Skip to main content
Erschienen in:

14.08.2023 | Hollow Organ GI

Multiregional-based magnetic resonance imaging radiomics model for predicting tumor deposits in resectable rectal cancer

verfasst von: Feiwen Feng, Yuanqing Liu, Jiayi Bao, Rong Hong, Su Hu, Chunhong Hu

Erschienen in: Abdominal Radiology | Ausgabe 11/2023

Einloggen, um Zugang zu erhalten

Abstract

Purpose

To establish and validate an integrated model incorporating multiregional magnetic resonance imaging (MRI) radiomics features and clinical factors to predict tumor deposits (TDs) preoperatively in resectable rectal cancer (RC).

Methods

This study retrospectively included 148 resectable RC patients [TDs+ (n = 45); TDs (n = 103)] from August 2016 to August 2022, who were divided randomly into a testing cohort (n = 45) and a training cohort (n = 103). Radiomics features were extracted from the volume of interest on T2-weighted images (T2WI) and diffusion-weighted images (DWI) from pretreatment MRI. Model construction was performed after feature selection. Finally, five classification models were developed by support vector machine (SVM) algorithm to predict TDs in resectable RC using the selected clinical factor, single-regional radiomics features (extracted from primary tumor), and multiregional radiomics features (extracted from the primary tumor and mesorectal fat). Receiver-operating characteristic (ROC) curve analysis was employed to assess the discrimination performance of the five models. The AUCs of five models were compared by DeLon’s test.

Results

The training and testing cohorts included 31 (30.1%) and 14 (31.1%) patients with TDs, respectively. The AUCs of multiregional radiomics, single-regional radiomics, and the clinical models for predicting TDs were 0.839, 0.765, and 0.793, respectively. An integrated model incorporating multiregional radiomics features and clinical factors showed good predictive performance for predicting TDs in resectable RC (AUC, 0.931; 95% CI, 0.841–0.988), which demonstrated superiority over clinical model (P = 0.016), the single-regional radiomics model (P = 0.042), and the multiregional radiomics model (P = 0.025).

Conclusion

An integrated model combining multiregional MRI radiomic features and clinical factors can improve prediction performance for TDs and guide clinicians in implementing treatment plans individually for resectable RC patients.

Graphical abstract

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Bray F, Ferlay J, Soerjomataram I, Siegel R L, Torre L A, Jemal A(2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J Clin 68 (6):394-424. https://doi.org/https://doi.org/10.3322/caac.21492CrossRefPubMed Bray F, Ferlay J, Soerjomataram I, Siegel R L, Torre L A, Jemal A(2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J Clin 68 (6):394-424. https://​doi.​org/​https://​doi.​org/​10.​3322/​caac.​21492CrossRefPubMed
8.
Zurück zum Zitat Hashiguchi Y, Muro K, Saito Y, Ito Y, Ajioka Y, Hamaguchi T, Hasegawa K, Hotta K, Ishida H, Ishiguro M, Ishihara S, Kanemitsu Y, Kinugasa Y, Murofushi K, Nakajima T E, Oka S, Tanaka T, Taniguchi H, Tsuji A, Uehara K, Ueno H, Yamanaka T, Yamazaki K, Yoshida M, Yoshino T, Itabashi M, Sakamaki K, Sano K, Shimada Y, Tanaka S, Uetake H, Yamaguchi S, Yamaguchi N, Kobayashi H, Matsuda K, Kotake K, Sugihara K(2020) Japanese Society for Cancer of the Colon and Rectum (JSCCR) guidelines 2019 for the treatment of colorectal cancer.Int J Clin Oncol 25 (1):1-42. https://doi.org/https://doi.org/10.1007/s10147-019-01485-zCrossRefPubMed Hashiguchi Y, Muro K, Saito Y, Ito Y, Ajioka Y, Hamaguchi T, Hasegawa K, Hotta K, Ishida H, Ishiguro M, Ishihara S, Kanemitsu Y, Kinugasa Y, Murofushi K, Nakajima T E, Oka S, Tanaka T, Taniguchi H, Tsuji A, Uehara K, Ueno H, Yamanaka T, Yamazaki K, Yoshida M, Yoshino T, Itabashi M, Sakamaki K, Sano K, Shimada Y, Tanaka S, Uetake H, Yamaguchi S, Yamaguchi N, Kobayashi H, Matsuda K, Kotake K, Sugihara K(2020) Japanese Society for Cancer of the Colon and Rectum (JSCCR) guidelines 2019 for the treatment of colorectal cancer.Int J Clin Oncol 25 (1):1-42. https://​doi.​org/​https://​doi.​org/​10.​1007/​s10147-019-01485-zCrossRefPubMed
10.
Zurück zum Zitat Pricolo V E, Steingrimsson J, McDuffie T J, McHale J M, McMillen B, Shparber M(2020) Tumor Deposits in Stage III Colon Cancer: Correlation With Other Histopathologic Variables, Prognostic Value, and Risk Stratification-Time to Consider “N2c”.Am J Clin Oncol 43 (2):133-138. https://doi.org/https://doi.org/10.1097/coc.0000000000000645CrossRefPubMed Pricolo V E, Steingrimsson J, McDuffie T J, McHale J M, McMillen B, Shparber M(2020) Tumor Deposits in Stage III Colon Cancer: Correlation With Other Histopathologic Variables, Prognostic Value, and Risk Stratification-Time to Consider “N2c”.Am J Clin Oncol 43 (2):133-138. https://​doi.​org/​https://​doi.​org/​10.​1097/​coc.​0000000000000645​CrossRefPubMed
11.
Zurück zum Zitat Washington M K, Berlin J, Branton P, Burgart L J, Carter D K, Fitzgibbons P L, Halling K, Frankel W, Jessup J, Kakar S, Minsky B, Nakhleh R, Compton C C(2009) Protocol for the examination of specimens from patients with primary carcinoma of the colon and rectum.Arch Pathol Lab Med 133 (10):1539-1551. https://doi.org/https://doi.org/10.5858/133.10.1539CrossRefPubMedPubMedCentral Washington M K, Berlin J, Branton P, Burgart L J, Carter D K, Fitzgibbons P L, Halling K, Frankel W, Jessup J, Kakar S, Minsky B, Nakhleh R, Compton C C(2009) Protocol for the examination of specimens from patients with primary carcinoma of the colon and rectum.Arch Pathol Lab Med 133 (10):1539-1551. https://​doi.​org/​https://​doi.​org/​10.​5858/​133.​10.​1539CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Yagi R, Shimada Y, Kameyama H, Tajima Y, Okamura T, Sakata J, Kobayashi T, Kosugi S I, Wakai T, Nogami H, Maruyama S, Takii Y, Kawasaki T, Honma K I (2016) Clinical Significance of Extramural Tumor Deposits in the Lateral Pelvic Lymph Node Area in Low Rectal Cancer: A Retrospective Study at Two Institutions.Ann Surg Oncol 23 (Suppl 4):552-558. https://doi.org/https://doi.org/10.1245/s10434-016-5379-9CrossRefPubMedPubMedCentral Yagi R, Shimada Y, Kameyama H, Tajima Y, Okamura T, Sakata J, Kobayashi T, Kosugi S I, Wakai T, Nogami H, Maruyama S, Takii Y, Kawasaki T, Honma K I (2016) Clinical Significance of Extramural Tumor Deposits in the Lateral Pelvic Lymph Node Area in Low Rectal Cancer: A Retrospective Study at Two Institutions.Ann Surg Oncol 23 (Suppl 4):552-558. https://​doi.​org/​https://​doi.​org/​10.​1245/​s10434-016-5379-9CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Hoshino N, Murakami K, Hida K, Sakamoto T, Sakai Y(2019) Diagnostic accuracy of magnetic resonance imaging and computed tomography for lateral lymph node metastasis in rectal cancer: a systematic review and meta-analysis.Int J Clin Oncol 24 (1):46-52. https://doi.org/https://doi.org/10.1007/s10147-018-1349-5CrossRefPubMed Hoshino N, Murakami K, Hida K, Sakamoto T, Sakai Y(2019) Diagnostic accuracy of magnetic resonance imaging and computed tomography for lateral lymph node metastasis in rectal cancer: a systematic review and meta-analysis.Int J Clin Oncol 24 (1):46-52. https://​doi.​org/​https://​doi.​org/​10.​1007/​s10147-018-1349-5CrossRefPubMed
20.
Zurück zum Zitat Li X T, Sun Y S, Tang L, Cao K, Zhang X Y(2015) Evaluating local lymph node metastasis with magnetic resonance imaging, endoluminal ultrasound and computed tomography in rectal cancer: a meta-analysis.Colorectal Dis 17 (6):O129-135. https://doi.org/https://doi.org/10.1111/codi.12909CrossRefPubMed Li X T, Sun Y S, Tang L, Cao K, Zhang X Y(2015) Evaluating local lymph node metastasis with magnetic resonance imaging, endoluminal ultrasound and computed tomography in rectal cancer: a meta-analysis.Colorectal Dis 17 (6):O129-135. https://​doi.​org/​https://​doi.​org/​10.​1111/​codi.​12909CrossRefPubMed
22.
Zurück zum Zitat Antunes J T, Ofshteyn A, Bera K, Wang E Y, Brady J T, Willis J E, Friedman K A, Marderstein E L, Kalady M F, Stein S L, Purysko A S, Paspulati R, Gollamudi J, Madabhushi A, Viswanath S E(2020) Radiomic Features of Primary Rectal Cancers on Baseline T (2) -Weighted MRI Are Associated With Pathologic Complete Response to Neoadjuvant Chemoradiation: A Multisite Study.J Magn Reson Imaging 52 (5):1531-1541. https://doi.org/https://doi.org/10.1002/jmri.27140CrossRefPubMedPubMedCentral Antunes J T, Ofshteyn A, Bera K, Wang E Y, Brady J T, Willis J E, Friedman K A, Marderstein E L, Kalady M F, Stein S L, Purysko A S, Paspulati R, Gollamudi J, Madabhushi A, Viswanath S E(2020) Radiomic Features of Primary Rectal Cancers on Baseline T (2) -Weighted MRI Are Associated With Pathologic Complete Response to Neoadjuvant Chemoradiation: A Multisite Study.J Magn Reson Imaging 52 (5):1531-1541. https://​doi.​org/​https://​doi.​org/​10.​1002/​jmri.​27140CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Bi W L, Hosny A, Schabath M B, Giger M L, Birkbak N J, Mehrtash A, Allison T, Arnaout O, Abbosh C, Dunn I F, Mak R H, Tamimi R M, Tempany C M, Swanton C, Hoffmann U, Schwartz L H, Gillies R J, Huang R Y, Aerts H(2019) Artificial intelligence in cancer imaging: Clinical challenges and applications.CA Cancer J Clin 69 (2):127-157. https://doi.org/https://doi.org/10.3322/caac.21552CrossRefPubMedPubMedCentral Bi W L, Hosny A, Schabath M B, Giger M L, Birkbak N J, Mehrtash A, Allison T, Arnaout O, Abbosh C, Dunn I F, Mak R H, Tamimi R M, Tempany C M, Swanton C, Hoffmann U, Schwartz L H, Gillies R J, Huang R Y, Aerts H(2019) Artificial intelligence in cancer imaging: Clinical challenges and applications.CA Cancer J Clin 69 (2):127-157. https://​doi.​org/​https://​doi.​org/​10.​3322/​caac.​21552CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Atre I D, Eurboonyanun K, Noda Y, Parakh A, O’Shea A, Lahoud R M, Sell N M, Kunitake H, Harisinghani M G(2021) Utility of texture analysis on T2-weighted MR for differentiating tumor deposits from mesorectal nodes in rectal cancer patients, in a retrospective cohort.Abdom Radiol (NY) 46 (2):459-468. https://doi.org/https://doi.org/10.1007/s00261-020-02653-wCrossRef Atre I D, Eurboonyanun K, Noda Y, Parakh A, O’Shea A, Lahoud R M, Sell N M, Kunitake H, Harisinghani M G(2021) Utility of texture analysis on T2-weighted MR for differentiating tumor deposits from mesorectal nodes in rectal cancer patients, in a retrospective cohort.Abdom Radiol (NY) 46 (2):459-468. https://​doi.​org/​https://​doi.​org/​10.​1007/​s00261-020-02653-wCrossRef
26.
Zurück zum Zitat Chen L D, Li W, Xian M F, Zheng X, Lin Y, Liu B X, Lin M X, Li X, Zheng Y L, Xie X Y, Lu M D, Kuang M, Xu J B, Wang W(2020) Preoperative prediction of tumour deposits in rectal cancer by an artificial neural network-based US radiomics model.Eur Radiol 30 (4):1969-1979. https://doi.org/https://doi.org/10.1007/s00330-019-06558-1CrossRefPubMed Chen L D, Li W, Xian M F, Zheng X, Lin Y, Liu B X, Lin M X, Li X, Zheng Y L, Xie X Y, Lu M D, Kuang M, Xu J B, Wang W(2020) Preoperative prediction of tumour deposits in rectal cancer by an artificial neural network-based US radiomics model.Eur Radiol 30 (4):1969-1979. https://​doi.​org/​https://​doi.​org/​10.​1007/​s00330-019-06558-1CrossRefPubMed
28.
29.
Zurück zum Zitat Jayaprakasam V S, Paroder V, Gibbs P, Bajwa R, Gangai N, Sosa R E, Petkovska I, Golia Pernicka J S, Fuqua J L, 3rd, Bates D D B, Weiser M R, Cercek A, Gollub M J(2022) MRI radiomics features of mesorectal fat can predict response to neoadjuvant chemoradiation therapy and tumor recurrence in patients with locally advanced rectal cancer.Eur Radiol 32 (2):971-980. https://doi.org/https://doi.org/10.1007/s00330-021-08144-wCrossRefPubMed Jayaprakasam V S, Paroder V, Gibbs P, Bajwa R, Gangai N, Sosa R E, Petkovska I, Golia Pernicka J S, Fuqua J L, 3rd, Bates D D B, Weiser M R, Cercek A, Gollub M J(2022) MRI radiomics features of mesorectal fat can predict response to neoadjuvant chemoradiation therapy and tumor recurrence in patients with locally advanced rectal cancer.Eur Radiol 32 (2):971-980. https://​doi.​org/​https://​doi.​org/​10.​1007/​s00330-021-08144-wCrossRefPubMed
31.
Zurück zum Zitat Shaish H, Aukerman A, Vanguri R, Spinelli A, Armenta P, Jambawalikar S, Makkar J, Bentley-Hibbert S, Del Portillo A, Kiran R, Monti L, Bonifacio C, Kirienko M, Gardner K L, Schwartz L, Keller D(2020) Radiomics of MRI for pretreatment prediction of pathologic complete response, tumor regression grade, and neoadjuvant rectal score in patients with locally advanced rectal cancer undergoing neoadjuvant chemoradiation: an international multicenter study.Eur Radiol 30 (11):6263-6273. https://doi.org/https://doi.org/10.1007/s00330-020-06968-6CrossRefPubMed Shaish H, Aukerman A, Vanguri R, Spinelli A, Armenta P, Jambawalikar S, Makkar J, Bentley-Hibbert S, Del Portillo A, Kiran R, Monti L, Bonifacio C, Kirienko M, Gardner K L, Schwartz L, Keller D(2020) Radiomics of MRI for pretreatment prediction of pathologic complete response, tumor regression grade, and neoadjuvant rectal score in patients with locally advanced rectal cancer undergoing neoadjuvant chemoradiation: an international multicenter study.Eur Radiol 30 (11):6263-6273. https://​doi.​org/​https://​doi.​org/​10.​1007/​s00330-020-06968-6CrossRefPubMed
38.
Zurück zum Zitat Kickingereder P, Bonekamp D, Nowosielski M, Kratz A, Sill M, Burth S, Wick A, Eidel O, Schlemmer H P, Radbruch A, Debus J, Herold-Mende C, Unterberg A, Jones D, Pfister S, Wick W, von Deimling A, Bendszus M, Capper D (2016) Radiogenomics of Glioblastoma: Machine Learning-based Classification of Molecular Characteristics by Using Multiparametric and Multiregional MR Imaging Features.Radiology 281 (3):907-918. https://doi.org/https://doi.org/10.1148/radiol.2016161382CrossRefPubMed Kickingereder P, Bonekamp D, Nowosielski M, Kratz A, Sill M, Burth S, Wick A, Eidel O, Schlemmer H P, Radbruch A, Debus J, Herold-Mende C, Unterberg A, Jones D, Pfister S, Wick W, von Deimling A, Bendszus M, Capper D (2016) Radiogenomics of Glioblastoma: Machine Learning-based Classification of Molecular Characteristics by Using Multiparametric and Multiregional MR Imaging Features.Radiology 281 (3):907-918. https://​doi.​org/​https://​doi.​org/​10.​1148/​radiol.​2016161382CrossRefPubMed
39.
Zurück zum Zitat Li Z C, Bai H, Sun Q, Li Q, Liu L, Zou Y, Chen Y, Liang C, Zheng H(2018) Multiregional radiomics features from multiparametric MRI for prediction of MGMT methylation status in glioblastoma multiforme: A multicentre study.Eur Radiol 28 (9):3640-3650. https://doi.org/https://doi.org/10.1007/s00330-017-5302-1CrossRefPubMed Li Z C, Bai H, Sun Q, Li Q, Liu L, Zou Y, Chen Y, Liang C, Zheng H(2018) Multiregional radiomics features from multiparametric MRI for prediction of MGMT methylation status in glioblastoma multiforme: A multicentre study.Eur Radiol 28 (9):3640-3650. https://​doi.​org/​https://​doi.​org/​10.​1007/​s00330-017-5302-1CrossRefPubMed
Metadaten
Titel
Multiregional-based magnetic resonance imaging radiomics model for predicting tumor deposits in resectable rectal cancer
verfasst von
Feiwen Feng
Yuanqing Liu
Jiayi Bao
Rong Hong
Su Hu
Chunhong Hu
Publikationsdatum
14.08.2023
Verlag
Springer US
Erschienen in
Abdominal Radiology / Ausgabe 11/2023
Print ISSN: 2366-004X
Elektronische ISSN: 2366-0058
DOI
https://doi.org/10.1007/s00261-023-04013-w

Neu im Fachgebiet Radiologie

Hölzerner Fremdkörper in der Orbita? Zuerst eine CT!

Besteht der Verdacht, dass ein Fremdkörper aus Holz in den Orbitalraum eingedrungen ist, spielt die Bildgebung eine entscheidende diagnostische Rolle. Was von CT und MRT zu erwarten ist, hat ein chinesisches Radiologenteam untersucht.

Diagnostik von Rippenfrakturen: KI schlägt Radiologen

Mensch gegen Maschine: Beim Erkennen von Rippenfrakturen in Röntgen- und CT-Aufnahmen entschied sich dieses Duell zugunsten der künstlichen Intelligenz (KI). Die Algorithmen zeigten eine höhere Sensitivität als ihre menschlichen Kollegen.

Ärztinnen überholen Ärzte bei Praxisgründungen

Bei Praxisgründungen haben inzwischen die Frauen deutlich die Nase vorn: Seit zehn Jahren wagen laut apoBank mehr Ärztinnen als Ärzte den Schritt in die Selbstständigkeit. In puncto Finanzierung sind sie aber vorsichtiger als die männlichen Kollegen.

Ambulante Behandlung darf länger dauern als stationäre

Ambulante Behandlungen haben Vorrang vor stationären - auch wenn diese läner dauern. Das hat das Bundessozialgericht klargestellt. Konkret ging es um Liposuktionen der Ober- und Unterschenkel.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.