal cord injury and brain injury: a case report[J]. J Neurol Phys Ther 42(2):102–109PubMed
93.
Zurück zum Zitat Stewart F, Gameiro LF, El DR et al (2016) Electrical stimulation with non-implanted electrodes for overactive bladder in adults[J]. Cochrane Database Syst Rev 12:D10098 Stewart F, Gameiro LF, El DR et al (2016) Electrical stimulation with non-implanted electrodes for overactive bladder in adults[J]. Cochrane Database Syst Rev 12:D10098
Metadaten
Titel
Multidimensional review of cognitive impairment after spinal cord injury
verfasst von
Fang Li
Su Huo
Weiqun Song
Publikationsdatum
28.09.2020
Verlag
Springer International Publishing
Erschienen in
Acta Neurologica Belgica / Ausgabe 1/2021
Print ISSN: 0300-9009
Elektronische ISSN: 2240-2993
DOI
https://doi.org/10.1007/s13760-020-01507-y

Weitere Artikel der Ausgabe 1/2021

Acta Neurologica Belgica 1/2021 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.