Skip to main content
Erschienen in: InFo Neurologie + Psychiatrie 4/2018

18.04.2018 | Multiple Sklerose | zertifizierte fortbildung

Fortschreitender Krankheitsverlauf

Aktuelle Therapien und Zukunftsoptionen für die progrediente Multiple Sklerose

verfasst von: Dr. med. Simon Faissner, Prof. Dr. med. Ralf Gold

Erschienen in: InFo Neurologie + Psychiatrie | Ausgabe 4/2018

Einloggen, um Zugang zu erhalten

Zusammenfassung

Die Therapie der Multiplen Sklerose hat sich in den letzten Jahren durch die Entwicklung neuer Medikamente für die schubförmige Phase der Erkrankung umfangreich gewandelt. Die Entwicklung von Medikamenten bei Progression hingegen war bisher — abgesehen von einem gerade in Europa zugelassenen B-Zell-depletierenden Antikörper — weniger erfolgreich. Im Folgenden werden das Verständnis von pathogenetischen Veränderungen bei Progression, etablierte und aktuell zugelassene Therapieverfahren sowie zukünftig interessante Ziele für neue Behandlungsansätze dargestellt.
Literatur
1.
Zurück zum Zitat Kantarci OH, Lebrun C, Siva A et al. Primary Progressive Multiple Sclerosis Evolving From Radiologically Isolated Syndrome. Ann Neurol 2016; 79:288–94CrossRef Kantarci OH, Lebrun C, Siva A et al. Primary Progressive Multiple Sclerosis Evolving From Radiologically Isolated Syndrome. Ann Neurol 2016; 79:288–94CrossRef
2.
Zurück zum Zitat Lassmann H, van Horssen J, Mahad D. Progressive multiple sclerosis: pathology and pathogenesis. Nat Rev Neurol 2012; 8:647–56CrossRef Lassmann H, van Horssen J, Mahad D. Progressive multiple sclerosis: pathology and pathogenesis. Nat Rev Neurol 2012; 8:647–56CrossRef
3.
Zurück zum Zitat Kutzelnigg A, Lucchinetti CF, Stadelmann C et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 2005; 128: 2705–12CrossRef Kutzelnigg A, Lucchinetti CF, Stadelmann C et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 2005; 128: 2705–12CrossRef
4.
Zurück zum Zitat Nikic I, Merkler D, Sorbara C et al. A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nature medicine 2011; 17:495–9CrossRef Nikic I, Merkler D, Sorbara C et al. A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nature medicine 2011; 17:495–9CrossRef
5.
Zurück zum Zitat Heppner FL, Greter M, Marino D et al. Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nature medicine 2005; 11:146–52CrossRef Heppner FL, Greter M, Marino D et al. Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nature medicine 2005; 11:146–52CrossRef
6.
Zurück zum Zitat Giuliani F, Hader W, Yong VW. Minocycline attenuates T cell and microglia activity to impair cytokine production in T cell-microglia interaction. Journal of leukocyte biology 2005; 78:135–43CrossRef Giuliani F, Hader W, Yong VW. Minocycline attenuates T cell and microglia activity to impair cytokine production in T cell-microglia interaction. Journal of leukocyte biology 2005; 78:135–43CrossRef
7.
Zurück zum Zitat Brundula V, Rewcastle NB, Metz LM et al. Targeting leukocyte MMPs and transmigration: minocycline as a potential therapy for multiple sclerosis. Brain 2002; 125:1297–1308CrossRef Brundula V, Rewcastle NB, Metz LM et al. Targeting leukocyte MMPs and transmigration: minocycline as a potential therapy for multiple sclerosis. Brain 2002; 125:1297–1308CrossRef
8.
Zurück zum Zitat Miron VE, Boyd A, Zhao JW et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nature neuroscience 2013; 16:1211–8CrossRef Miron VE, Boyd A, Zhao JW et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nature neuroscience 2013; 16:1211–8CrossRef
9.
Zurück zum Zitat Koch MW, Zabad R, Giuliani F et al. Hydroxychloroquine reduces microglial activity and attenuates experimental autoimmune encephalomyelitis. Journal of the neurological sciences 2015; 358:131–7CrossRef Koch MW, Zabad R, Giuliani F et al. Hydroxychloroquine reduces microglial activity and attenuates experimental autoimmune encephalomyelitis. Journal of the neurological sciences 2015; 358:131–7CrossRef
10.
Zurück zum Zitat Bigaud M, Guerini D, Billich A et al. Second generation S1P pathway modulators: research strategies and clinical developments. Biochimica et biophysica acta 2014; 1841:745–58CrossRef Bigaud M, Guerini D, Billich A et al. Second generation S1P pathway modulators: research strategies and clinical developments. Biochimica et biophysica acta 2014; 1841:745–58CrossRef
11.
Zurück zum Zitat Choi JW, Gardell SE, Herr DR et al. FTY720 (fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 (S1P1) modulation. PNAS 2011; 108:751–6CrossRef Choi JW, Gardell SE, Herr DR et al. FTY720 (fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 (S1P1) modulation. PNAS 2011; 108:751–6CrossRef
12.
Zurück zum Zitat Lublin F, Miller DH, Freedman MS et al. Oral fingolimod in primary progressive multiple sclerosis (INFORMS): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet 2016, DOI: 10.1016/s0140-6736(15)01314-8 Lublin F, Miller DH, Freedman MS et al. Oral fingolimod in primary progressive multiple sclerosis (INFORMS): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet 2016, DOI: 10.1016/s0140-6736(15)01314-8
13.
Zurück zum Zitat Kappos L, Bar-Or A, Cree BAC et al. Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double-blind, randomised, phase 3 study. Lancet 2018; 391:1263–73CrossRef Kappos L, Bar-Or A, Cree BAC et al. Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double-blind, randomised, phase 3 study. Lancet 2018; 391:1263–73CrossRef
14.
Zurück zum Zitat Peferoen LA, Breur M, van de Berg S et al. Ageing and recurrent episodes of neuroinflammation promote progressive experimental autoimmune encephalomyelitis in Biozzi ABH mice. Immunology 2016; 149:146–56CrossRef Peferoen LA, Breur M, van de Berg S et al. Ageing and recurrent episodes of neuroinflammation promote progressive experimental autoimmune encephalomyelitis in Biozzi ABH mice. Immunology 2016; 149:146–56CrossRef
15.
Zurück zum Zitat Wong WT. Microglial aging in the healthy CNS: phenotypes, drivers, and rejuvenation. Frontiers in cellular neuroscience 2013; 7:22PubMedPubMedCentral Wong WT. Microglial aging in the healthy CNS: phenotypes, drivers, and rejuvenation. Frontiers in cellular neuroscience 2013; 7:22PubMedPubMedCentral
16.
Zurück zum Zitat Hametner S, Wimmer I, Haider L et al. Iron and neurodegeneration in the multiple sclerosis brain. Ann Neurol 2013; 74:848–61CrossRef Hametner S, Wimmer I, Haider L et al. Iron and neurodegeneration in the multiple sclerosis brain. Ann Neurol 2013; 74:848–61CrossRef
17.
Zurück zum Zitat Stephenson E, Nathoo N, Mahjoub Y et al. Iron in multiple sclerosis: roles in neurodegeneration and repair. Nat Rev Neurol 2014; 10:459–68CrossRef Stephenson E, Nathoo N, Mahjoub Y et al. Iron in multiple sclerosis: roles in neurodegeneration and repair. Nat Rev Neurol 2014; 10:459–68CrossRef
18.
Zurück zum Zitat Haider L, Fischer MT, Frischer JM et al. Oxidative damage in multiple sclerosis lesions. Brain 2011; 134:1914–24CrossRef Haider L, Fischer MT, Frischer JM et al. Oxidative damage in multiple sclerosis lesions. Brain 2011; 134:1914–24CrossRef
20.
Zurück zum Zitat Lynch SG, Peters K, LeVine SM. Desferrioxamine in chronic progressive multiple sclerosis: a pilot study. Multiple sclerosis (Houndmills, Basingstoke, England) 1996; 2:157–60CrossRef Lynch SG, Peters K, LeVine SM. Desferrioxamine in chronic progressive multiple sclerosis: a pilot study. Multiple sclerosis (Houndmills, Basingstoke, England) 1996; 2:157–60CrossRef
21.
Zurück zum Zitat Lynch SG, Fonseca T, LeVine SM. A multiple course trial of desferrioxamine in chronic progressive multiple sclerosis. Cellular and molecular biology (Noisy-le-Grand, France) 2000; 46:865–9 Lynch SG, Fonseca T, LeVine SM. A multiple course trial of desferrioxamine in chronic progressive multiple sclerosis. Cellular and molecular biology (Noisy-le-Grand, France) 2000; 46:865–9
22.
Zurück zum Zitat Faissner S, Mahjoub Y, Mishra M et al. Unexpected additive effects of minocycline and hydroxychloroquine in models of multiple sclerosis: Prospective combination treatment for progressive disease? Multiple sclerosis (Houndmills, Basingstoke, England) 2017; DOI: 10.1177/1352458517728811 Faissner S, Mahjoub Y, Mishra M et al. Unexpected additive effects of minocycline and hydroxychloroquine in models of multiple sclerosis: Prospective combination treatment for progressive disease? Multiple sclerosis (Houndmills, Basingstoke, England) 2017; DOI: 10.1177/1352458517728811
23.
Zurück zum Zitat Linker RA, Lee DH, Ryan S et al. Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain 2011; 134:678–92CrossRef Linker RA, Lee DH, Ryan S et al. Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain 2011; 134:678–92CrossRef
24.
Zurück zum Zitat Strassburger-Krogias K, Ellrichmann G, Krogias C et al. Fumarate treatment in progressive forms of multiple sclerosis: first results of a single-center observational study. Ther Adv Neurol Disord 2014; 7:232–8CrossRef Strassburger-Krogias K, Ellrichmann G, Krogias C et al. Fumarate treatment in progressive forms of multiple sclerosis: first results of a single-center observational study. Ther Adv Neurol Disord 2014; 7:232–8CrossRef
25.
Zurück zum Zitat Trapp BD, Peterson J, Ransohoff RM et al. Axonal transection in the lesions of multiple sclerosis. N Engl J Med 1998; 338:278–85CrossRef Trapp BD, Peterson J, Ransohoff RM et al. Axonal transection in the lesions of multiple sclerosis. N Engl J Med 1998; 338:278–85CrossRef
26.
Zurück zum Zitat Sorbara CD, Wagner NE, Ladwig A et al. Pervasive axonal transport deficits in multiple sclerosis models. Neuron 2014; 84:1183–90CrossRef Sorbara CD, Wagner NE, Ladwig A et al. Pervasive axonal transport deficits in multiple sclerosis models. Neuron 2014; 84:1183–90CrossRef
27.
Zurück zum Zitat Craner MJ, Newcombe J, Black JA et al. Molecular changes in neurons in multiple sclerosis: altered axonal expression of Nav1.2 and Nav1.6 sodium channels and Na+/Ca2+ exchanger. PNAS 2004; 101:8168–73CrossRef Craner MJ, Newcombe J, Black JA et al. Molecular changes in neurons in multiple sclerosis: altered axonal expression of Nav1.2 and Nav1.6 sodium channels and Na+/Ca2+ exchanger. PNAS 2004; 101:8168–73CrossRef
28.
Zurück zum Zitat Waxman SG. Mechanisms of disease: sodium channels and neuroprotection in multiple sclerosis-current status. Nature clinical practice Neurology 2008; 4:159–69CrossRef Waxman SG. Mechanisms of disease: sodium channels and neuroprotection in multiple sclerosis-current status. Nature clinical practice Neurology 2008; 4:159–69CrossRef
29.
Zurück zum Zitat Plemel JR, Liu WQ, Yong VW. Remyelination therapies: a new direction and challenge in multiple sclerosis. Nature reviews Drug discovery 2017; DOI: 10.1038/nrd.2017.115CrossRefPubMed Plemel JR, Liu WQ, Yong VW. Remyelination therapies: a new direction and challenge in multiple sclerosis. Nature reviews Drug discovery 2017; DOI: 10.1038/nrd.2017.115CrossRefPubMed
30.
Zurück zum Zitat Mei F, Fancy SPJ, Shen YA et al. Micropillar arrays as a high-throughput screening platform for therapeutics in multiple sclerosis. Nature medicine 2014; 20:954–60CrossRef Mei F, Fancy SPJ, Shen YA et al. Micropillar arrays as a high-throughput screening platform for therapeutics in multiple sclerosis. Nature medicine 2014; 20:954–60CrossRef
31.
Zurück zum Zitat Green AJ, Gelfand JM, Cree BA et al. Clemastine fumarate as a remyelinating therapy for multiple sclerosis (ReBUILD): a randomised, controlled, double-blind, crossover trial. Lancet 2017; 390:2481–9CrossRef Green AJ, Gelfand JM, Cree BA et al. Clemastine fumarate as a remyelinating therapy for multiple sclerosis (ReBUILD): a randomised, controlled, double-blind, crossover trial. Lancet 2017; 390:2481–9CrossRef
32.
Zurück zum Zitat Tourbah A, Lebrun-Frenay C, Edan G et al. MD1003 (high-dose biotin) for the treatment of progressive multiple sclerosis: A randomised, double-blind, placebo-controlled study. Multiple sclerosis (Houndmills, Basingstoke, England) 2016; DOI: 10.1177/1352458516667568CrossRefPubMedPubMedCentral Tourbah A, Lebrun-Frenay C, Edan G et al. MD1003 (high-dose biotin) for the treatment of progressive multiple sclerosis: A randomised, double-blind, placebo-controlled study. Multiple sclerosis (Houndmills, Basingstoke, England) 2016; DOI: 10.1177/1352458516667568CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Mi S, Hu B, Hahm K et al. LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis. Nature medicine 2007; 13:1228–33CrossRef Mi S, Hu B, Hahm K et al. LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis. Nature medicine 2007; 13:1228–33CrossRef
34.
Zurück zum Zitat Howell OW, Reeves CA, Nicholas R et al. Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain 2011; 134:2755–71CrossRef Howell OW, Reeves CA, Nicholas R et al. Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain 2011; 134:2755–71CrossRef
35.
Zurück zum Zitat Choi SR, Howell OW, Carassiti D et al. Meningeal inflammation plays a role in the pathology of primary progressive multiple sclerosis. Brain 2012; 135:2925–37CrossRef Choi SR, Howell OW, Carassiti D et al. Meningeal inflammation plays a role in the pathology of primary progressive multiple sclerosis. Brain 2012; 135:2925–37CrossRef
36.
Zurück zum Zitat Magliozzi R, Howell OW, Reeves C et al. A Gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Ann Neurol 2010; 68:477–93CrossRef Magliozzi R, Howell OW, Reeves C et al. A Gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Ann Neurol 2010; 68:477–93CrossRef
37.
Zurück zum Zitat Hawker K, O’Connor P, Freedman MS et al. Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. Ann Neurol 2009; 66:460–71CrossRef Hawker K, O’Connor P, Freedman MS et al. Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. Ann Neurol 2009; 66:460–71CrossRef
38.
Zurück zum Zitat Montalban X, Hauser SL, Kappos L et al. Ocrelizumab versus Placebo in Primary Progressive Multiple Sclerosis. N Engl J Med 2017; 376:209–20CrossRef Montalban X, Hauser SL, Kappos L et al. Ocrelizumab versus Placebo in Primary Progressive Multiple Sclerosis. N Engl J Med 2017; 376:209–20CrossRef
39.
Zurück zum Zitat Kappos L, Weinshenker B, Pozzilli C et al. Interferon beta-1b in secondary progressive MS: a combined analysis of the two trials. Neurology 2004; 63:1779–87CrossRef Kappos L, Weinshenker B, Pozzilli C et al. Interferon beta-1b in secondary progressive MS: a combined analysis of the two trials. Neurology 2004; 63:1779–87CrossRef
40.
Zurück zum Zitat Patti F, Messina S, Solaro C et al. Efficacy and safety of cannabinoid oromucosal spray for multiple sclerosis spasticity. J Neurol Neurosurg Psychiatry 2016; 87:944–51CrossRef Patti F, Messina S, Solaro C et al. Efficacy and safety of cannabinoid oromucosal spray for multiple sclerosis spasticity. J Neurol Neurosurg Psychiatry 2016; 87:944–51CrossRef
41.
Zurück zum Zitat Hoffmann V, Kuhn W, Schimrigk S et al. Repeat intrathecal triamcinolone acetonide application is beneficial in progressive MS patients. European Journal of Neurology 2006; 13:72–6CrossRef Hoffmann V, Kuhn W, Schimrigk S et al. Repeat intrathecal triamcinolone acetonide application is beneficial in progressive MS patients. European Journal of Neurology 2006; 13:72–6CrossRef
42.
Zurück zum Zitat Neill J, Belan I, Ried K. Effectiveness of non-pharmacological interventions for fatigue in adults with multiple sclerosis, rheumatoid arthritis, or systemic lupus erythematosus: a systematic review. Journal of Advanced Nursing 2006; 56:617–35CrossRef Neill J, Belan I, Ried K. Effectiveness of non-pharmacological interventions for fatigue in adults with multiple sclerosis, rheumatoid arthritis, or systemic lupus erythematosus: a systematic review. Journal of Advanced Nursing 2006; 56:617–35CrossRef
43.
Zurück zum Zitat Gross CC, Schulte-Mecklenbeck A, Klinsing S et al. Dimethyl fumarate treatment alters circulating T helper cell subsets in multiple sclerosis. Neurol Neuroimmunol Neuroinflamm 2016; 3:e183CrossRef Gross CC, Schulte-Mecklenbeck A, Klinsing S et al. Dimethyl fumarate treatment alters circulating T helper cell subsets in multiple sclerosis. Neurol Neuroimmunol Neuroinflamm 2016; 3:e183CrossRef
44.
Zurück zum Zitat Parodi B, Rossi S, Morando S et al. Fumarates modulate microglia activation through a novel HCAR2 signaling pathway and rescue synaptic dysregulation in inflamed CNS. Acta neuropathologica 2015; 130:279–95CrossRef Parodi B, Rossi S, Morando S et al. Fumarates modulate microglia activation through a novel HCAR2 signaling pathway and rescue synaptic dysregulation in inflamed CNS. Acta neuropathologica 2015; 130:279–95CrossRef
45.
Zurück zum Zitat Metz LM, Li DKB, Traboulsee AL et al. Trial of Minocycline in a Clinically Isolated Syndrome of Multiple Sclerosis. N Engl J Med 2017; 376:2122–33CrossRef Metz LM, Li DKB, Traboulsee AL et al. Trial of Minocycline in a Clinically Isolated Syndrome of Multiple Sclerosis. N Engl J Med 2017; 376:2122–33CrossRef
46.
Zurück zum Zitat Gentile A, Musella A, Bullitta S et al. Siponimod (BAF312) prevents synaptic neurodegeneration in experimental multiple sclerosis. Journal of Neuroinflammation 2016; 13:207CrossRef Gentile A, Musella A, Bullitta S et al. Siponimod (BAF312) prevents synaptic neurodegeneration in experimental multiple sclerosis. Journal of Neuroinflammation 2016; 13:207CrossRef
47.
Zurück zum Zitat Allaman I, Fiumelli H, Magistretti PJ et al. Fluoxetine regulates the expression of neurotrophic/growth factors and glucose metabolism in astrocytes. Psychopharmacology 2011; 216:75–84CrossRef Allaman I, Fiumelli H, Magistretti PJ et al. Fluoxetine regulates the expression of neurotrophic/growth factors and glucose metabolism in astrocytes. Psychopharmacology 2011; 216:75–84CrossRef
48.
Zurück zum Zitat Gilgun-Sherki Y, Panet H, Melamed E et al. Riluzole suppresses experimental autoimmune encephalomyelitis: implications for the treatment of multiple sclerosis. Brain research 2003; 989:196–204CrossRef Gilgun-Sherki Y, Panet H, Melamed E et al. Riluzole suppresses experimental autoimmune encephalomyelitis: implications for the treatment of multiple sclerosis. Brain research 2003; 989:196–204CrossRef
49.
Zurück zum Zitat Kalkers NF, Barkhof F, Bergers E et al. The effect of the neuroprotective agent riluzole on MRI parameters in primary progressive multiple sclerosis: a pilot study. Multiple sclerosis (Houndmills, Basingstoke, England) 2002; 8:532–33CrossRef Kalkers NF, Barkhof F, Bergers E et al. The effect of the neuroprotective agent riluzole on MRI parameters in primary progressive multiple sclerosis: a pilot study. Multiple sclerosis (Houndmills, Basingstoke, England) 2002; 8:532–33CrossRef
50.
Zurück zum Zitat Tran JQ, Rana J, Barkhof F et al. Randomized phase I trials of the safety/tolerability of anti-LINGO-1 monoclonal antibody BIIB033. Neurol Neuroimmunol Neuroinflamm 2014; 1:e18CrossRef Tran JQ, Rana J, Barkhof F et al. Randomized phase I trials of the safety/tolerability of anti-LINGO-1 monoclonal antibody BIIB033. Neurol Neuroimmunol Neuroinflamm 2014; 1:e18CrossRef
Metadaten
Titel
Fortschreitender Krankheitsverlauf
Aktuelle Therapien und Zukunftsoptionen für die progrediente Multiple Sklerose
verfasst von
Dr. med. Simon Faissner
Prof. Dr. med. Ralf Gold
Publikationsdatum
18.04.2018
Verlag
Springer Medizin
Erschienen in
InFo Neurologie + Psychiatrie / Ausgabe 4/2018
Print ISSN: 1437-062X
Elektronische ISSN: 2195-5166
DOI
https://doi.org/10.1007/s15005-018-2369-4

Weitere Artikel der Ausgabe 4/2018

InFo Neurologie + Psychiatrie 4/2018 Zur Ausgabe