Skip to main content
Erschienen in: Journal of Hematology & Oncology 1/2015

Open Access 01.12.2015 | Letter to the Editor

Mutations in the D1 domain of von Willebrand factor impair their propeptide-dependent multimerization, intracellular trafficking and secretion

verfasst von: Jie Yin, Zhenni Ma, Jian Su, Jiong-Wei Wang, Xiaojuan Zhao, Jing Ling, Xia Bai, Wanyan Ouyang, Zhaoyue Wang, Ziqiang Yu, Changgeng Ruan

Erschienen in: Journal of Hematology & Oncology | Ausgabe 1/2015

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

We identified three novel mutations (p.Gly39Arg, p.Lys157Glu, p.Cys379Gly) and one previously known mutation (p.Asp141Asn) in the von Willebrand factor propeptide from three von Willebrand disease patients. All four mutations impaired multimerization of von Willebrand factor, due to reduced oxidoreductase activity of isomeric propeptide. These mutations resulted in the endothelial reticulum retention and impaired basal and stimulated secretions of von Willebrand factor. Our results support that the mutations in the D1 domain lead to defective multimerization, intracellular trafficking, and secretion of von Willebrand factor and result in bleeding of patients.
Begleitmaterial
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​s13045-015-0166-9) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

JY and CR were the principal investigators and took primary responsibility for the paper. ZM, JS, JW, JL, and WO performed the laboratory work for this study. XZ, XB, ZW, and ZY recruited the patients. JY and JW wrote the paper. All authors read and approved the final manuscript.
Abkürzungen
VWD
von Willebrand disease
VWF
von Willebrand factor
ER
endoplasmic reticulum
VWFpp
VWF propeptide
P1
proband 1
P2
proband 2
P3
proband 3
NP
normal plasma
WT
wild type
PMA
Phorbol 12-myristate-13-acetate

Findings

Von Willebrand factor propeptide (VWFpp), composed of D1 and D2 domains, is necessary for the multimerization, intracellular trafficking, and secretion of the factor [13]. Few mutations in the D1 domain of VWFpp have been reported, and the pathogenic nature of these mutations remains largely unknown [4, 5].
We found three novel mutations (p.Gly39Arg, p.Lys157Glu, p.Cys379Gly) and one previously known mutation (p.Asp141Asn) in the VWFpp from three von Willebrand disease (VWD) patients (Additional file 1). The proband 1 (P1) and proband 2 (P2) were type 3 VWD, while the proband 3 (P3) was type 1 VWD [6]. The laboratory results of these patients and their family members are summarized in Table 1. P1 and P2 presented undetectable von Willebrand factor (VWF) multimer, and P3 exhibited light multimer pattern, compared to normal plasma (NP) (Additional file 2: Figure S1). All mutations are located in the D1 domain of VWFpp.
Table 1
Phenotypic and genetic features of three unrelated VWD families
Family
Members
VWF mutation
Genotype
APTT ratio
PT ratio
TT ratio
VWF: Ag
VWF: RCo
FVIII: C
BS
(sec)
(sec)
(sec)
(IU/dL)
(IU/dL)
(IU/dL)
F1
Proband P1
G39R D141N
Compound heterozygous
2.24
1.07
0.97
1.0
2.3
2.0
6
F1
Father P1F
D141N
Heterozygous
1.09
1.15
1.24
48.4
50.2
73.5
0
F1
Mother P1M
G39R
Heterozygous
1.12
1.05
0.91
30.3
36.4
50.6
1
F2
Proband P2
K157E C1165R
Compound heterozygous
1.95
1.04
0.89
3.0
2.1
3.0
6
F2
Father P2F
K157E
Heterozygous
0.94
1.02
0.98
87.2
80.3
97.8
1
F3
Proband P3
C379G
Heterozygous
1.50
1.17
1.07
8.0
5.9
13.1
9
F3
Brother P3B
C379G
Heterozygous
1.21
1.00
0.90
14.3
13.6
25.3
3
Normal range
0.82–1.18
0.86–1.14
0.80–1.20
50–160
50–120
50–150
0–3 or 0–5a
PT prothrombin time, APTT activated partial thromboplastin time, TT thrombin time, VWF:Ag, von Willebrand antigen, VWF:RCo von Willebrand factor ristocetin cofactor activity, FVIII:C factor VIII coagulant activity, BS bleeding scores
a0–3 in male, 0–5 in female
To determine whether and how these mutations impair VWF expression and function, we transiently transfected the human embryonic kidney 293 cells (HEK293) with wild type (WT) or VWF mutant constructs and analyzed VWF multimer (Fig. 1a,b). In the supernatant, the WT-VWF showed a full range of multimers similar to NP. Asp141Asn, Lys157Glu, and Cys379Gly mutants each exhibited different degrees of the loss of large- and medium-sized multimers. We also co-transfected Asp141Asn and Gly39Arg mutants and found that a partial VWF protein multimerization was readily detectable. When mutant and WT-VWF were co-transfected into HEK293 cells, the abnormal VWF multimers were all restored (Additional file 3: Figure S2). We examined cell lysates for VWF multimer and found that multimerization from all VWF mutations were inhibited in different levels as showed in the media. To determine the underlying mechanisms of defective VWF multimerization, we employed a previously established dimerization model using D1D2D′D3 fragment of VWF [7, 8]. In this model, the decreased dimerization of D1D2D′D3 indicates the reduced oxidoreductase of mutant VWFpp. Under the non-reducing condition (Fig. 1c), truncated WT (T-WT) VWF formed both D′D3 monomers and dimers in the supernatant. The dimerizations of truncated four variants (T-Gly39Arg, T-Asp141Asn, T-Lys157Glu, and T-Cys379Gly) were reduced, compared to that observed with T-WT. Co-transfection of the T-Gly39Arg and T-Asp141Asn resulted in a modest restoration of dimer formation compared to the single transfection of truncated Gly39Arg. This result indicates that the impaired multimerization is caused by decreased oxidoreductase activity of the isomeric propeptide. Under the reducing condition (Fig. 1d), D′D3 dimers were reduced to D′D3 monomers in both mutant and wild type D1D2D′D3 fragment.
The VWF antigen was measured in the conditioned media and cell lysates of the transiently transfected HEK293 cells (Additional file 4: Figure S3). The expressions of mutant Gly39Arg or Asp141Asn in the supernatant were significantly impaired, at the level of 2.8 ± 0.3 % to 2.5 ± 0.1 % of the WT. However, the expressions of mutant Lys157Glu or Cys379Gly product in the supernatant were less severely decreased at the levels of 26.0 ± 4.1 % and 22.4 ± 3.8 % of the WT. In co-transfection of Gly39Arg and Asp141Asn constructs, only 2.6 ± 0.1 % VWF was detectable in the supernatant, implying that both mutants do not mutually rescue each other from their defects. We also co-transfected the WT and each mutant (Gly39Arg, Asp141Asn, Lys157Glu, or Cys379Gly), and 59.3 ± 4.3 %, 57.3 ± 8.9 %, 86.6 ± 7.1 %, or 33.9 ± 1.2 % of WT were detected, respectively. This suggests that four mutants can be partially restored by the WT. In the cell lysates of single or co-transfected variants, the VWF levels did not changed dramatically.
We found that the level of VWF antigen in the supernatant of HEK-293 cells expressing WT-VWF increased by 2.28-fold after phorbol 12-myristate-13-acetate (PMA) stimulation. However, cells expressing four mutations exhibited no significant changes in VWF antigen secretion upon PMA stimulation (Additional file 5: Figure S4).
By immunofluorescent staining of VWF proteins (Fig. 2a), we found that VWF formed green granules in cells. Only 37.8 ± 9.3 % WT-VWF was observed in the endoplasmic reticulum (ER), while 74.8 ± 2.5 % Gly39Arg, 84.6 ± 3.8 % Asp141Asn, 69.2 ± 3.6 % Lys157Glu, and 74.3 ± 1.8 % Cys379Gly mutants were detected in the ER (Fig. 2b). In the cell lysates, the bands of pro-VWF were predominant, and mature VWF was hardly detectable in the cells expressing Gly39Arg, Asp141Asn, Lys157Glu, and Cys379Gly, compared to that of WT-VWF (Fig. 2c). These results indicate that the mutant VWF are retained in the ER and fail to be transported to the Golgi, resulting in the decreased VWF secretion.
In summary, four mutations in the D1 domain of VWF impair the multimerization of VWF by directly downregulating the oxidoreductase of the propeptide, disrupt the transport of VWF from the ER to the Golgi, and inhibit the basal and regulated secretion of VWF. These defects contribute to the quantitative loss of VWF, leading to the bleeding diathesis of VWD patients.

Acknowledgments

This work was supported by the Jiangsu Provincial Special Program of Medical Science (BL2012005), Jiangsu Province’s Key Medical Center (ZX201102), Natural Science Foundation of Jiangsu Province (BK20140285), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). The authors thank Prof. Lijun Xia, Oklahoma Medical Research Foundation and Prof. Xiaosheng Wu, Mayo Clinic, for critical reading and revisions.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
The Creative Commons Public Domain Dedication waiver (https://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

JY and CR were the principal investigators and took primary responsibility for the paper. ZM, JS, JW, JL, and WO performed the laboratory work for this study. XZ, XB, ZW, and ZY recruited the patients. JY and JW wrote the paper. All authors read and approved the final manuscript.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Anhänge

Additional files

Literatur
1.
Zurück zum Zitat Journet AM, Saffaripour S, Wagner DD. Requirement for both D domains of the propolypeptide in von Willebrand factor multimerization and storage. Thromb Haemost. 1993;70(6):1053–7.PubMed Journet AM, Saffaripour S, Wagner DD. Requirement for both D domains of the propolypeptide in von Willebrand factor multimerization and storage. Thromb Haemost. 1993;70(6):1053–7.PubMed
2.
Zurück zum Zitat Rosenberg JB, Haberichter SL, Jozwiak MA, Vokac EA, Kroner PA, Fahs SA, et al. The role of the D1 domain of the von Willebrand factor propeptide in multimerization of VWF. Blood. 2002;100(5):1699–706.PubMedCrossRef Rosenberg JB, Haberichter SL, Jozwiak MA, Vokac EA, Kroner PA, Fahs SA, et al. The role of the D1 domain of the von Willebrand factor propeptide in multimerization of VWF. Blood. 2002;100(5):1699–706.PubMedCrossRef
3.
Zurück zum Zitat Michaux G, Hewlett LJ, Messenger SL, Goodeve AC, Peake IR, Daly ME, et al. Analysis of intracellular storage and regulated secretion of 3 von Willebrand disease-causing variants of von Willebrand factor. Blood. 2003;102(7):2452–8. doi:10.1182/blood-2003-02-0599.PubMedCrossRef Michaux G, Hewlett LJ, Messenger SL, Goodeve AC, Peake IR, Daly ME, et al. Analysis of intracellular storage and regulated secretion of 3 von Willebrand disease-causing variants of von Willebrand factor. Blood. 2003;102(7):2452–8. doi:10.​1182/​blood-2003-02-0599.PubMedCrossRef
4.
Zurück zum Zitat Baronciani L, Federici AB, Cozzi G, La Marca S, Punzo M, Rubini V, et al. Expression studies of missense mutations p.D141Y, p.C275S located in the propeptide of von Willebrand factor in patients with type 3 von Willebrand disease. Haemophilia. 2008;14(3):549–55.PubMedCrossRef Baronciani L, Federici AB, Cozzi G, La Marca S, Punzo M, Rubini V, et al. Expression studies of missense mutations p.D141Y, p.C275S located in the propeptide of von Willebrand factor in patients with type 3 von Willebrand disease. Haemophilia. 2008;14(3):549–55.PubMedCrossRef
5.
Zurück zum Zitat Michiels JJ, Gadisseur A, van der Planken M, Schroyens W, Berneman Z. Laboratory and molecular characteristics of recessive von Willebrand disease type 2C (2A subtype IIC) of variable severity due to homozygous or double heterozygous mutations in the D1 and D2 domains. Acta Haematol. 2009;121(2–3):111–8.PubMedCrossRef Michiels JJ, Gadisseur A, van der Planken M, Schroyens W, Berneman Z. Laboratory and molecular characteristics of recessive von Willebrand disease type 2C (2A subtype IIC) of variable severity due to homozygous or double heterozygous mutations in the D1 and D2 domains. Acta Haematol. 2009;121(2–3):111–8.PubMedCrossRef
6.
Zurück zum Zitat Sadler JE, Budde U, Eikenboom JC, Favaloro EJ, Hill FG, Holmberg L, et al. Update on the pathophysiology and classification of von Willebrand disease: a report of the Subcommittee on von Willebrand Factor. J Thromb Haemost. 2006;4(10):2103–14.PubMedCrossRef Sadler JE, Budde U, Eikenboom JC, Favaloro EJ, Hill FG, Holmberg L, et al. Update on the pathophysiology and classification of von Willebrand disease: a report of the Subcommittee on von Willebrand Factor. J Thromb Haemost. 2006;4(10):2103–14.PubMedCrossRef
7.
Zurück zum Zitat Purvis AR, Sadler JE. A covalent oxidoreductase intermediate in propeptide-dependent von Willebrand factor multimerization. J Biol Chem. 2004;279(48):49982–8.PubMedCrossRef Purvis AR, Sadler JE. A covalent oxidoreductase intermediate in propeptide-dependent von Willebrand factor multimerization. J Biol Chem. 2004;279(48):49982–8.PubMedCrossRef
8.
Zurück zum Zitat Dang LT, Purvis AR, Huang RH, Westfield LA, Sadler JE. Phylogenetic and functional analysis of histidine residues essential for pH-dependent multimerization of von Willebrand factor. J Biol Chem. 2011;286(29):25763–9.PubMedCentralPubMedCrossRef Dang LT, Purvis AR, Huang RH, Westfield LA, Sadler JE. Phylogenetic and functional analysis of histidine residues essential for pH-dependent multimerization of von Willebrand factor. J Biol Chem. 2011;286(29):25763–9.PubMedCentralPubMedCrossRef
Metadaten
Titel
Mutations in the D1 domain of von Willebrand factor impair their propeptide-dependent multimerization, intracellular trafficking and secretion
verfasst von
Jie Yin
Zhenni Ma
Jian Su
Jiong-Wei Wang
Xiaojuan Zhao
Jing Ling
Xia Bai
Wanyan Ouyang
Zhaoyue Wang
Ziqiang Yu
Changgeng Ruan
Publikationsdatum
01.12.2015
Verlag
BioMed Central
Erschienen in
Journal of Hematology & Oncology / Ausgabe 1/2015
Elektronische ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-015-0166-9

Weitere Artikel der Ausgabe 1/2015

Journal of Hematology & Oncology 1/2015 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.