Skip to main content
Erschienen in: Journal of Translational Medicine 1/2011

Open Access 01.12.2011 | Methodology

Multiplex serum biomarker assessments: technical and biostatistical issues

verfasst von: Lisa H Butterfield, Douglas M Potter, John M Kirkwood

Erschienen in: Journal of Translational Medicine | Ausgabe 1/2011

Abstract

Background

Identification of predictive and prognostic biomarkers for patients with disease and undergoing different therapeutic options is a very active area of investigation. Many of these studies seek biomarkers among circulating proteins accessed in blood. Many levels of standardization in materials and procedures have been identified which can impact the resulting data.

Methods

Here, we have observed unexpected variability in levels of commonly tested analytes in serum which were processed and stored under standardized conditions. We have identified apparent changes in cytokine, chemokine and growth factor levels detected by multiplex Luminex assay in melanoma patient and healthy donor serum samples, over storage time at -80°C. Controls included Luminex kit standards, multiplexed cytokine standards and WHO cytokine controls. Data were analyzed by Wilcoxon rank-sum testing and Spearman's test for correlations.

Results

The interpretation of these changes is confounded by lot-to-lot kit standard curve reagent changes made by a single manufacturer of Luminex kits.

Conclusions

This study identifies previously unknown sources of variation in a commonly used biomarker assay, and suggests additional levels of controls needed for identification of true changes in circulating protein levels.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1479-5876-9-173) contains supplementary material, which is available to authorized users.
and John M Kirkwood contributed equally to this work.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

LHB designed experiments, reviewed data, supervised assay conduct and wrote sections of the manuscript; DMP helped design experiments, designed and performed all statistical analyses and wrote sections of the manuscript; JMK provided many patient blood samples, reviewed data and wrote sections of the manuscript. All authors read and approved the final manuscript.
Abkürzungen
IL
interleukin
TNF
tumor necrosis factor
GM-CSF
granulocyte-macrophage colony stimulating factor
PBMC
peripheral blood mononuclear cells
FDA
Food and Drug Administration
FBS
fetal bovine serum.

Background

To improve the clinical efficacy of immunotherapies and our ability to stratify patients rationally for therapeutic intervention, biomarkers are critical to progress. The FDA's Critical Path prioritizes development of biomarkers, including a focus on aspects of: Biospecimens, Analytical Performance, Standardization and Harmonization and Bioinformatics. Accurate biomarkers offer the prospect for earlier diagnosis, improved precision of application of expensive and toxic therapies on the optimal patient populations, monitoring disease progression and therapeutic benefits as well as accelerating drug development and discovery. Guidelines for incorporation of biomarker studies in early clinical trials of novel agents have been published [1].
There is a critical need for development and validation of biomarkers to identify patients who can benefit from a particular form of immunotherapy. Only a fraction of patients benefit from IFN-α treatment [2], only a fraction of patients can achieve durable regressions in response to antigen vaccination [3], or antibody therapies, and we do not yet know the mechanisms responsible for therapeutic benefit. Despite substantial efforts from many groups, we do not know which parameters of immune response (and which assays used to assess these parameters) yield optimal results for efficacy analysis [47]. A major reason for this has been that objective clinical response rates are often below 10%, confounding the measurement of significant correlations between biomarkers and clinical responses in studies of modest size. Another important issue is that assay results may depend on biological specimen handling before assessment, and on methodological differences in complex, high throughput assays.
A number of studies in melanoma have identified candidate biomarkers of response to therapy. These range from circulating cytokines and growth factors [8, 9], gene expression profiles in tumors [10], circulating tumor cells [11], serum autoantibody profiling [12] and tumor specific T cell IFN-γ production [13] to molecular signaling pathways in tumors [14] and the nature of tumor infiltrating cells [15]. The vast majority of candidate biomarkers have not yet achieved routine clinical use due to lack of reproducibility, need for new technology and equipment, need for high quality tumor samples or high cost. The relative ease of collecting, processing, storing and shipping blood has made it a common resource for biomarker testing.
Several reports have identified phenotypic and functional changes in blood cells and serum components when the blood is held for hours or days and at different temperatures before processing [1618]. These time-dependent and temperature-dependent effects should be controlled for to the extent possible before blood processing. Standardized processing procedures by trained and competency-tested personnel can also improve immunologic assay data consistency [19]. In addition, use of freezers for sample storage that are monitored for temperature stability and that have 24 hours-a-day alarm response eliminates concerns that samples might undergo freeze-thaw cycles or be otherwise compromised by temperature changes during storage. Many of these central laboratory procedures for processing, storage and equipment maintenance are mandated by accreditation groups such as CLIA and FACT, and are described in resources from CLSI [2022].
During an investigation of biomarkers of prolonged survival after IFN-α treatment in banked melanoma patient serum samples, we discovered a number of both technical and biostatistical analysis issues [23]. Our preliminary results identified a large number of serum cytokines that appeared to correlate significantly with survival. However, further dissection of the data revealed a number of technical issues that made interpretation of the data impossible.
Here, we have performed a time course analysis of cytokines, chemokines and growth factors measured in the banked serum of healthy donors and melanoma patients stored for various intervals, and analyzed by multiplex Luminex assay. We find that a number of these analytes appear to be unstable during storage. We have also tested several aspects of the Luminex assay performance and identified a number of concerns with these multiplexed assays. Biostatistical tests indicate that despite several layers of procedural standardization and levels of controls, reliable multiplexed cytokine and chemokine determinations may be compromised by length of time in storage and/or by the changes regularly made by assay kit manufacturers to different lots and the analyte standards included. These results raise concerns about serum biomarker studies and suggest that additional controls may be required to confidently compare levels over time and between lots of reagents from the same manufacturer.

Methods

Study subjects

All serum samples were obtained after written informed consent, and under IRB approved protocols of investigation at the University of Pittsburgh. The samples received in 2005 were obtained from 23 patients at two clinical sites (Pennsylvania and Indiana). The UPCI #96-099 banking protocol was utilized for the five 2010 melanoma patient sera tested. The UPCI #04-001 healthy donor blood collection protocol was used for the blood obtained from 10 healthy donors in 2010.

Blood processing and banking

For serum collection, red top vaccutainer tubes (no anticoagulant) provided by our laboratory (Becton Dickinson #6430) in kits were used. Upon arrival in the lab, the samples are checked for proper identification, given accession numbers, and either processed immediately or (if received after 4 pm) put in the refrigerator (at 4°C) for processing the next morning. All samples were processed within 24 hours, including those drawn at external sites and shipped at ambient temperature overnight in insulated shipping containers. All processing was performed by technologists who received the same training, and the laboratory SOP #0108 was followed. Technologists also undergo annual competency training. Samples were centrifuged for 10 min at 2, 500 rpm in a refrigerated centrifuge at 4°C, then the serum was aliquoted into polypropylene freezer vials at 1.1 mL per vial and immediately placed in a -80°C freezer. All samples were stored in a monitored freezer until testing, freezer temperatures did not fluctuate above -55°C (during brief periods of high use). Samples were thawed before testing and repeated testing was performed on separate aliquots to eliminate variability from freeze-thaw cycles. The laboratory is certified under the Pennsylvania Department of Health, College of American Pathologists (CAP) and Clinical Laboratory Improvement Amendments (CLIA for Histocompatibility and General Immunology). The laboratory is registered with the FDA, and maintains a facilities master file (BB-MF-12244). The exploratory Luminex assay reported here is not used for clinical decision making, and is not a CLIA-certified assay.

Luminex assay and controls

The Luminex kits were obtained from the same manufacturer, which changed ownership during the period of the study (BioSource, Invitrogen, Life Technologies). Assays were performed only on serum samples that had been stored at -80°C. Serum samples were thawed in a refrigerator overnight (healthy donor controls, < 12 hours total time) or at room temperature the day of the assay (patient samples), clarified in a microfuge for 10 min at 1, 000 g, then diluted with the assay diluent provided per assay manufacturer's instructions. Healthy donor and control samples were run in duplicate, but large numbers of patient sera were run in singlets. The same trained technologist performed all of the assays reported herein, according to the same laboratory SOP #0037). The software used for all assays was the BioPlex System BioPlex Manager 4.0, which uses 5-parameter logistic regression. Each sample acquired ≥ 100 bead events, per manufacturers' instructions. Analytical sensitivity was calculated based on two standard deviations from the background MFI of the standard curve. There were no changes in the antibodies used for the analytes of interest reported here, and the standards were benchmarked in the same way over the time period tested here. R&D QC controls (R&D Systems QC02) are reconstituted with assay diluent from the Hu Extracellular buffer kit LHB0001 (BioSource). Each lot provides expected values for several commonly tested cytokines (as measured by R&D Systems ELISA assays). Additional kit details are presented in Additional File 1, Table S1.
To address potential inter-analysis variability, 770 data points from 2005 and 430 data points from 2010 were re-analyzed at the same time (2011) with version 6.0 software, on the original machine. There were 0/1, 200 changes in the resulting absolute values obtained.

WHO cytokine standards

WHO cytokine standards were resuspended as follows: 117187 GM-CSF WHO 88/646 10, 000 IU: contents of the ampoule were dissolved with 0.5 mL sterile distilled water and brought up to 1 mL with PBS. Further 1:10 dilution was performed with AIM V (Invitrogen) medium. 117173 IL-4 WHO 88/656 0.1 μg = 1, 000 arbitrary units per ampoule: contents of the ampule were resuspended with PBS/1% BSA, and the 1:10 dilution was performed with AIM V. 117184 IL-10 WHO 92/516 1 μg = 5, 000 RU per ampoule: contents of the ampoule were dissolved with 0.5 mL sterile distilled water and then brought up to 1 mL with PBS. Further 1:10 dilution was performed with AIM V. 117177 IL-8 WHO 89/520 1 μg = 1, 000 RU per ampoule = 1, 000, 000 pg/mL: contents of the ampoule were resuspended with PBS/1% BSA and the 1:10 dilution was performed with AIM V. To assay the WHO standards, each was diluted 1:10 (20 μL WHO standard dilution (above) + 180 μL assay diluent) and 1:50 (10 μL WHO + 490 μL assay diluent). The dilutions were treated as samples in the assay, such that the final dilutions were 1:20 and 1:100, relative to the Luminex kit standard curve (the assayed well contains 50 μL of the dilution + 50 μL of assay diluent).

Biostatistical Methods

Analyte concentrations were compared at two time points with a one-sample Wilcoxon rank-sum test on the ratio of the two concentrations. Correlation was assessed with Spearman's test. All p-values are two-sided. Assay results below the lower limit of detection or above the upper limit of quantitation were not used in the analysis.

Results and Discussion

During the analysis of a retrospective biomarker study conducted with a set of banked sera from melanoma patients [23], we discovered a potential correlation between the levels of analytes measured by Luminex and the time that the sera were stored at -80°C. Therefore, we examined several aspects of serum storage and the Luminex assay.

Repeat testing in 2010 of sera stored in 2005

Our first sample set consisted of 23 melanoma patient sera (the "old patients") who had a blood sample drawn in 2005, and had a Luminex assay performed on serum samples, on either 10/31/2005, 11/01/2005 or 2/17/2006; we refer to these as the "early" assays. To determine any changes over storage time, we thawed aliquots (not previously thawed) and tested a subset of the analytes originally tested, again by Luminex (Table 1). Unexpectedly, we identified a number of apparent changes in analyte levels. We repeated these measurements up to three times (depending on the number of previously untouched aliquots remaining) for these 23 samples: (2/02/10, 5/13/2010 and 8/11/2010)--the "late" assays. Seven of the 10 analytes we examined had highly significant changes during the approximately 5 years of storage at -80°C.
Table 1
Old patient Serum Samples
Sample
Date
Drawn
Draw
Date
Assay
Date
IL-4
pg/mL
IL-6
pg/mL
IL-8
pg/mL
IL-10
pg/mL
TNF-α
pg/mL
IFN-g
pg/mL
GM-CSF
pg/mL
IP-10
pg/mL
MIG
pg/mL
MCP-1
pg/mL
patient 1
6/2/2005
6/1/2005
10/31/2005
< 5
217
64
< 10
38
29
< 15
1339
62
10145
   
8/11/2010
25
106
353
6
< 10
28
< 15
1214
48
> 7200
   
8/11/2010
16
98
370
6
< 10
29
< 15
1195
42
> 7200
patient 2
6/2/2005
6/1/2005
10/31/2005
< 5
41
24
< 10
19
23
< 15
> 2800
130
2725
   
8/11/2010
13
20
132
7
< 10
24
< 15
> 9600
164
3149
   
8/11/2010
13
22
144
7
< 10
26
< 15
> 9600
162
2989
patient 3
6/2/2005
6/1/2005
10/31/2005
< 5
13
23
< 10
7
< 14
< 15
55
62
384
   
8/11/2010
5
5
125
5
< 10
< 5
< 15
83
90
419
   
8/11/2010
7
6
151
5
< 10
< 5
< 15
83
98
455
patient 4
7/30/2005
7/30/2005
11/1/2005
32
49
17
17
83
95
173
64
241
394
   
2/2/2010
47
17
75
20
21
63
132
87
209
633
   
5/13/2010
42
14
73
20
20
51
124
84
153
554
   
5/13/2010
42
15
69
22
21
62
133
84
154
518
   
8/11/2010
55
21
89
27
28
118
89
90
213
140
   
8/11/2010
47
23
87
33
32
144
105
90
209
128
patient 5
8/9/2005
8/9/2005
11/1/2005
12
2199
266
43
100
178
< 15
> 2800
407
> 17800
   
2/2/2010
6
1105
1469
< 14
17
159
37
2178
374
11991
   
5/13/2010
13
949
1494
< 14
16
140
36
2476
313
10275
   
5/13/2010
12
971
1428
< 14
13
121
24
2233
300
9045
patient 6
8/9/2005
8/9/2005
11/1/2005
14
592
171
28
52
229
< 15
> 2800
2586
10705
   
2/2/2010
10
350
1016
< 14
< 10
198
37
2176
2039
11703
   
5/13/2010
13
275
971
< 14
< 10
155
18
> 2980
2276
9492
   
5/13/2010
< 5
270
968
< 14
< 10
160
11
> 2980
2294
10581
patient 7
8/15/2005
8/15/2005
11/1/2005
< 5
19
47
< 5
13
< 14
< 15
285
40
2565
   
5/13/2010
8
24
242
< 14
< 10
31
< 15
445
25
5453
   
5/13/2010
< 5
20
234
< 14
< 10
27
< 15
360
25
5088
patient 8
8/20/2005
8/20/2005
11/1/2005
36
48
17
17
80
111
197
27
182
379
   
2/2/2010
46
17
99
23
23
78
146
45
172
614
   
5/13/2010
48
16
87
26
25
84
175
40
128
550
   
5/13/2010
50
15
84
22
21
70
151
41
117
544
   
8/11/2010
33
15
89
23
21
103
85
47
136
119
   
8/11/2010
49
21
107
29
30
136
95
48
150
125
patient 9
9/15/2005
9/15/2005
11/1/2005
42
67
21
11
72
122
208
275
383
1119
   
5/13/2010
77
22
78
28
36
80
224
346
328
2162
   
5/13/2010
80
22
76
27
34
87
233
347
306
2270
patient 10
9/19/2005
9/19/2005
2/17/2006
< 5
19
45
< 5
13
< 7
< 15
183
42
1656
   
5/13/2010
8
24
287
< 14
< 10
26
< 15
350
21
5509
   
5/13/2010
8
22
290
< 14
< 10
29
< 15
347
17
5021
patient 11
9/16/2005
9/22/2005
11/1/2005
48
94
2675
24
142
135
201
902
419
10026
   
5/13/2010
85
37
12663
29
39
114
272
988
300
13807
   
5/13/2010
77
37
13690
27
34
114
266
1337
285
14377
   
8/11/2010
93
41
14814
26
59
72
219
716
340
> 7200
   
8/11/2010
110
48
12823
30
58
80
238
793
364
> 7200
patient 12
9/28/2005
9/28/2005
2/17/2006
62
92
27
39
82
183
328
51
270
436
   
2/2/2010
46
22
92
36
20
118
222
88
200
909
   
5/13/2010
43
18
75
35
20
109
221
76
125
741
   
5/13/2010
34
18
88
35
22
124
208
78
165
755
patient 13
10/6/2005
10/5/2005
11/1/2005
28
67
51
8
80
77
131
877
326
6818
   
8/11/2010
83
42
342
29
55
64
225
725
332
> 7200
   
8/11/2010
116
44
335
33
72
79
228
802
356
7345
patient 14
10/7/2005
10/6/2005
11/1/2005
42
67
24
18
66
122
156
353
711
1266
   
8/11/2010
89
39
118
35
66
59
237
314
906
1088
   
8/11/2010
70
35
114
30
53
52
189
328
891
1057
patient 15
10/12/2005
---
2/17/2006
51
76
26
32
86
180
276
63
257
395
   
2/2/2010
38
21
113
48
23
146
255
107
245
801
   
5/13/2010
35
17
95
44
23
116
205
89
170
601
   
5/13/2010
28
15
100
42
20
107
224
82
168
576
patient 16
10/17/2005
---
2/17/2006
< 5
54
60
< 5
34
< 7
< 15
434
55
3950
   
5/13/2010
5
41
368
< 14
< 10
39
< 15
780
25
10159
   
5/13/2010
11
43
373
< 14
< 10
39
< 15
846
23
10552
   
8/11/2010
21
52
402
6
< 10
6
15
464
35
4616
   
8/11/2010
8
29
391
< 5
< 10
< 5
< 15
465
35
4777
patient 17
11/3/2005
11/3/2005
2/17/2006
23
52
11
< 5
49
75
111
155
283
686
   
5/13/2010
72
23
57
24
31
67
221
198
288
1734
   
5/13/2010
17
9
27
< 14
< 10
14
53
186
218
1706
   
8/11/2010
90
36
63
28
60
67
222
203
370
757
   
8/11/2010
85
30
60
24
52
56
213
202
325
705
patient 18
11/16/2005
--
2/17/2006
7
18
14
< 5
20
29
44
41
79
327
   
2/2/2010
16
15
74
< 14
< 10
34
51
59
93
807
   
5/13/2010
10
12
71
< 14
< 10
20
24
57
50
611
   
5/13/2010
8
10
72
< 14
< 10
24
30
52
48
617
patient 19
11/16/2005
---
2/17/2006
10
48
18
< 5
41
39
67
144
96
1143
   
2/2/2010
16
30
116
< 14
< 10
43
75
248
108
2812
   
5/13/2010
13
22
100
< 14
10
35
67
202
75
2101
   
5/13/2010
11
24
108
< 14
< 10
38
61
220
67
2304
patient 20
12/8/2005
12/8/2005
2/17/2006
27
31
10
< 5
62
73
149
35
162
452
   
2/2/2010
49
17
61
24
24
89
146
60
162
1422
   
5/13/2010
43
12
48
19
24
70
137
52
108
1114
   
5/13/2010
41
12
50
21
21
77
137
55
106
1234
patient 21
12/12/2005
12/9/2005
2/17/2006
< 5
24
41
< 5
16
< 7
< 15
537
35
1236
   
5/13/2010
8
22
235
< 14
< 10
29
< 15
682
25
3153
   
5/13/2010
10
23
233
< 14
< 10
27
< 15
789
25
3457
   
8/11/2010
14
29
235
11
< 10
7
< 15
518
34
1423
   
8/11/2010
13
25
238
11
< 10
6
< 15
546
39
1322
patient 22
1/26/2006
1/25/2006
2/17/2006
8
30
4
< 5
24
24
40
706
216
24
   
8/11/2010
47
22
44
17
45
37
196
332
283
888
   
8/11/2010
56
26
47
19
53
42
223
318
283
959
patient 23
1/26/2006
1/25/2006
2/17/2006
8
56
68
< 5
75
20
< 15
8705
266
75
   
8/11/2010
75
3953
534
19
56
50
202
650
339
> 7200
   
8/11/2010
76
4542
525
19
58
48
210
695
318
> 7200
     
223
        
There were different patterns seen for different groups of analytes, some of which were relatively stable over time (IL-4, change over time: p = 0.28) while others were found to change (IL-10, p = 0.093; GM-CSF, p = 0.11). Levels of some of the analytes decreased over the storage time (IL-6, p = 0.00021; decreasing in 21/23 samples; TNFα, p = 0.0078, decreasing in 20/23). Surprisingly, the IL-8 levels were significantly increased from the initial test to the subsequent tests 5 years later (IL-8, p = 0.000030, approximately 5-fold increased in 23/23 patient samples). MCP-1 levels also increased in a majority of samples (MCP-1, p = 0.00012) (Table 1/Figure 1). Each p-value was computed with a one-sample Wilcoxon test on the ratio of the 5/13/2010 assay result (for which we had the most data) to the result of the early assay.

Healthy donor and melanoma patient serum time course in 2010

To determine whether we could detect similar changes over a period of months, we drew blood from 10 healthy donors (HD, Additional File 2, Table S2, Table 2 data) and 5 melanoma patients ("new patients") (Additional File 3, Table S3, Table 3 data). HD samples were tested initially 2 months after processing and freezing, and then twice more, at 5 and 8 months of storage on the same dates as the old patient sample described above. The melanoma patient samples were tested 2 days after processing and cryopreservation, and again 3 months later.
Table 2
Healthy Donor Sera Analysis
Sample
Date
Drawn
Assay
Date
IL-4
pg/mL
IL-6
pg/mL
IL-8
pg/mL
IL-10
pg/mL
TNF-α
pg/mL
IFN-g
pg/mL
GM-CSF
pg/mL
IP-10
pg/mL
MIG
pg/mL
MCP-1
pg/mL
Healthy donor 1
12/14/2009
2/2/2010
57
43
25
21
16
44
90
28
143
324
  
2/2/2010
58
48
22
25
16
49
94
30
143
319
  
5/13/2010
50
39
19
22
13
31
87
25
103
263
  
5/13/2010
52
29
18
17
11
29
78
25
100
254
  
8/11/2010
36
42
11
25
< 10
20
40
31
71
30
  
8/11/2010
29
39
11
20
< 10
16
39
29
64
31
Healthy donor 2
12/16/2009
2/2/2010
57
61
44
41
20
160
179
31
96
632
  
2/2/2010
59
59
40
42
18
163
151
31
105
589
  
5/13/2010
44
48
29
31
15
109
129
28
70
529
  
5/13/2010
41
49
34
33
15
109
128
27
69
521
  
8/11/2010
82
80
63
37
42
100
84
40
151
160
  
8/11/2010
67
91
68
39
34
105
81
35
165
138
Healthy donor 3
12/17/2009
2/2/2010
17
< 8
18
< 14
< 10
< 12
< 15
23
20
977
  
2/2/2010
21
< 8
19
< 14
< 10
< 12
< 15
23
13
921
  
5/13/2010
22
< 8
21
< 14
< 10
< 12
< 15
22
< 12
803
  
5/13/2010
20
< 8
18
< 14
< 10
< 12
< 15
23
< 12
763
  
8/11/2010
24
< 3
18
< 5
< 10
< 5
< 15
19
11
241
  
8/11/2010
32
< 3
21
< 5
< 10
< 5
< 15
23
16
258
Healthy donor 4
12/18/2009
2/2/2010
111
29
88
51
50
189
253
39
196
577
  
2/2/2010
121
31
90
51
56
212
262
37
216
579
  
5/13/2010
81
20
66
38
39
147
211
30
128
468
  
5/13/2010
76
21
60
36
33
142
201
30
133
440
  
8/11/2010
232
48
160
65
90
137
173
49
277
171
  
8/11/2010
222
46
167
68
92
141
167
48
276
183
Healthy donor 5
12/21/2009
2/2/2010
12
9
33
< 14
< 10
18
33
20
32
194
  
2/2/2010
< 5
< 8
30
< 14
< 10
14
25
20
13
192
  
5/13/2010
5
< 8
34
< 14
< 10
14
< 15
19
< 12
177
  
5/13/2010
< 5
< 8
32
< 14
< 10
< 12
< 15
20
12
174
  
8/11/2010
7
7
26
8
< 10
> 5
< 15
25
20
16
  
8/11/2010
12
12
33
10
< 10
< 5
23
27
20
17
Healthy donor 6
12/21/2009
2/2/2010
19
8
24
< 14
< 10
< 12
37
22
50
496
  
2/2/2010
< 5
< 8
28
< 14
< 10
< 12
17
22
37
558
  
5/13/2010
19
< 8
15
< 14
< 10
< 12
18
19
40
434
  
5/13/2010
10
< 8
< 12
< 14
< 10
< 12
18
18
36
413
  
8/11/2010
12
12
47
12
14
7
21
27
48
111
  
8/11/2010
18
11
45
13
13
7
21
28
51
108
Healthy donor 7
12/22/2009
2/2/2010
16
< 8
38
< 14
< 10
35
56
19
66
1040
  
2/2/2010
17
9
40
< 14
10
35
62
19
66
1019
  
5/13/2010
19
< 8
35
< 14
< 10
40
51
17
50
843
  
5/13/2010
20
< 8
41
< 14
< 10
33
51
18
53
848
  
8/11/2010
13
6
28
28
< 10
19
37
21
24
245
  
8/11/2010
16
10
30
41
11
25
49
24
24
246
Healthy donor 8
12/23/2009
2/2/2010
54
15
39
29
17
82
135
40
188
926
  
2/2/2010
58
17
33
29
17
78
123
42
188
934
  
5/13/2010
64
15
37
32
21
76
144
38
160
815
  
5/13/2010
65
15
35
33
20
72
129
36
160
742
  
8/11/2010
23
< 3
10
8
< 10
9
22
34
71
144
  
8/11/2010
32
6
14
14
< 10
21
36
34
96
130
Healthy donor 9
12/24/2009
2/2/2010
< 5
9
17
< 14
< 10
< 12
< 15
21
13
969
  
2/2/2010
< 5
8
15
< 14
< 10
< 12
< 15
20
20
928
  
5/13/2010
< 5
< 8
13
< 14
< 10
< 12
< 15
17
< 12
784
  
5/13/2010
< 5
< 8
14
< 14
< 10
< 12
< 15
19
< 12
813
  
8/11/2010
8
11
19
9
< 10
6
< 15
29
20
332
  
8/11/2010
7
10
17
8
< 10
< 5
< 15
26
20
331
Healthy donor 10
12/28/2009
2/2/2010
< 5
8
< 12
< 14
< 10
< 12
< 15
37
13
1034
  
2/2/2010
< 5
< 8
< 12
< 14
< 10
16
< 15
37
13
990
  
5/13/2010
< 5
< 8
< 12
< 14
< 10
< 12
< 15
34
< 12
845
  
5/13/2010
< 5
< 8
< 12
< 14
< 10
< 12
< 15
36
< 12
802
  
8/11/2010
< 5
4
< 3
< 5
< 10
< 5
< 15
57
6
374
  
8/11/2010
5
5
< 3
< 5
< 10
8
< 15
59
11
385
Table 3
New Melanoma Patient Sera Analysis
Sample
Draw
Date
Assay
Date
IL-4
pg/mL
IL-6
pg/mL
IL-8
pg/mL
IL-10
pg/mL
TNF-α
pg/mL
IFN-g
pg/mL
GM-CSF
pg/mL
IP-10
pg/mL
MIG
pg/mL
MCP-1
pg/mL
Mel. Pt. 1
5/10/2010
5/13/2010
15
11
42
< 14
95
24
< 15
39
12
754
 
5/10/2010
5/13/2010
10
8
39
< 14
82
22
< 15
40
17
754
 
5/10/2010
8/11/2010
21
12
44
22
183
20
41
49
32
270
 
5/10/2010
8/11/2010
24
13
43
29
168
23
51
50
32
268
Mel. Pt. 2
5/10/2010
5/13/2010
18
17
87
< 14
< 10
26
< 15
30
21
1437
 
5/10/2010
5/13/2010
13
16
95
< 14
< 10
21
< 15
31
17
1494
 
5/10/2010
8/11/2010
28
30
97
22
10
25
33
38
39
664
 
5/10/2010
8/11/2010
25
31
86
24
10
24
30
37
28
662
Mel. Pt. 3
5/10/2010
5/13/2010
42
21
72
29
20
< 12
18
190
81
771
 
5/10/2010
5/13/2010
38
19
70
25
17
< 12
18
188
78
732
 
5/10/2010
8/11/2010
34
14
73
31
38
9
47
141
96
223
 
5/10/2010
8/11/2010
36
15
70
28
32
6
50
135
89
198
Mel. Pt. 4
5/10/2010
5/13/2010
68
26
45
51
19
62
107
19
145
955
 
5/10/2010
5/13/2010
66
24
42
53
18
63
111
18
143
875
 
5/10/2010
8/11/2010
102
36
26
120
< 10
16
50
19
100
238
 
5/10/2010
8/11/2010
99
41
24
139
< 10
16
48
20
103
215
Mel. Pt. 5
5/10/2010
5/13/2010
35
64
380
< 14
13
27
78
27
106
831
 
5/10/2010
5/13/2010
34
61
393
< 14
10
27
82
26
101
737
 
5/10/2010
8/11/2010
33
43
458
20
16
27
54
32
139
170
 
5/10/2010
8/11/2010
45
53
480
25
24
34
55
38
146
222
As expected, HD samples had low circulating levels of many analytes tested. These HD control samples also showed changes in analyte levels, even after short-term storage. Again, some analytes were stable, others were much less stable. IL-8 increased in 3/10 HD, at the 8 month timepoint (n.s.), but not by 5 months. IP-10 also began to increase in 5/10 HD at 8 months (p = 0.01). Several analytes decreased in the relatively short storage time interval, including IFNγ (p = 0.06 at 5 mo., p = 0.03 at 8 mo., decreasing in 6/10 HD), and MCP-1, which showed the most dramatic decreases in 10/10 donors, by 8 mo. (p = 0.002). These changes, between the first assay and the second and third assays (100 and 190 days apart), are shown graphically in Figure 2. The melanoma patient samples did not show significant changes within the short storage time, with the exception of MCP-1, which decreased in 5/5 samples within 3 months (p = 0.06). When the ratios of the concentrations of the different analytes measured at different times were plotted together (Figure 3), the trends in concentration changes observed were not significantly different between the serum sample data sets (old patients, HD, new patients) (Table 1, Table 2, Table 3).

Cytokine Controls used in assays

We purchased our Luminex kits from a single source, however, that source changed ownership between Oct. '05 and Aug. '10 (from Biosource to Invitrogen to Life Technologies). Each kit includes reagents to generate an 8-point standard curve from which all values are determined. For the custom kits we requested, to test a specific array of analytes of interest, the manufacturer pre-tests the specific antibodies together, to confirm lack of cross-reactivity. The manufacturer indicates that the kits are not released unless the following criteria are met: " < 10% cross-reactivity to related recombinant protein at the highest point of the standard curve" (Life Technologies). We requested the specific cross-reactivity testing data performed for the kits we used in this study, but were repeatedly informed that company policy prohibits QC data release to customers.
As an additional control, we included "Multiplex QC" controls, which are complex mixtures of recombinant cytokines, chemokines and growth factors prepared by the manufacturer at 3 concentrations (low, medium and high). We have established the reproducibility of this control (Additional File 4, Table S4) when tested via Luminex (% CV = 1%-52%, average % CV = 14% for 8 analytes). While the absolute values for each analyte do not exactly match the "expected" value from the QC control manufacturer (R&D Systems), they are similar, and we use a different platform and different antibody clones for detection via Luminex, which may account for those differences (as indicated in the package insert).
We also received WHO cytokine standards for IL-4, IL-8, IL-10 and GM-CSF. These lyophilized cytokine controls were resuspended (Materials and Methods) and individually tested at 1:10, 1:50 and 1:100 dilutions in two replicate Luminex assays for the same ten analytes described above. These data are presented in Table 4. As expected, the standard under study was almost always detected. However, there were some surprising results. MCP-1 was also almost always detected in addition to the standard, and MIG was always detected when the standard IL-10 was used. The apparent concentrations of these two analytes in some instances exceeded 10% of that of the standard. IL-6, IFN-γ and GM-CSF also showed evidence of minor cross-reactivity.
Table 4
WHO Cytokine Standards
Lab Number
Assay
Date
IL-4
pg/mL
IL-6
pg/mL
IL-8
pg/mL
IL-10
pg/mL
TNF-α
pg/mL
IFN-g
pg/mL
GM-CSF
pg/mL
IP-10
pg/mL
MIG
pg/mL
MCP-1
pg/mL
117173 IL-4
           
1:10
40311
17497
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
1:10
40401
11364
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
196
1:10
40401
10956
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
114
1:50
40311
10945
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
1:50
40401
1350
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
392
1:50
40401
1321
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
1220
117177 IL-8
           
1:10
40311
N/A
N/A
216983
N/A
N/A
N/A
N/A
N/A
N/A
N/A
1:10
40401
N/A
N/A
153880
N/A
N/A
N/A
N/A
N/A
N/A
563
1:10
40401
N/A
N/A
153707
N/A
N/A
N/A
N/A
N/A
N/A
509
1:50
40311
N/A
N/A
QA
N/A
N/A
N/A
N/A
N/A
N/A
N/A
1:50
40401
N/A
N/A
45621
N/A
N/A
N/A
N/A
N/A
N/A
2169
1:50
40401
N/A
N/A
46708
N/A
N/A
N/A
N/A
N/A
N/A
1445
117184 IL-10
           
1:10
40311
N/A
N/A
N/A
119338
N/A
N/A
180
N/A
1813
N/A
1:10
40401
N/A
230
N/A
72096
N/A
N/A
N/A
N/A
3621
318
1:10
40401
N/A
226
N/A
95800
N/A
N/A
N/A
N/A
3891
389
1:50
40311
N/A
N/A
N/A
95462
N/A
N/A
N/A
N/A
3836
N/A
1:50
40401
N/A
340
N/A
39419
N/A
N/A
N/A
N/A
4488
1855
1:50
40401
N/A
179
N/A
30223
N/A
N/A
N/A
N/A
4053
1308
117187GM-CSF
           
1:10
40401
N/A
N/A
N/A
N/A
N/A
373
75824
N/A
N/A
875
1:10
40401
N/A
N/A
N/A
N/A
N/A
272
70453
N/A
N/A
721
1:10
40311
N/A
N/A
N/A
N/A
N/A
N/A
47332
N/A
N/A
N/A
1:10
40311
N/A
N/A
N/A
N/A
N/A
N/A
78882
N/A
N/A
769
1:50
40311
N/A
N/A
N/A
N/A
N/A
N/A
59603
N/A
N/A
N/A
1:50
40311
N/A
N/A
N/A
N/A
N/A
N/A
76623
N/A
N/A
1063
1:50
40311
N/A
N/A
N/A
N/A
N/A
N/A
19209
N/A
N/A
1193
The apparent cross-reactivity seen for MCP-1 and MIG might be caused by a medium additive present in the AIM V medium (a serum-free lymphocyte culture medium) used in a dilution step for these proteins. We tested several commonly used culture medias (AIM V, RPM1640, Iscoves and CellGenix DC media) in a 30-plex Luminex assay which also included a repeat test of the WHO standards. The results did identify low levels (3-62 pg/mL) of several analytes in the culture medias (HGF, FGF basic, RANTES, IL-17 and IL2R) but not MCP-1 or MIG (data not shown). The MCP-1 was again detected in the IL-8 and GM-CSF WHO standards and MIG in the IL-10 standard (as well as HGF, FGF basic and RANTES). We are investigating other possible sources of low levels of other cytokines and growth factors in the WHO standards.
As a test of the day-to-day reproducibility of two of the cytokines of particular interest, IL-6 and IL-8, a set of samples and controls were run in two different custom kits one day apart (with samples kept thawed, at 4°C overnight), in which both IL-6 and IL-8 were included in both kits. Notably, these two kits also had different standard curves and upper limits of detection. For IL-6, the 10-plex kit upper limit was 7, 400 pg/mL, while in the 8-plex, it was 13, 800 pg/mL (1.8 fold higher). For IL-8, the 10-plex upper limit was 24, 800 pg/mL and in the 8-plex, 10, 160 pg/mL (2.4 fold lower). When the values for the 38 samples were compared between the two kits, the ratio of the IL-6 values was 1.0 (median & mean), showing excellent concordance. For IL-8, where the upper limits were more disparate, the ratio of the values was 0.80, which was a small but significant difference (Figures 4A and 4B). These data indicate that the assay with the higher upper limit has larger measured values.

Upper limit problem

The Luminex kits that we used at the different time points were not identical. In particular, we noticed that the upper limits of quantitation for individual analytes changed over time for the different kits. In principal, this should not affect the measured concentrations, because the kits include kit-specific standards to generate 8-point standard curves matched to the expected detection range. However, if the concentration determinations were affected, that would confound our interpretation of the observed changes in analyte concentration over time, and therefore we investigated that possibility. Data from assays done on 5/13/2010 ("late" assay) were compared to data from assays on 10/31/2005, 11/1/2005 or 2/17/2006 ("early" assays). Kits used in 2005 and 2006 had the same upper limits, and because no samples had assays done on the same date, results were combined. Figure 5 is a scatter plot of the late-to-early ratio of analyte concentrations versus the late-to-early ratio of assay upper limits assays with a smooth curve is superimposed. The late-to-early ratio of upper limits was different for each of the 10 analytes. Typically, 12 samples were assessed for each analyte. The correlation of the two ratios is highly significant (p < 10-15, Spearman's test). Therefore, we are concerned that assays performed at different times with different kits may not be comparable.
In this report, we detail reproducibility problems we encountered testing circulating cytokines, chemokines and growth factors by Luminex in serum samples which were stored over months to years under highly controlled conditions. Some of these changes were very dramatic: IL-8 increased 4-6 fold in old patient samples; MCP-1 decreased 4-6 fold in new patient samples, and up to 10-fold in healthy donor samples; IL-10 changed from negative to positive or positive to negative within the same old patient serum dataset (Figure 1). Our initial hypothesis was that the changes were entirely biological, and that despite standardized blood handling procedures and temperature-controlled freezer storage, some analytes became unstable over time or upon thaw. Two recent reports testing cytokine stability found most tested cytokines to be stable over 1-2 years at -80°C, and a subset (including IL-8 and IL-10) became unstable after 2-4 years [24, 25]. Many of the proteins became unstable after repeated freeze-thaw cycles. If these were the only mechanisms, then the analytes we tested should have behaved consistently between our three datasets, because the change would be analyte-specific. This is not the only explanation, because, for example, MCP-1 increased over time in the majority of old patient samples and decreased over time in both HD and new patient sets.
Our study has a number of limitations. The more recently acquired HD and new patient data sets were tested within months of blood draw. A better analysis of the impact of storage time on analyte stability would require a large number of patients and HD samples stored for longer periods with costly repeated multiplex testing. We also limited the diversity of analytes we examined. Another variable was the time from blood draw to serum separation and freezing. Some of our samples were drawn within the laboratory and at our nearby clinic and processed within a few hours, while other old patient samples were shipped overnight and processed the following morning. However, the nature of these blood handling procedures reflects the unavoidable limitations inherent in transferring patient blood from the clinic to a central laboratory capable of standardized processing, as well as for multi-institutional trials where large numbers of patients can be treated and tested, but overnight shipping is required. Lastly, some of our healthy donor and control samples were run in duplicate, but to reduce costs, large numbers of patient sera were run in singlets. Due to the small average % CVs determined for many duplicates (Additional File 1, Table S1) this may have minimal impact on the trends we observed.
The Luminex assay has been shown (by ourselves [26] and others [27]) to show good correspondence to ELISA platform assays. In addition, the Luminex assay has good reproducibility from well-to-well, and from day-to-day (Figure 4). Also, our use of the R&D QC controls (Additional File 4, Table S4) indicate good reproducibility of recombinant analytes when mixed together. This may indicate that the serum matrix may impact reproducibility, and/or the biological impact of a tumor may lead to systemic changes (including altered glycosylation) which impact the assay.
This study also suggests that the changes in the upper limits of detection, which can vary substantially from kit to kit, month to month, and analyte to analyte from a single manufacturer, may impact the ability to determine analyte concentration. This impacts kit-to-kit reproducibility, and greatly increases the importance of comparing samples with the identical lot of kits with identical standard curve ranges. We attempted to dissect this further by requesting access to manufacturer QC data, but we were repeatedly denied access to any additional information specific to the testing performed on the kits we used.
We do not understand why the assay kit upper limits seem to affect assay performance in the systematic way that is evident in Figure 5. However, we have to conclude that the results of assays done with different kits cannot be directly compared. Therefore, the apparent changes in analyte levels over time that we observe may arise from the kit-to-kit variability: we cannot claim to observe changes in analyte levels over storage time at -80°C.

Conclusions

In conclusion, the multiplex Luminex platform offers the opportunity to test a wide variety of analytes in the same sample, with minimal volume requirements, and good well-to-well and day-to-day reproducibility. These attributes are important when broadly searching for serum biomarkers. However, we find that a number of commonly tested candidate immunologic biomarkers show evidence of unexpected, large variability when tested retrospectively, after long storage times. This variability can be reduced by 1) performing assays with kits from a single lot, and potentially 2) minimizing storage time before retrospective analysis of banked serum.

Acknowledgements and funding

We acknowledge Sharon Sember (IML) for conduct of the Luminex assays (UPCI IML), and Dr. Theresa L. Whiteside (University of Pittsburgh) for helpful discussions.
This study was supported in part by the University of Pittsburgh Cancer Institute and the NIH Cancer Center Support Grant P30 CA047904; NCI RO1 CA138635 (LHB); Developmental Research Funds of the SPORE in Skin Cancer P50 CA121973 (JMK); Frontier Science and Technology Research Foundation and ECOG Central Laboratory Support (LHB).
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

LHB designed experiments, reviewed data, supervised assay conduct and wrote sections of the manuscript; DMP helped design experiments, designed and performed all statistical analyses and wrote sections of the manuscript; JMK provided many patient blood samples, reviewed data and wrote sections of the manuscript. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Dancey JE, Dobbin KK, Groshen S, Jessup JM, Hruszkewycz AH, Koehler M, Parchment R, Ratain MJ, Shankar LK, Stadler WM, True LD, Gravell A, Grever MR, Biomarkers Task Force of the NCI Investigational Drug Steering Committee: Guidelines for the development and incorporation of biomarker studies in early clinical trials of novel agents. Clin Cancer Res. 2010, 16: 1745-55. 10.1158/1078-0432.CCR-09-2167.CrossRefPubMed Dancey JE, Dobbin KK, Groshen S, Jessup JM, Hruszkewycz AH, Koehler M, Parchment R, Ratain MJ, Shankar LK, Stadler WM, True LD, Gravell A, Grever MR, Biomarkers Task Force of the NCI Investigational Drug Steering Committee: Guidelines for the development and incorporation of biomarker studies in early clinical trials of novel agents. Clin Cancer Res. 2010, 16: 1745-55. 10.1158/1078-0432.CCR-09-2167.CrossRefPubMed
2.
Zurück zum Zitat Kirkwood JM, Manola J, Ibrahim J, Sondak V, Ernstoff MS, Rao U, Eastern Cooperative Oncology Group: A pooled analysis of eastern cooperative oncology group and intergroup trials of adjuvant high-dose interferon for melanoma. Clin Cancer Res. 2004, 10: 1670-1677. 10.1158/1078-0432.CCR-1103-3.CrossRefPubMed Kirkwood JM, Manola J, Ibrahim J, Sondak V, Ernstoff MS, Rao U, Eastern Cooperative Oncology Group: A pooled analysis of eastern cooperative oncology group and intergroup trials of adjuvant high-dose interferon for melanoma. Clin Cancer Res. 2004, 10: 1670-1677. 10.1158/1078-0432.CCR-1103-3.CrossRefPubMed
3.
Zurück zum Zitat Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME: Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer. 2008, 8: 299-308. 10.1038/nrc2355.PubMedCentralCrossRefPubMed Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME: Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer. 2008, 8: 299-308. 10.1038/nrc2355.PubMedCentralCrossRefPubMed
4.
Zurück zum Zitat Butterfield LH, Disis ML, Fox BA, Lee PP, Khleif SN, Thurin M, Trinchieri G, Wang E, Wigginton J, Chaussabel D, Coukos G, Dhodapkar M, Hakansson L, Janetzki S, Kleen TO, Kirkwood JM, Maccalli C, Maecker H, Maio M, Malyguine A, Masucci G, Palucka AK, Potter DM, Ribas A, Rivoltini L, Schendel D, Seliger B, Selvan S, Slingluff CL, Stroncek DF, Streicher H, Wu X, Zeskind B, Zhao Y, Zocca M-B, Zwierzina H, Marincola FM: A systematic approach to biomarker discovery; Preamble to "the iSBTc-FDA taskforce on immunotherapy biomarkers. J Transl Med. 2008, 6: 81-10.1186/1479-5876-6-81.PubMedCentralCrossRefPubMed Butterfield LH, Disis ML, Fox BA, Lee PP, Khleif SN, Thurin M, Trinchieri G, Wang E, Wigginton J, Chaussabel D, Coukos G, Dhodapkar M, Hakansson L, Janetzki S, Kleen TO, Kirkwood JM, Maccalli C, Maecker H, Maio M, Malyguine A, Masucci G, Palucka AK, Potter DM, Ribas A, Rivoltini L, Schendel D, Seliger B, Selvan S, Slingluff CL, Stroncek DF, Streicher H, Wu X, Zeskind B, Zhao Y, Zocca M-B, Zwierzina H, Marincola FM: A systematic approach to biomarker discovery; Preamble to "the iSBTc-FDA taskforce on immunotherapy biomarkers. J Transl Med. 2008, 6: 81-10.1186/1479-5876-6-81.PubMedCentralCrossRefPubMed
5.
Zurück zum Zitat Tahara H, Sato M, Thurin M, Wang E, Butterfield LH, Disis ML, Fox BA, Lee PP, Khleif SN, Wigginton JM, Ambs S, Akutsu Y, Chaussabel D, Doki Y, Eremin O, Fridman WH, Hirohashi Y, Imai K, Jacobson J, Jinushil M, Kanamoto A, Kashani-Sabet M, Kato K, Kawakami Y, Kirkwood JM, Kleen TO, Lehmann PV, Liotta L, Lotze MT, Malyguine A, Masucci G, Matsubara H, Nakamura K, Nishikawa H, Palucka AK, Petricoin EF, Pos Z, Ribas A, Rivoltini L, Sato N, Shiku H, Slingluff CL, Streicher H, Stronchek DF, Takeuchi H, Toyota M, Wada H, Wu X, Wulfkuhle J, Yaguchi T, Zeskind B, Zhao Y, Zocca M-B, Marincola FM: Emerging concepts in biomarker discovery: The US-Japan workshop on immunological molecular markers in oncology. J Transl Med. 2009, 7: 45-10.1186/1479-5876-7-45.PubMedCentralCrossRefPubMed Tahara H, Sato M, Thurin M, Wang E, Butterfield LH, Disis ML, Fox BA, Lee PP, Khleif SN, Wigginton JM, Ambs S, Akutsu Y, Chaussabel D, Doki Y, Eremin O, Fridman WH, Hirohashi Y, Imai K, Jacobson J, Jinushil M, Kanamoto A, Kashani-Sabet M, Kato K, Kawakami Y, Kirkwood JM, Kleen TO, Lehmann PV, Liotta L, Lotze MT, Malyguine A, Masucci G, Matsubara H, Nakamura K, Nishikawa H, Palucka AK, Petricoin EF, Pos Z, Ribas A, Rivoltini L, Sato N, Shiku H, Slingluff CL, Streicher H, Stronchek DF, Takeuchi H, Toyota M, Wada H, Wu X, Wulfkuhle J, Yaguchi T, Zeskind B, Zhao Y, Zocca M-B, Marincola FM: Emerging concepts in biomarker discovery: The US-Japan workshop on immunological molecular markers in oncology. J Transl Med. 2009, 7: 45-10.1186/1479-5876-7-45.PubMedCentralCrossRefPubMed
6.
Zurück zum Zitat Butterfield LH, Disis ML, Khleif SN, Balwit JM, Marincola F: Immuno-oncology biomarkers 2010 and beyond: Perspectives from the iSBTc/SITC Biomarker Task Force. J Transl Med. 2010, 8: 130-10.1186/1479-5876-8-130.PubMedCentralCrossRefPubMed Butterfield LH, Disis ML, Khleif SN, Balwit JM, Marincola F: Immuno-oncology biomarkers 2010 and beyond: Perspectives from the iSBTc/SITC Biomarker Task Force. J Transl Med. 2010, 8: 130-10.1186/1479-5876-8-130.PubMedCentralCrossRefPubMed
7.
Zurück zum Zitat Butterfield LH, Palucka AK, Britten CM, Dhodapkar MV, Hakansson L, Janetzki S, Kawakami Y, Kleen T-O, Lee PP, Macalli C, Maecker HT, Maino VC, Maio M, Malyguine A, Masucci G, Pawelec G, Potter DM, Rivoltini L, Salazar LG, Schendel DJ, Slingluff CL, Song W, Stroncek DF, Tahara H, Thurin M, Trinchieri G, van Der Burg SH, Whiteside TL, Wigginton JM, Marincola F, Khleif S, Fox BA, Disis ML: Recommendations from the iSBTc-SITC/FDA/NCI Workshop on Immunotherapy Biomarkers. Clin Cancer Res. 2011, 17: 3064-3076. 10.1158/1078-0432.CCR-10-2234.PubMedCentralCrossRefPubMed Butterfield LH, Palucka AK, Britten CM, Dhodapkar MV, Hakansson L, Janetzki S, Kawakami Y, Kleen T-O, Lee PP, Macalli C, Maecker HT, Maino VC, Maio M, Malyguine A, Masucci G, Pawelec G, Potter DM, Rivoltini L, Salazar LG, Schendel DJ, Slingluff CL, Song W, Stroncek DF, Tahara H, Thurin M, Trinchieri G, van Der Burg SH, Whiteside TL, Wigginton JM, Marincola F, Khleif S, Fox BA, Disis ML: Recommendations from the iSBTc-SITC/FDA/NCI Workshop on Immunotherapy Biomarkers. Clin Cancer Res. 2011, 17: 3064-3076. 10.1158/1078-0432.CCR-10-2234.PubMedCentralCrossRefPubMed
8.
Zurück zum Zitat Yurkovetsky ZR, Kirkwood JM, Edington HD, Marrangoni AM, Velikokhatnaya L, Winans MT, Gorelik E, Lokshin AE: Multiplex analysis of serum cytokines in melanoma patients treated with interferon-alpha2b. Clin Cancer Res. 2007, 13: 2422-2428. 10.1158/1078-0432.CCR-06-1805.CrossRefPubMed Yurkovetsky ZR, Kirkwood JM, Edington HD, Marrangoni AM, Velikokhatnaya L, Winans MT, Gorelik E, Lokshin AE: Multiplex analysis of serum cytokines in melanoma patients treated with interferon-alpha2b. Clin Cancer Res. 2007, 13: 2422-2428. 10.1158/1078-0432.CCR-06-1805.CrossRefPubMed
9.
Zurück zum Zitat Hutchinson PE, Osborne JE, Pringle JH: Higher serum 25-hydroxy vitamin D3 levels at presentation are associated with improved survival from melanoma, but there is no evidence that later prevailing levels are protective. J Clin Oncol. 2010, 28: e492-493. 10.1200/JCO.2010.29.6095.CrossRefPubMed Hutchinson PE, Osborne JE, Pringle JH: Higher serum 25-hydroxy vitamin D3 levels at presentation are associated with improved survival from melanoma, but there is no evidence that later prevailing levels are protective. J Clin Oncol. 2010, 28: e492-493. 10.1200/JCO.2010.29.6095.CrossRefPubMed
10.
Zurück zum Zitat Gajewski TF, Fuertes M, Spaapen R, Zheng Y, Kline J: Molecular profiling to identify relevant immune resistance mechanisms in the tumor microenvironment. Curr Opin Immunol. 2011, 23: 286-292. 10.1016/j.coi.2010.11.013.PubMedCentralCrossRefPubMed Gajewski TF, Fuertes M, Spaapen R, Zheng Y, Kline J: Molecular profiling to identify relevant immune resistance mechanisms in the tumor microenvironment. Curr Opin Immunol. 2011, 23: 286-292. 10.1016/j.coi.2010.11.013.PubMedCentralCrossRefPubMed
11.
Zurück zum Zitat Ma J, Lin JY, Alloo A, Wilson BJ, Schatton T, Zhan Q, Murphy GF, Waaga-Gasser AM, Gasser M, Stephen Hodi F, Frank NY, Frank MH: Isolation of tumorigenic circulating melanoma cells. Biochem Biophys Res Commun. 2010, 402: 711-717. 10.1016/j.bbrc.2010.10.091.PubMedCentralCrossRefPubMed Ma J, Lin JY, Alloo A, Wilson BJ, Schatton T, Zhan Q, Murphy GF, Waaga-Gasser AM, Gasser M, Stephen Hodi F, Frank NY, Frank MH: Isolation of tumorigenic circulating melanoma cells. Biochem Biophys Res Commun. 2010, 402: 711-717. 10.1016/j.bbrc.2010.10.091.PubMedCentralCrossRefPubMed
12.
Zurück zum Zitat Liu Y, He J, Xie X, Su G, Teitz-Tennenbaum S, Sabel MS, Lubman DM: Serum autoantibody profiling using a natural glycoprotein microarray for the prognosis of early melanoma. J Proteome Res. 2010, 9: 6044-6051. 10.1021/pr100856k.PubMedCentralCrossRefPubMed Liu Y, He J, Xie X, Su G, Teitz-Tennenbaum S, Sabel MS, Lubman DM: Serum autoantibody profiling using a natural glycoprotein microarray for the prognosis of early melanoma. J Proteome Res. 2010, 9: 6044-6051. 10.1021/pr100856k.PubMedCentralCrossRefPubMed
13.
Zurück zum Zitat Kirkwood JM, Lee S, Moschos SJ, Albertini MR, Michalak JC, Sander C, whiteside TL, Butterfield LH, Weiner L: Immunogenicity and antitumor effects of vaccination with peptide vaccine+/-granulocyte-monocyte colony-stimulating factor and/or IFN-alpha2b in advanced metastatic melanoma: Eastern Cooperative Oncology Group Phase II Trial E1696. Clin Cancer Res. 2009, 15: 1443-1451. 10.1158/1078-0432.CCR-08-1231.PubMedCentralCrossRefPubMed Kirkwood JM, Lee S, Moschos SJ, Albertini MR, Michalak JC, Sander C, whiteside TL, Butterfield LH, Weiner L: Immunogenicity and antitumor effects of vaccination with peptide vaccine+/-granulocyte-monocyte colony-stimulating factor and/or IFN-alpha2b in advanced metastatic melanoma: Eastern Cooperative Oncology Group Phase II Trial E1696. Clin Cancer Res. 2009, 15: 1443-1451. 10.1158/1078-0432.CCR-08-1231.PubMedCentralCrossRefPubMed
14.
Zurück zum Zitat Gould Rothberg BE, Rimm DL: Biomarkers: the useful and the not so useful--an assessment of molecular prognostic markers for cutaneous melanoma. J Invest Dermatol. 2010, 130: 1971-1987. 10.1038/jid.2010.149.CrossRefPubMed Gould Rothberg BE, Rimm DL: Biomarkers: the useful and the not so useful--an assessment of molecular prognostic markers for cutaneous melanoma. J Invest Dermatol. 2010, 130: 1971-1987. 10.1038/jid.2010.149.CrossRefPubMed
16.
Zurück zum Zitat Bull M, Lee D, Stucky J, Chiu YL, Rubin A, Horton H, McElrath MJ: Defining blood processing parameters for optimal detection of cryopreserved antigen-specific responses for HIV vaccine trials. J Immunol Meth. 2007, 322: 57-69. 10.1016/j.jim.2007.02.003.CrossRef Bull M, Lee D, Stucky J, Chiu YL, Rubin A, Horton H, McElrath MJ: Defining blood processing parameters for optimal detection of cryopreserved antigen-specific responses for HIV vaccine trials. J Immunol Meth. 2007, 322: 57-69. 10.1016/j.jim.2007.02.003.CrossRef
17.
Zurück zum Zitat Kierstead LS, Dubey S, Meyer B, Tobery TW, Mogg R, Fernandez VR, Long R, Guan L, Gaunt C, Collins K, Sykes KJ, Mehrotra DV, Chirmule N, Shiver JW, Casimiro DR: Enhanced rates and magnitude of immune responses detected against an HIV vaccine: effect of using an optimized process for isolating PBMC. AIDS Res Hum Retroviruses. 2007, 23: 86-92. 10.1089/aid.2006.0129.CrossRefPubMed Kierstead LS, Dubey S, Meyer B, Tobery TW, Mogg R, Fernandez VR, Long R, Guan L, Gaunt C, Collins K, Sykes KJ, Mehrotra DV, Chirmule N, Shiver JW, Casimiro DR: Enhanced rates and magnitude of immune responses detected against an HIV vaccine: effect of using an optimized process for isolating PBMC. AIDS Res Hum Retroviruses. 2007, 23: 86-92. 10.1089/aid.2006.0129.CrossRefPubMed
18.
Zurück zum Zitat McKenna KC, Beatty KM, Bilonick RA, Schoenfield L, Lathrop KL, Singh AD: Activated CD11b+CD15+ granulocytes increase in the blood of patients with uveal melanoma. Invest Ophthalmol Vis Sci. 2009, 50: 4295-4303. 10.1167/iovs.08-3012.CrossRefPubMed McKenna KC, Beatty KM, Bilonick RA, Schoenfield L, Lathrop KL, Singh AD: Activated CD11b+CD15+ granulocytes increase in the blood of patients with uveal melanoma. Invest Ophthalmol Vis Sci. 2009, 50: 4295-4303. 10.1167/iovs.08-3012.CrossRefPubMed
19.
Zurück zum Zitat Boaz MJ, Hayes P, Tarragona T, Seamons L, Cooper A, Birungi J, Kitandwe P, Semaganda A, Kaleebu P, Stevens G, Anzala O, Farah B, Ogola S, Indangasi J, Mhlanga P, Van Eeden M, Thakar M, Pujari A, Mishra S, Goonetilleke N, Moore S, Mahmoud A, Sathyamoorthy P, Mahalingam J, Narayanan PR, Ramanathan VD, Cox JH, Dally L, Gill DK, Gilmour J: Concordant proficiency in measurement of T-cell immunity in human immunodeficiency virus vaccine clinical trials by peripheral blood mononuclear cell and enzyme-linked immunospot assays in laboratories from three continents. Clin Vacc Immunol. 2009, 16: 147-155. 10.1128/CVI.00326-08.CrossRef Boaz MJ, Hayes P, Tarragona T, Seamons L, Cooper A, Birungi J, Kitandwe P, Semaganda A, Kaleebu P, Stevens G, Anzala O, Farah B, Ogola S, Indangasi J, Mhlanga P, Van Eeden M, Thakar M, Pujari A, Mishra S, Goonetilleke N, Moore S, Mahmoud A, Sathyamoorthy P, Mahalingam J, Narayanan PR, Ramanathan VD, Cox JH, Dally L, Gill DK, Gilmour J: Concordant proficiency in measurement of T-cell immunity in human immunodeficiency virus vaccine clinical trials by peripheral blood mononuclear cell and enzyme-linked immunospot assays in laboratories from three continents. Clin Vacc Immunol. 2009, 16: 147-155. 10.1128/CVI.00326-08.CrossRef
21.
Zurück zum Zitat International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH). [http://www.ich.org] International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH). [http://​www.​ich.​org]
23.
Zurück zum Zitat Potter DM, Butterfield LH, Divito SJ, Sander C, Kirkwood JM: Pitfalls in retrospective analyses of biomarkers: a case study with metastatic melanoma patients. 2011, Potter DM, Butterfield LH, Divito SJ, Sander C, Kirkwood JM: Pitfalls in retrospective analyses of biomarkers: a case study with metastatic melanoma patients. 2011,
24.
Zurück zum Zitat de Jager W, Bourcier K, Rijkers GT, Prakken BJ, Seyfert-Margolis V: Prerequisites for cytokine measurements in clinical trials with multiplex immunoassays. BMC Immunol. 2009, 10: 52-10.1186/1471-2172-10-52.PubMedCentralCrossRefPubMed de Jager W, Bourcier K, Rijkers GT, Prakken BJ, Seyfert-Margolis V: Prerequisites for cytokine measurements in clinical trials with multiplex immunoassays. BMC Immunol. 2009, 10: 52-10.1186/1471-2172-10-52.PubMedCentralCrossRefPubMed
25.
Zurück zum Zitat Zhou XB, Fragala MS, McElhaney JEB, Kuchel GA: Conceptual and methodological issues relevant to cytokine and inflammatory marker measurements in clinical research. Curr Opin Clin Nutr Metabolic Care. 2010, 13: 541-547. 10.1097/MCO.0b013e32833cf3bc.CrossRef Zhou XB, Fragala MS, McElhaney JEB, Kuchel GA: Conceptual and methodological issues relevant to cytokine and inflammatory marker measurements in clinical research. Curr Opin Clin Nutr Metabolic Care. 2010, 13: 541-547. 10.1097/MCO.0b013e32833cf3bc.CrossRef
26.
Zurück zum Zitat Butterfield LH, Gooding W, Whiteside TL: Development of a potency assay for human dendritic cells: IL-12p70 production. J Immunother. 2008, 31: 89-100. 10.1097/CJI.0b013e318158fce0.CrossRefPubMed Butterfield LH, Gooding W, Whiteside TL: Development of a potency assay for human dendritic cells: IL-12p70 production. J Immunother. 2008, 31: 89-100. 10.1097/CJI.0b013e318158fce0.CrossRefPubMed
27.
Zurück zum Zitat Khan SS, Smith MS, Reda D, Suffredini AF, McCoy JP: Multiplex bead array assays for detection of soluble cytokines: comparisons of sensitivity and quantitative values among kits from multiple manufacturers. Cytometry B Clin Cytom. 2004, 61: 35-39.CrossRefPubMed Khan SS, Smith MS, Reda D, Suffredini AF, McCoy JP: Multiplex bead array assays for detection of soluble cytokines: comparisons of sensitivity and quantitative values among kits from multiple manufacturers. Cytometry B Clin Cytom. 2004, 61: 35-39.CrossRefPubMed
Metadaten
Titel
Multiplex serum biomarker assessments: technical and biostatistical issues
verfasst von
Lisa H Butterfield
Douglas M Potter
John M Kirkwood
Publikationsdatum
01.12.2011
Verlag
BioMed Central
Erschienen in
Journal of Translational Medicine / Ausgabe 1/2011
Elektronische ISSN: 1479-5876
DOI
https://doi.org/10.1186/1479-5876-9-173

Weitere Artikel der Ausgabe 1/2011

Journal of Translational Medicine 1/2011 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.