Skip to main content
Erschienen in: Knee Surgery, Sports Traumatology, Arthroscopy 7/2016

03.12.2014 | Experimental Study

Multilayer scaffolds in orthopaedic tissue engineering

verfasst von: Kivanc Atesok, M. Nedim Doral, Jon Karlsson, Kenneth A. Egol, Laith M. Jazrawi, Paulo G. Coelho, Amaury Martinez, Tomoyuki Matsumoto, Brett D. Owens, Mitsuo Ochi, Shepard R. Hurwitz, Anthony Atala, Freddie H. Fu, Helen H. Lu, Scott A. Rodeo

Erschienen in: Knee Surgery, Sports Traumatology, Arthroscopy | Ausgabe 7/2016

Einloggen, um Zugang zu erhalten

Abstract

Purpose

The purpose of this study was to summarize the recent developments in the field of tissue engineering as they relate to multilayer scaffold designs in musculoskeletal regeneration.

Methods

Clinical and basic research studies that highlight the current knowledge and potential future applications of the multilayer scaffolds in orthopaedic tissue engineering were evaluated and the best evidence collected. Studies were divided into three main categories based on tissue types and interfaces for which multilayer scaffolds were used to regenerate: bone, osteochondral junction and tendon-to-bone interfaces.

Results

In vitro and in vivo studies indicate that the use of stratified scaffolds composed of multiple layers with distinct compositions for regeneration of distinct tissue types within the same scaffold and anatomic location is feasible. This emerging tissue engineering approach has potential applications in regeneration of bone defects, osteochondral lesions and tendon-to-bone interfaces with successful basic research findings that encourage clinical applications.

Conclusions

Present data supporting the advantages of the use of multilayer scaffolds as an emerging strategy in musculoskeletal tissue engineering are promising, however, still limited. Positive impacts of the use of next generation scaffolds in orthopaedic tissue engineering can be expected in terms of decreasing the invasiveness of current grafting techniques used for reconstruction of bone and osteochondral defects, and tendon-to-bone interfaces in near future.
Literatur
1.
Zurück zum Zitat Akkouch A, Zhang Z, Rouabhia M (2011) A novel collagen/hydroxyapatite/poly(lactide-co-ε-caprolactone) biodegradable and bioactive 3D porous scaffold for bone regeneration. J Biomed Mater Res A 96(4):693–704 Akkouch A, Zhang Z, Rouabhia M (2011) A novel collagen/hydroxyapatite/poly(lactide-co-ε-caprolactone) biodegradable and bioactive 3D porous scaffold for bone regeneration. J Biomed Mater Res A 96(4):693–704
2.
Zurück zum Zitat Atesok K, Fu FH, Wolf MR, Ochi M, Jazrawi LM, Doral MN, Lubovitz J, Rodeo S (2014) Augmentation of tendon-to-bone healing. J Bone Joint Surg Am 96(6):513–521 Atesok K, Fu FH, Wolf MR, Ochi M, Jazrawi LM, Doral MN, Lubovitz J, Rodeo S (2014) Augmentation of tendon-to-bone healing. J Bone Joint Surg Am 96(6):513–521
3.
Zurück zum Zitat Aydin HM (2011) A three-layered osteochondral plug: structural, mechanical, and in vitro biocompatibility analysis. Adv Eng Mater. 13(12):B511–B517CrossRef Aydin HM (2011) A three-layered osteochondral plug: structural, mechanical, and in vitro biocompatibility analysis. Adv Eng Mater. 13(12):B511–B517CrossRef
4.
Zurück zum Zitat Billstrom GH, Blom AW, Larsson S, Beswick AD (2013) Application of scaffolds for bone regeneration strategies: current trends and future directions. Injury 44(Suppl 1):S28–S33CrossRefPubMed Billstrom GH, Blom AW, Larsson S, Beswick AD (2013) Application of scaffolds for bone regeneration strategies: current trends and future directions. Injury 44(Suppl 1):S28–S33CrossRefPubMed
5.
Zurück zum Zitat Brophy RH, Kovacevic D, Imhauser CW, Stasiak M, Bedi A, Fox AJ, Deng XH, Rodeo SA (2011) Effect of short-duration low-magnitude cyclic loading versus immobilization on tendon–bone healing after ACL reconstruction in a rat model. J Bone Joint Surg Am 93(4):381–393 Brophy RH, Kovacevic D, Imhauser CW, Stasiak M, Bedi A, Fox AJ, Deng XH, Rodeo SA (2011) Effect of short-duration low-magnitude cyclic loading versus immobilization on tendon–bone healing after ACL reconstruction in a rat model. J Bone Joint Surg Am 93(4):381–393
6.
Zurück zum Zitat Butscher A, Bohner M, Hofmann S, Gauckler L, Muller R (2011) Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing. Acta Biomater 7(3):907–920CrossRefPubMed Butscher A, Bohner M, Hofmann S, Gauckler L, Muller R (2011) Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing. Acta Biomater 7(3):907–920CrossRefPubMed
7.
Zurück zum Zitat Chen G, Sato T, Tanaka J, Tateishi T (2006) Preparation of a biphasic scaffold for osteochondral tissue engineering. Mater Sci Eng C 26:118–123CrossRef Chen G, Sato T, Tanaka J, Tateishi T (2006) Preparation of a biphasic scaffold for osteochondral tissue engineering. Mater Sci Eng C 26:118–123CrossRef
9.
Zurück zum Zitat Cooper RR, Misol S (1970) Tendon and ligament insertion. A light and electron microscopic study. J Bone Joint Surg Am 52(1):1–20PubMed Cooper RR, Misol S (1970) Tendon and ligament insertion. A light and electron microscopic study. J Bone Joint Surg Am 52(1):1–20PubMed
10.
Zurück zum Zitat Crowley C, Wong JM, Fisher DM, Khan WS (2013) A systematic review on preclinical and clinical studies on the use of scaffolds for bone repair in skeletal defects. Curr Stem Cell Res Ther 8(3):243–252CrossRefPubMed Crowley C, Wong JM, Fisher DM, Khan WS (2013) A systematic review on preclinical and clinical studies on the use of scaffolds for bone repair in skeletal defects. Curr Stem Cell Res Ther 8(3):243–252CrossRefPubMed
11.
Zurück zum Zitat Ding C, Qiao Z, Jiang W, Li H, Wei J, Zhou G, Dai K (2013) Regeneration of a goat femoral head using a tissue-specific, biphasic scaffold fabricated with CAD/CAM technology. Biomaterials 34(28):6706–6716CrossRefPubMed Ding C, Qiao Z, Jiang W, Li H, Wei J, Zhou G, Dai K (2013) Regeneration of a goat femoral head using a tissue-specific, biphasic scaffold fabricated with CAD/CAM technology. Biomaterials 34(28):6706–6716CrossRefPubMed
12.
Zurück zum Zitat Franzen A, Inerot S, Hejderup SO, Heinegard D (1981) Variations in the composition of bovine hip articular cartilage with distance from the articular surface. Biochem J 195:535CrossRefPubMedPubMedCentral Franzen A, Inerot S, Hejderup SO, Heinegard D (1981) Variations in the composition of bovine hip articular cartilage with distance from the articular surface. Biochem J 195:535CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Giannotti S, Bottai V, Dell’osso G, Pini E, De Paola G, Bugelli G et al (2013) Current medical treatment strategies concerning fracture healing. Clin Cases Miner Bone Metab 10(2):116–120PubMedPubMedCentral Giannotti S, Bottai V, Dell’osso G, Pini E, De Paola G, Bugelli G et al (2013) Current medical treatment strategies concerning fracture healing. Clin Cases Miner Bone Metab 10(2):116–120PubMedPubMedCentral
14.
Zurück zum Zitat Han LH, Suri S, Schmidt CE, Chen S (2010) Fabrication of three-dimensional scaffolds for heterogeneous tissue engineering. Biomed Microdevices 12(4):721–725CrossRefPubMed Han LH, Suri S, Schmidt CE, Chen S (2010) Fabrication of three-dimensional scaffolds for heterogeneous tissue engineering. Biomed Microdevices 12(4):721–725CrossRefPubMed
15.
Zurück zum Zitat He P, Ng KS, Toh SL, Goh JC (2012) In vitro ligament-bone interface regeneration using a trilineage coculture system on a hybrid silk scaffold. Biomacromolecules 13(9):2692–2703 He P, Ng KS, Toh SL, Goh JC (2012) In vitro ligament-bone interface regeneration using a trilineage coculture system on a hybrid silk scaffold. Biomacromolecules 13(9):2692–2703
16.
Zurück zum Zitat Ishihara K, Arai H, Nakabayashi N, Morita S, Furuya K (1992) Adhesive bone cement containing hydroxyapatite particle as bone compatible filler. J Biomed Mater Res 26:937–945CrossRefPubMed Ishihara K, Arai H, Nakabayashi N, Morita S, Furuya K (1992) Adhesive bone cement containing hydroxyapatite particle as bone compatible filler. J Biomed Mater Res 26:937–945CrossRefPubMed
17.
Zurück zum Zitat Jiang J, Tang A, Ateshian GA, Guo XE, Hung CT, Lu HH (2010) Bioactive stratified polymer ceramic-hydrogel scaffold for integrative osteochondral repair. Ann Biomed Eng 38(6):2183–2196CrossRefPubMed Jiang J, Tang A, Ateshian GA, Guo XE, Hung CT, Lu HH (2010) Bioactive stratified polymer ceramic-hydrogel scaffold for integrative osteochondral repair. Ann Biomed Eng 38(6):2183–2196CrossRefPubMed
18.
Zurück zum Zitat Keeney M, Pandit A (2009) The osteochondral junction and its repair via bi-phasic tissue engineering scaffolds. Tissue Eng Part B Rev 15(1):55–73CrossRefPubMed Keeney M, Pandit A (2009) The osteochondral junction and its repair via bi-phasic tissue engineering scaffolds. Tissue Eng Part B Rev 15(1):55–73CrossRefPubMed
19.
Zurück zum Zitat Kon E, Delcogliano M, Filardo G, Fini M, Giavaresi G, Francioli S, Martin I, Pressato D, Arcangeli E, Quarto R, Sandri M, Marcacci M (2010) Orderly osteochondral regeneration in a sheep model using a novel nano-composite multilayered biomaterial. J Orthop Res 28(1):116–124PubMed Kon E, Delcogliano M, Filardo G, Fini M, Giavaresi G, Francioli S, Martin I, Pressato D, Arcangeli E, Quarto R, Sandri M, Marcacci M (2010) Orderly osteochondral regeneration in a sheep model using a novel nano-composite multilayered biomaterial. J Orthop Res 28(1):116–124PubMed
20.
Zurück zum Zitat Kon E, Mutini A, Arcangeli E, Delcogliano M, Filardo G, Nicoli Aldini N, Pressato D, Quarto R, Zaffagnini S, Marcacci M (2010) Novel nanostructured scaffold for osteochondral regeneration: pilot study in horses. J Tissue Eng Regen Med 4(4):300–308CrossRefPubMed Kon E, Mutini A, Arcangeli E, Delcogliano M, Filardo G, Nicoli Aldini N, Pressato D, Quarto R, Zaffagnini S, Marcacci M (2010) Novel nanostructured scaffold for osteochondral regeneration: pilot study in horses. J Tissue Eng Regen Med 4(4):300–308CrossRefPubMed
21.
Zurück zum Zitat Kon E, Delcogliano M, Filardo G, Busacca M, Di Martino A, Marcacci M (2011) Novel nano-composite multilayered biomaterial for osteochondral regeneration: a pilot clinical trial. Am J Sports Med 39(6):1180–1190CrossRefPubMed Kon E, Delcogliano M, Filardo G, Busacca M, Di Martino A, Marcacci M (2011) Novel nano-composite multilayered biomaterial for osteochondral regeneration: a pilot clinical trial. Am J Sports Med 39(6):1180–1190CrossRefPubMed
22.
Zurück zum Zitat Kurien T, Pearson RG, Scammell BE (2013) Bone graft substitutes currently available in orthopaedic practice: the evidence for their use. Bone Joint J 95-B(5):583–597 Kurien T, Pearson RG, Scammell BE (2013) Bone graft substitutes currently available in orthopaedic practice: the evidence for their use. Bone Joint J 95-B(5):583–597
23.
Zurück zum Zitat Lee CH, Hajibandeh J, Suzuki T, Fan A, Shang P, Mao JJ (2014) Three-dimensional printed multiphase scaffolds for regeneration of periodontium complex. Tissue Eng Part A 20(7–8):1342–1351CrossRefPubMedPubMedCentral Lee CH, Hajibandeh J, Suzuki T, Fan A, Shang P, Mao JJ (2014) Three-dimensional printed multiphase scaffolds for regeneration of periodontium complex. Tissue Eng Part A 20(7–8):1342–1351CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Liu WF, Hui EE, Bhatia SN, Chen CS (2010) Engineering cellular microenvironments. In: Atala A, Lanza R, Thomson JA, Nerem RM (eds) Foundations of regenerative medicine: clinical and therapeutic applications. Academic Print by Elsevier, San Diego, Burlington, London, pp 284–302 Liu WF, Hui EE, Bhatia SN, Chen CS (2010) Engineering cellular microenvironments. In: Atala A, Lanza R, Thomson JA, Nerem RM (eds) Foundations of regenerative medicine: clinical and therapeutic applications. Academic Print by Elsevier, San Diego, Burlington, London, pp 284–302
25.
Zurück zum Zitat Lopes MA, Monteiro FJ, Santos JD (1999) Glass-reinforced hydroxyapatite composites: fracture toughness and hardness dependence on microstructural characteristics. Biomaterials 20:2085–2090CrossRefPubMed Lopes MA, Monteiro FJ, Santos JD (1999) Glass-reinforced hydroxyapatite composites: fracture toughness and hardness dependence on microstructural characteristics. Biomaterials 20:2085–2090CrossRefPubMed
26.
Zurück zum Zitat Lu HH, Thomopoulos S (2013) Functional attachment of soft tissues to bone: development, healing, and tissue engineering. Annu Rev Biomed Eng 15:201–226CrossRefPubMedPubMedCentral Lu HH, Thomopoulos S (2013) Functional attachment of soft tissues to bone: development, healing, and tissue engineering. Annu Rev Biomed Eng 15:201–226CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Lu HH, Subramony SD, Boushell MK, Zhang X (2010) Tissue engineering strategies for the regeneration of orthopedic interfaces. Ann Biomed Eng 38(6):2142–2154CrossRefPubMedPubMedCentral Lu HH, Subramony SD, Boushell MK, Zhang X (2010) Tissue engineering strategies for the regeneration of orthopedic interfaces. Ann Biomed Eng 38(6):2142–2154CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Madry H, van Dijk CN, Mueller-Gerbl M (2010) The basic science of the subchondral bone. Knee Surg Sports Traumatol Arthrosc 18(4):419–433CrossRefPubMed Madry H, van Dijk CN, Mueller-Gerbl M (2010) The basic science of the subchondral bone. Knee Surg Sports Traumatol Arthrosc 18(4):419–433CrossRefPubMed
29.
Zurück zum Zitat Moffat KL, Wang IN, Rodeo SA, Lu HH (2009) Orthopedic interface tissue engineering for the biological fixation of soft tissue grafts. Clin Sports Med 28(1):157–176CrossRefPubMedPubMedCentral Moffat KL, Wang IN, Rodeo SA, Lu HH (2009) Orthopedic interface tissue engineering for the biological fixation of soft tissue grafts. Clin Sports Med 28(1):157–176CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Moreau JL, Weir MD, Xu HH (2009) Self-setting collagencalcium phosphate bone cement: mechanical and cellular properties. J Biomed Mater Res A 91:605–613CrossRefPubMedPubMedCentral Moreau JL, Weir MD, Xu HH (2009) Self-setting collagencalcium phosphate bone cement: mechanical and cellular properties. J Biomed Mater Res A 91:605–613CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Newsham-West R, Nicholson H, Walton M, Milburn P (2007) Long-term morphology of a healing bone-tendon interface: a histological observation in the sheep model. J Anat 210(3):318–327CrossRefPubMedPubMedCentral Newsham-West R, Nicholson H, Walton M, Milburn P (2007) Long-term morphology of a healing bone-tendon interface: a histological observation in the sheep model. J Anat 210(3):318–327CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Ng KW, Khor HL, Hutmacher DW (2004) In vitro characterization of natural and synthetic dermal matrices cultured with human dermal fibroblasts. Biomaterials 25:2807–2818CrossRefPubMed Ng KW, Khor HL, Hutmacher DW (2004) In vitro characterization of natural and synthetic dermal matrices cultured with human dermal fibroblasts. Biomaterials 25:2807–2818CrossRefPubMed
34.
Zurück zum Zitat Nooeaid P, Salih V, Beier JP, Boccaccini AR (2012) Osteochondral tissue engineering: scaffolds, stem cells and applications. J Cell Mol Med 16(10):2247–2270CrossRefPubMedPubMedCentral Nooeaid P, Salih V, Beier JP, Boccaccini AR (2012) Osteochondral tissue engineering: scaffolds, stem cells and applications. J Cell Mol Med 16(10):2247–2270CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat O’Brien FJ, Harley BA, Yannas IV, Gibson L (2004) Influence of freezing rate on pore structure in freeze-dried collagen-GAG scaffolds. Biomaterials 25:1077–1086CrossRefPubMed O’Brien FJ, Harley BA, Yannas IV, Gibson L (2004) Influence of freezing rate on pore structure in freeze-dried collagen-GAG scaffolds. Biomaterials 25:1077–1086CrossRefPubMed
36.
Zurück zum Zitat Spalazzi JP, Dagher E, Doty SB, Guo XE, Rodeo SA, Lu HH (2008) In vivo evaluation of a multiphased scaffold designed for orthopaedic interface tissue engineering and soft tissue-to-bone integration. J Biomed Mater Res A 86(1):1–12CrossRefPubMed Spalazzi JP, Dagher E, Doty SB, Guo XE, Rodeo SA, Lu HH (2008) In vivo evaluation of a multiphased scaffold designed for orthopaedic interface tissue engineering and soft tissue-to-bone integration. J Biomed Mater Res A 86(1):1–12CrossRefPubMed
37.
Zurück zum Zitat Woo S, Maynard J, Butler D, Lyon R, Torzilli P, Akeson W (1988) Ligament, tendon, and joint capsule insertions to bone. In: Woo SL-Y, Buckwalter JA (eds) Injury and repair of the musculoskeletal soft tissues. American Academy of Orthopaedic Surgery, Park Ridge, pp 133–166 Woo S, Maynard J, Butler D, Lyon R, Torzilli P, Akeson W (1988) Ligament, tendon, and joint capsule insertions to bone. In: Woo SL-Y, Buckwalter JA (eds) Injury and repair of the musculoskeletal soft tissues. American Academy of Orthopaedic Surgery, Park Ridge, pp 133–166
Metadaten
Titel
Multilayer scaffolds in orthopaedic tissue engineering
verfasst von
Kivanc Atesok
M. Nedim Doral
Jon Karlsson
Kenneth A. Egol
Laith M. Jazrawi
Paulo G. Coelho
Amaury Martinez
Tomoyuki Matsumoto
Brett D. Owens
Mitsuo Ochi
Shepard R. Hurwitz
Anthony Atala
Freddie H. Fu
Helen H. Lu
Scott A. Rodeo
Publikationsdatum
03.12.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Knee Surgery, Sports Traumatology, Arthroscopy / Ausgabe 7/2016
Print ISSN: 0942-2056
Elektronische ISSN: 1433-7347
DOI
https://doi.org/10.1007/s00167-014-3453-z

Weitere Artikel der Ausgabe 7/2016

Knee Surgery, Sports Traumatology, Arthroscopy 7/2016 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.