Skip to main content
Erschienen in: Journal of Medical Case Reports 1/2011

Open Access 01.12.2011 | Case report

Multiple cavernous malformations presenting in a patient with Poland syndrome: A case report

verfasst von: Karlo J Lizarraga, Antonio AF De Salles

Erschienen in: Journal of Medical Case Reports | Ausgabe 1/2011

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Introduction

Poland syndrome is a congenital disorder related to chest and hand anomalies on one side of the body. Its etiology remains unclear, with an ipsilateral vascular alteration (of unknown origin) to the subclavian artery in early embryogenesis being the currently accepted theory. Cavernous malformations are vascular hamartomas, which have been linked to a genetic etiology, particularly in familial cases, which commonly present with multiple lesions. Our case report is the first to describe multiple cavernous malformations associated with Poland syndrome, further supporting the vascular etiology theory, but pointing to a genetic rather than a mechanistic factor disrupting blood flow in the corresponding vessels.

Case presentation

A 41-year-old Caucasian man with Poland syndrome on the right side of his body presented to our hospital with a secondary generalized seizure and was found to have multiple cavernous malformations distributed in his brain, cerebellum, and brain stem, with a predominance of lesions in the left hemisphere.

Conclusion

The distribution of cavernous malformations in the left hemisphere and the right-sided Poland syndrome in our patient could not be explained by a mechanistic disruption of one of the subclavian arteries. A genetic alteration, as in familial cavernous malformations, would be a more appropriate etiologic diagnosis of Poland syndrome in our patient. Further genetic and pathological studies of the involved blood vessels in patients with Poland syndrome could lead to a better understanding of the disease.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1752-1947-5-469) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

KJL analyzed and interpreted the patient data and the corresponding literature. AAFD was directly involved in the patient's care. All authors were major contributors to writing and reviewing the final manuscript.

Introduction

Poland syndrome is a congenital disorder of unknown etiology characterized by ipsilateral hand and chest wall anomalies, including hypoplasia or absence of the breast and pectoral muscles [1]. Accepted theories point to an early deficit of blood flow to the distal limb, the pectoral region, and even the brain stem via the subclavian artery during week six of gestation [2]. Its etiology to date has involved two hypotheses. One proposes that the underlying ribs on the affected side grow too quickly in a forward growth plane and thus reduce blood flow in the arteries. Another proposes that a malformation of the embryonic blood vessel serving the pectoralis muscle and the arm and/or hand on the same side of the body limits blood flow to these structures. Final proof is lacking, and no genetic evidence exists [24].
One case report described a patient with Poland-Möbius syndrome (which includes bilateral abnormalities of the oculomotor and facial cranial nerves) who presented with one cavernous malformation (CM) that was causing generalized seizures, which resolved after its surgical resection [5]. CMs are low-flow vascular hamartomas characterized by endothelium-lined sinusoidal chambers that lack the other mural elements of mature vascular structures and a distinctive multi-lobulated, "multi-berry" appearance on MRI scans [6, 7]. They can be asymptomatic in up to 40% of patients or may manifest as seizures or neurological deficits [6, 7]. Sporadic and familial forms of CMs have been described, with the latter comprising at least 6% of all cases [6, 8]. Multiple lesions are common in familial forms [8, 9]. Hereditary forms of cerebral CMs are caused by mutations in one of three genes, KRIT1 (CCM1), CCM2 (MGC4607), and PDCD10 (CCM3), that may have a role in the genesis of vascular endothelial cells. Their critical importance to lesion development is underlined by the observation that at least one of the CCM genes is mutated in most familial CMs [1012]. The association of Poland syndrome with multiple CMs described in our patient offers support to the vascular theory as the underlying mechanism for this pathological entity, but pointing to a genetic rather than a mechanistic origin of the proposed vascular disruption.

Case presentation

A 41-year-old Caucasian man was sleeping when he suddenly experienced tonic movement of the right upper limb followed by loss of consciousness and clonic movements of his four extremities, all of which lasted approximately one minute and was self-limited. Our review of his symptoms was negative, including headaches and other neurologic symptoms or signs. His medical history included hypertension and Poland syndrome. His mother had had chronic obstructive pulmonary disease and had a heart attack at age 64, which caused her death. The rest of the patient's family history was negative for neurologic or vascular alterations.
A physical examination revealed the absence of his right breast and right pectoralis major muscles (Figure 1A) and right-handed symbrachydactyly, status post-multiple corrective surgeries (Figure 1B), corresponding to Poland syndrome. His neurological examination results were within normal limits. MRI studies showed multiple cerebral CMs, with the largest one, measuring 15.8 mm × 9.3 mm, located in the left frontal pole cortical region, with evidence of recent hemorrhage (Figure 2). Two other CMs located in the right and left parietal lobes also showed evidence of bleeding (Figures 3A and 3B). The majority of the CMs were located in the left hemisphere (Figure 3B). Multiple other cerebellar and brain stem CMs were also noted (Figures 3C and 3D).
The patient presented to our hospital to discuss the possibility of undergoing stereotactic radiosurgery for treatment of the CMs. He had already been started on levetiracetam 75 mg twice daily, which led to good seizure control. Thus, electroencephalographic monitoring and/or telemetry to detect the seizure origin localization, continuing medical therapy, and observation were recommended at that point.

Conclusion

While the pathogenesis of cerebral CMs on a genetic basis is starting to be better understood, the etiology of Poland syndrome remains uncertain, with an ipsilateral vascular alteration (of unknown origin) to the subclavian artery in early embryogenesis being the currently accepted theory [2, 3]. We present the first case report in the literature describing a patient with multiple CMs associated with Poland syndrome, providing further evidence in favor of a vascular disruption during early angiogenesis as its possible etiology.
Our patient presented to our hospital with a secondary generalized seizure, and the corresponding imaging studies showed multiple CMs in his brain, brain stem, and cerebellum. Three CMs showed signs of hemorrhage and it could not be ascertained which one caused his seizure. Thus, we suggested that specialized imaging studies be obtained for seizure localization. If the superficial frontal lesion correlated with the seizure origin, the patient would benefit from its surgical resection; meanwhile, since the seizures were being appropriately controlled with medication, observation was recommended.
Interestingly, the majority of lesions in our patient were found to be located in the left cerebral hemisphere, contralateral to his chest wall and hand defects. A mechanistic external factor could not explain our patient's presentation, because it would not be able to cause an alteration in blood flow to the right upper limb and right chest wall and at the same time to the left cerebral hemisphere. On the other hand, this particular distribution of lesions might be explained if a genetic alteration of the vessels, which occurs in familial CMs, were responsible. The possibility of a coincidental presentation of Poland syndrome and multiple CMs is also worth considering, but it would be more plausible if a single CM were present rather than the multiple and diffuse cerebral vascular compromise in our patient. Any of these proposals, and therefore a better understanding of the disease, could be addressed by conducting pathological studies of the affected limb blood vessels in patients with Poland syndrome and comparing them with anomalies already found in CMs.
Written informed consent was obtained from the patient for publication of this case report and any accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

KJL analyzed and interpreted the patient data and the corresponding literature. AAFD was directly involved in the patient's care. All authors were major contributors to writing and reviewing the final manuscript.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Allgemeinmedizin

Kombi-Abonnement

Mit e.Med Allgemeinmedizin erhalten Sie Zugang zu allen CME-Fortbildungen und Premium-Inhalten der allgemeinmedizinischen Zeitschriften, inklusive einer gedruckten Allgemeinmedizin-Zeitschrift Ihrer Wahl.

Anhänge

Authors’ original submitted files for images

Literatur
1.
Zurück zum Zitat Poland A: Deficiency of the pectoral muscles. Guy's Hosp Rep. 1841, VI: 191-193. Poland A: Deficiency of the pectoral muscles. Guy's Hosp Rep. 1841, VI: 191-193.
2.
Zurück zum Zitat Bavinck JN, Weaver DD: Subclavian artery supply disruption sequence: hypothesis of a vascular etiology for Poland, Klieppel-Feil and Möbius anomalies. Am J Med Genet. 1986, 23: 903-918. 10.1002/ajmg.1320230405.CrossRefPubMed Bavinck JN, Weaver DD: Subclavian artery supply disruption sequence: hypothesis of a vascular etiology for Poland, Klieppel-Feil and Möbius anomalies. Am J Med Genet. 1986, 23: 903-918. 10.1002/ajmg.1320230405.CrossRefPubMed
3.
Zurück zum Zitat Der Kaloustian VM, Hoyme HE, Hogg H, Entin MA, Guttmacher AE: Possible common pathogenetic mechanisms for Poland sequence and Adams-Oliver syndrome. Am J Med Genet. 1991, 38: 69-73. 10.1002/ajmg.1320380116.CrossRefPubMed Der Kaloustian VM, Hoyme HE, Hogg H, Entin MA, Guttmacher AE: Possible common pathogenetic mechanisms for Poland sequence and Adams-Oliver syndrome. Am J Med Genet. 1991, 38: 69-73. 10.1002/ajmg.1320380116.CrossRefPubMed
4.
Zurück zum Zitat St Charles S, Di Mario FJ, Grunnet ML: Möbius sequence: further in vivo support for the subclavian artery supply disruption sequence. Am J Med Genet. 1993, 47: 289-293. 10.1002/ajmg.1320470230.CrossRefPubMed St Charles S, Di Mario FJ, Grunnet ML: Möbius sequence: further in vivo support for the subclavian artery supply disruption sequence. Am J Med Genet. 1993, 47: 289-293. 10.1002/ajmg.1320470230.CrossRefPubMed
5.
Zurück zum Zitat Mut M, Palaoglu S, Alanay Y, Ismailoglu O, Tuncbilek E: Cavernous malformation with Poland-Möbius syndrome. Case illustration. J Neurosurg. 2007, 1 (Suppl): 79- Mut M, Palaoglu S, Alanay Y, Ismailoglu O, Tuncbilek E: Cavernous malformation with Poland-Möbius syndrome. Case illustration. J Neurosurg. 2007, 1 (Suppl): 79-
6.
Zurück zum Zitat Batra S, Lin D, Recinos PF, Zhang J, Rigamonti D: Cavernous malformations: natural history, diagnosis and treatment. Nat Rev Neurol. 2009, 5: 659-670. 10.1038/nrneurol.2009.177.CrossRefPubMed Batra S, Lin D, Recinos PF, Zhang J, Rigamonti D: Cavernous malformations: natural history, diagnosis and treatment. Nat Rev Neurol. 2009, 5: 659-670. 10.1038/nrneurol.2009.177.CrossRefPubMed
7.
Zurück zum Zitat Bertalanffy H, Benes L, Miyazawa T, Alberti O, Siegel AM, Sure U: Cerebral cavernomas in the adult. Review of the literature and analysis of 72 surgically treated patients. Neurosurg Rev. 2002, 25: 1-55. 10.1007/s101430100179.CrossRefPubMed Bertalanffy H, Benes L, Miyazawa T, Alberti O, Siegel AM, Sure U: Cerebral cavernomas in the adult. Review of the literature and analysis of 72 surgically treated patients. Neurosurg Rev. 2002, 25: 1-55. 10.1007/s101430100179.CrossRefPubMed
8.
Zurück zum Zitat Zabramski JM, Wascher TM, Spetzler RF, Johnson B, Golfinos J, Drayer BP, Brown B, Rigamonti D, Brown G: The natural history of familial cavernous malformations: results of an ongoing study. J Neurosurg. 1994, 80: 422-432. 10.3171/jns.1994.80.3.0422.CrossRefPubMed Zabramski JM, Wascher TM, Spetzler RF, Johnson B, Golfinos J, Drayer BP, Brown B, Rigamonti D, Brown G: The natural history of familial cavernous malformations: results of an ongoing study. J Neurosurg. 1994, 80: 422-432. 10.3171/jns.1994.80.3.0422.CrossRefPubMed
9.
Zurück zum Zitat Rigamonti D, Hadley MN, Drayer BP, Johnson PC, Hoenig-Rigamonti K, Knight JT, Spetzler RF: Cerebral cavernous malformations. Incidence and familial occurrence. N Engl J Med. 1988, 319: 343-347. 10.1056/NEJM198808113190605.CrossRefPubMed Rigamonti D, Hadley MN, Drayer BP, Johnson PC, Hoenig-Rigamonti K, Knight JT, Spetzler RF: Cerebral cavernous malformations. Incidence and familial occurrence. N Engl J Med. 1988, 319: 343-347. 10.1056/NEJM198808113190605.CrossRefPubMed
10.
Zurück zum Zitat Laberge-le Couteulx S, Jung HH, Labauge P, Houtteville JP, Lescoat C, Cecillon M, Marechal E, Joutel A, Bach JF, Tournier-Lasserve E: Truncating mutations in CCM1, encoding KRIT1, cause hereditary cavernous angiomas. Nat Genet. 1999, 23: 189-193. 10.1038/13815.CrossRefPubMed Laberge-le Couteulx S, Jung HH, Labauge P, Houtteville JP, Lescoat C, Cecillon M, Marechal E, Joutel A, Bach JF, Tournier-Lasserve E: Truncating mutations in CCM1, encoding KRIT1, cause hereditary cavernous angiomas. Nat Genet. 1999, 23: 189-193. 10.1038/13815.CrossRefPubMed
11.
Zurück zum Zitat Guzeloglu-Kayisli O, Kayisli UA, Amankulor NM, Voorhees JR, Gokce O, DiLuna ML, Laurans MS, Luleci G, Gunel M: Krev1 interaction trapped-1/cerebral cavernous malformation-1 protein expression during early angiogenesis. J Neurosurg. 2004, 100 (5 Suppl Pediatrics): 481-487.PubMed Guzeloglu-Kayisli O, Kayisli UA, Amankulor NM, Voorhees JR, Gokce O, DiLuna ML, Laurans MS, Luleci G, Gunel M: Krev1 interaction trapped-1/cerebral cavernous malformation-1 protein expression during early angiogenesis. J Neurosurg. 2004, 100 (5 Suppl Pediatrics): 481-487.PubMed
12.
Zurück zum Zitat Voss K, Stahl S, Schleider E, Ullrich S, Nickel J, Mueller TD, Felbor U: CCM3 interacts with CCM2 indicating common pathogenesis for cerebral cavernous malformations. Neurogenetics. 2007, 8: 249-256. 10.1007/s10048-007-0098-9.CrossRefPubMed Voss K, Stahl S, Schleider E, Ullrich S, Nickel J, Mueller TD, Felbor U: CCM3 interacts with CCM2 indicating common pathogenesis for cerebral cavernous malformations. Neurogenetics. 2007, 8: 249-256. 10.1007/s10048-007-0098-9.CrossRefPubMed
Metadaten
Titel
Multiple cavernous malformations presenting in a patient with Poland syndrome: A case report
verfasst von
Karlo J Lizarraga
Antonio AF De Salles
Publikationsdatum
01.12.2011
Verlag
BioMed Central
Erschienen in
Journal of Medical Case Reports / Ausgabe 1/2011
Elektronische ISSN: 1752-1947
DOI
https://doi.org/10.1186/1752-1947-5-469

Weitere Artikel der Ausgabe 1/2011

Journal of Medical Case Reports 1/2011 Zur Ausgabe