Skip to main content
Erschienen in: Clinical Reviews in Allergy & Immunology 2/2018

08.01.2018

Myeloid Cells and Chronic Liver Disease: a Comprehensive Review

verfasst von: Min Lian, Carlo Selmi, M. Eric Gershwin, Xiong Ma

Erschienen in: Clinical Reviews in Allergy & Immunology | Ausgabe 2/2018

Einloggen, um Zugang zu erhalten

Abstract

Myeloid cells play a major role in the sensitization to liver injury, particularly in chronic inflammatory liver diseases with a biliary or hepatocellular origin, and the interplay between myeloid cells and the liver may explain the increased incidence of hepatic osteodystrophy. The myeloid cell-liver axis involves several mature myeloid cells as well as immature or progenitor cells with the complexity of the liver immune microenvironment aggravating the mist of cell differentiation. The unique positioning of the liver at the junction of the peripheral and portal circulation systems underlines the interaction of myeloid cells and hepatic cells and leads to immune tolerance breakdown. We herein discuss the scenarios of different chronic liver diseases closely modulated by myeloid cells and illustrate the numerous potential targets, the understanding of which will ultimately steer the development of solid immunotherapeutic regimens. Ultimately, we are convinced that an adequate modulation of the liver microenvironment to modify the functional and quantitative characteristics of myeloid cells will be a successful approach to treating chronic liver diseases of different etiologies.
Literatur
1.
Zurück zum Zitat Sica A, Massarotti M (2017) Myeloid suppressor cells in cancer and autoimmunity. J Autoimmun 85:117–125PubMedCrossRef Sica A, Massarotti M (2017) Myeloid suppressor cells in cancer and autoimmunity. J Autoimmun 85:117–125PubMedCrossRef
2.
Zurück zum Zitat David BA, Rezende RM, Antunes MM, Santos MM, Freitas Lopes MA, Diniz AB et al (2016) Combination of mass cytometry and imaging analysis reveals origin, location, and functional repopulation of liver myeloid cells in mice. Gastroenterology 151:1176–1191PubMedCrossRef David BA, Rezende RM, Antunes MM, Santos MM, Freitas Lopes MA, Diniz AB et al (2016) Combination of mass cytometry and imaging analysis reveals origin, location, and functional repopulation of liver myeloid cells in mice. Gastroenterology 151:1176–1191PubMedCrossRef
3.
Zurück zum Zitat Doherty DG (2016) Immunity, tolerance and autoimmunity in the liver: a comprehensive review. J Autoimmun 66:60–75PubMedCrossRef Doherty DG (2016) Immunity, tolerance and autoimmunity in the liver: a comprehensive review. J Autoimmun 66:60–75PubMedCrossRef
4.
Zurück zum Zitat Liberal R, Krawitt EL, Vierling JM, Manns MP, Mieli-Vergani G, Vergani D (2016) Cutting edge issues in autoimmune hepatitis. J Autoimmun 75:6–19PubMedCrossRef Liberal R, Krawitt EL, Vierling JM, Manns MP, Mieli-Vergani G, Vergani D (2016) Cutting edge issues in autoimmune hepatitis. J Autoimmun 75:6–19PubMedCrossRef
5.
Zurück zum Zitat Horwood NJ (2016) Macrophage polarization and bone formation: a review. Clin Rev Allergy Immunol 51:79–86PubMedCrossRef Horwood NJ (2016) Macrophage polarization and bone formation: a review. Clin Rev Allergy Immunol 51:79–86PubMedCrossRef
7.
Zurück zum Zitat Jorge-Hernandez JA, Gonzalez-Reimers CE, Torres-Ramirez A, Santolaria-Fernandez F, Gonzalez-Garcia C, Batista-Lopez JN et al (1988) Bone changes in alcoholic liver cirrhosis. A histomorphometrical analysis of 52 cases. Dig Dis Sci 33:1089–1095PubMedCrossRef Jorge-Hernandez JA, Gonzalez-Reimers CE, Torres-Ramirez A, Santolaria-Fernandez F, Gonzalez-Garcia C, Batista-Lopez JN et al (1988) Bone changes in alcoholic liver cirrhosis. A histomorphometrical analysis of 52 cases. Dig Dis Sci 33:1089–1095PubMedCrossRef
8.
Zurück zum Zitat Nussler AK, Wildemann B, Freude T, Litzka C, Soldo P, Friess H et al (2014) Chronic CCl4 intoxication causes liver and bone damage similar to the human pathology of hepatic osteodystrophy: a mouse model to analyse the liver-bone axis. Arch Toxicol 88:997–1006PubMedCrossRef Nussler AK, Wildemann B, Freude T, Litzka C, Soldo P, Friess H et al (2014) Chronic CCl4 intoxication causes liver and bone damage similar to the human pathology of hepatic osteodystrophy: a mouse model to analyse the liver-bone axis. Arch Toxicol 88:997–1006PubMedCrossRef
9.
Zurück zum Zitat Nakano A, Kanda T, Abe H (1996) Bone changes and mineral metabolism disorders in rats with experimental liver cirrhosis. J Gastroenterol Hepatol 11:1143–1154PubMedCrossRef Nakano A, Kanda T, Abe H (1996) Bone changes and mineral metabolism disorders in rats with experimental liver cirrhosis. J Gastroenterol Hepatol 11:1143–1154PubMedCrossRef
10.
Zurück zum Zitat Huang S, Kaw M, Harris MT, Ebraheim N, McInerney MF, Najjar SM et al (2010) Decreased osteoclastogenesis and high bone mass in mice with impaired insulin clearance due to liver-specific inactivation to CEACAM1. Bone 46:1138–1145PubMedPubMedCentralCrossRef Huang S, Kaw M, Harris MT, Ebraheim N, McInerney MF, Najjar SM et al (2010) Decreased osteoclastogenesis and high bone mass in mice with impaired insulin clearance due to liver-specific inactivation to CEACAM1. Bone 46:1138–1145PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Collins AR, Gupte AA, Ji R, Ramirez MR, Minze LJ, Liu JZ et al (2012) Myeloid deletion of nuclear factor erythroid 2-related factor 2 increases atherosclerosis and liver injury. Arterioscler Thromb Vasc Biol 32:2839–2846PubMedPubMedCentralCrossRef Collins AR, Gupte AA, Ji R, Ramirez MR, Minze LJ, Liu JZ et al (2012) Myeloid deletion of nuclear factor erythroid 2-related factor 2 increases atherosclerosis and liver injury. Arterioscler Thromb Vasc Biol 32:2839–2846PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Matsui T, Connolly JE, Michnevitz M, Chaussabel D, Yu CI, Glaser C et al (2009) CD2 distinguishes two subsets of human plasmacytoid dendritic cells with distinct phenotype and functions. J Immunol 182:6815–6823PubMedPubMedCentralCrossRef Matsui T, Connolly JE, Michnevitz M, Chaussabel D, Yu CI, Glaser C et al (2009) CD2 distinguishes two subsets of human plasmacytoid dendritic cells with distinct phenotype and functions. J Immunol 182:6815–6823PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Ibrahim J, Nguyen AH, Rehman A, Ochi A, Jamal M, Graffeo CS et al (2012) Dendritic cell populations with different concentrations of lipid regulate tolerance and immunity in mouse and human liver. Gastroenterology 143:1061–1072PubMedPubMedCentralCrossRef Ibrahim J, Nguyen AH, Rehman A, Ochi A, Jamal M, Graffeo CS et al (2012) Dendritic cell populations with different concentrations of lipid regulate tolerance and immunity in mouse and human liver. Gastroenterology 143:1061–1072PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Lippens C, Duraes FV, Dubrot J, Brighouse D, Lacroix M, Irla M et al (2016) IDO-orchestrated crosstalk between pDCs and Tregs inhibits autoimmunity. J Autoimmun 75:39–49PubMedPubMedCentralCrossRef Lippens C, Duraes FV, Dubrot J, Brighouse D, Lacroix M, Irla M et al (2016) IDO-orchestrated crosstalk between pDCs and Tregs inhibits autoimmunity. J Autoimmun 75:39–49PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Naito M, Hasegawa G, Ebe Y, Yamamoto T (2004) Differentiation and function of Kupffer cells. Med Electron Microsc 37:16–28PubMedCrossRef Naito M, Hasegawa G, Ebe Y, Yamamoto T (2004) Differentiation and function of Kupffer cells. Med Electron Microsc 37:16–28PubMedCrossRef
17.
Zurück zum Zitat Enomoto K, Nishikawa Y, Omori Y, Tokairin T, Yoshida M, Ohi N et al (2004) Cell biology and pathology of liver sinusoidal endothelial cells. Med Electron Microsc 37:208–215PubMedCrossRef Enomoto K, Nishikawa Y, Omori Y, Tokairin T, Yoshida M, Ohi N et al (2004) Cell biology and pathology of liver sinusoidal endothelial cells. Med Electron Microsc 37:208–215PubMedCrossRef
18.
Zurück zum Zitat Nakatani K, Kaneda K, Seki S, Nakajima Y (2004) Pit cells as liver-associated natural killer cells: morphology and function. Med Electron Microsc 37:29–36PubMedCrossRef Nakatani K, Kaneda K, Seki S, Nakajima Y (2004) Pit cells as liver-associated natural killer cells: morphology and function. Med Electron Microsc 37:29–36PubMedCrossRef
19.
Zurück zum Zitat Senoo H (2004) Structure and function of hepatic stellate cells. Med Electron Microsc 37:3–15PubMedCrossRef Senoo H (2004) Structure and function of hepatic stellate cells. Med Electron Microsc 37:3–15PubMedCrossRef
20.
Zurück zum Zitat Yoneyama H, Ichida T (2005) Recruitment of dendritic cells to pathological niches in inflamed liver. Med Mol Morphol 38:136–141PubMedCrossRef Yoneyama H, Ichida T (2005) Recruitment of dendritic cells to pathological niches in inflamed liver. Med Mol Morphol 38:136–141PubMedCrossRef
21.
Zurück zum Zitat Tsuji N, Kawada N, Ikeda K, Kinoshita H, Kaneda K (1997) Immunohistochemical and ultrastructural analyses of in situ activation of hepatic stellate cells around Propionibacterium acnes-induced granulomas in the rat liver. J Submicrosc Cytol Pathol 29:125–133PubMed Tsuji N, Kawada N, Ikeda K, Kinoshita H, Kaneda K (1997) Immunohistochemical and ultrastructural analyses of in situ activation of hepatic stellate cells around Propionibacterium acnes-induced granulomas in the rat liver. J Submicrosc Cytol Pathol 29:125–133PubMed
22.
Zurück zum Zitat Ogata M, Zhang Y, Wang Y, Itakura M, Zhang YY, Harada A et al (1999) Chemotactic response toward chemokines and its regulation by transforming growth factor-beta1 of murine bone marrow hematopoietic progenitor cell-derived different subset of dendritic cells. Blood 93:3225–3232PubMed Ogata M, Zhang Y, Wang Y, Itakura M, Zhang YY, Harada A et al (1999) Chemotactic response toward chemokines and its regulation by transforming growth factor-beta1 of murine bone marrow hematopoietic progenitor cell-derived different subset of dendritic cells. Blood 93:3225–3232PubMed
23.
Zurück zum Zitat Fujioka N, Mukaida N, Harada A, Akiyama M, Kasahara T, Kuno K et al (1995) Preparation of specific antibodies against murine IL-1ra and the establishment of IL-1ra as an endogenous regulator of bacteria-induced fulminant hepatitis in mice. J Leukoc Biol 58:90–98PubMedCrossRef Fujioka N, Mukaida N, Harada A, Akiyama M, Kasahara T, Kuno K et al (1995) Preparation of specific antibodies against murine IL-1ra and the establishment of IL-1ra as an endogenous regulator of bacteria-induced fulminant hepatitis in mice. J Leukoc Biol 58:90–98PubMedCrossRef
24.
Zurück zum Zitat Yoneyama H, Harada A, Imai T, Baba M, Yoshie O, Zhang Y et al (1998) Pivotal role of TARC, a CC chemokine, in bacteria-induced fulminant hepatic failure in mice. J Clin Invest 102:1933–1941PubMedPubMedCentralCrossRef Yoneyama H, Harada A, Imai T, Baba M, Yoshie O, Zhang Y et al (1998) Pivotal role of TARC, a CC chemokine, in bacteria-induced fulminant hepatic failure in mice. J Clin Invest 102:1933–1941PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Yoneyama H, Narumi S, Zhang Y, Murai M, Baggiolini M, Lanzavecchia A et al (2002) Pivotal role of dendritic cell-derived CXCL10 in the retention of T helper cell 1 lymphocytes in secondary lymph nodes. J Exp Med 195:1257–1266PubMedPubMedCentralCrossRef Yoneyama H, Narumi S, Zhang Y, Murai M, Baggiolini M, Lanzavecchia A et al (2002) Pivotal role of dendritic cell-derived CXCL10 in the retention of T helper cell 1 lymphocytes in secondary lymph nodes. J Exp Med 195:1257–1266PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Lukacs-Kornek V, Schuppan D (2013) Dendritic cells in liver injury and fibrosis: shortcomings and promises. J Hepatol 59:1124–1126PubMedCrossRef Lukacs-Kornek V, Schuppan D (2013) Dendritic cells in liver injury and fibrosis: shortcomings and promises. J Hepatol 59:1124–1126PubMedCrossRef
27.
Zurück zum Zitat Bleier JI, Katz SC, Chaudhry UI, Pillarisetty VG, Kingham TP 3rd, Shah AB et al (2006) Biliary obstruction selectively expands and activates liver myeloid dendritic cells. J Immunol 176:7189–7195PubMedCrossRef Bleier JI, Katz SC, Chaudhry UI, Pillarisetty VG, Kingham TP 3rd, Shah AB et al (2006) Biliary obstruction selectively expands and activates liver myeloid dendritic cells. J Immunol 176:7189–7195PubMedCrossRef
28.
Zurück zum Zitat Connolly MK, Bedrosian AS, Mallen-St Clair J, Mitchell AP, Ibrahim J, Stroud A et al (2009) In liver fibrosis, dendritic cells govern hepatic inflammation in mice via TNF-alpha. J Clin Invest 119:3213–3225PubMedPubMedCentral Connolly MK, Bedrosian AS, Mallen-St Clair J, Mitchell AP, Ibrahim J, Stroud A et al (2009) In liver fibrosis, dendritic cells govern hepatic inflammation in mice via TNF-alpha. J Clin Invest 119:3213–3225PubMedPubMedCentral
29.
Zurück zum Zitat Aloman C, Tacke F (2010) Dendritic cells in liver fibrosis: conductor of the inflammatory orchestra? Hepatology 51:1070–1072PubMedCrossRef Aloman C, Tacke F (2010) Dendritic cells in liver fibrosis: conductor of the inflammatory orchestra? Hepatology 51:1070–1072PubMedCrossRef
30.
Zurück zum Zitat Ikeda A, Aoki N, Kido M, Iwamoto S, Nishiura H, Maruoka R et al (2014) Progression of autoimmune hepatitis is mediated by IL-18-producing dendritic cells and hepatic CXCL9 expression in mice. Hepatology 60:224–236PubMedCrossRef Ikeda A, Aoki N, Kido M, Iwamoto S, Nishiura H, Maruoka R et al (2014) Progression of autoimmune hepatitis is mediated by IL-18-producing dendritic cells and hepatic CXCL9 expression in mice. Hepatology 60:224–236PubMedCrossRef
31.
Zurück zum Zitat Velazquez VM, Hon H, Ibegbu C, Knechtle SJ, Kirk AD, Grakoui A (2012) Hepatic enrichment and activation of myeloid dendritic cells during chronic hepatitis C virus infection. Hepatology 56:2071–2081PubMedPubMedCentralCrossRef Velazquez VM, Hon H, Ibegbu C, Knechtle SJ, Kirk AD, Grakoui A (2012) Hepatic enrichment and activation of myeloid dendritic cells during chronic hepatitis C virus infection. Hepatology 56:2071–2081PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Henning JR, Graffeo CS, Rehman A, Fallon NC, Zambirinis CP, Ochi A et al (2013) Dendritic cells limit fibroinflammatory injury in nonalcoholic steatohepatitis in mice. Hepatology 58:589–602PubMedPubMedCentralCrossRef Henning JR, Graffeo CS, Rehman A, Fallon NC, Zambirinis CP, Ochi A et al (2013) Dendritic cells limit fibroinflammatory injury in nonalcoholic steatohepatitis in mice. Hepatology 58:589–602PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Sutti S, Locatelli I, Bruzzi S, Jindal A, Vacchiano M, Bozzola C et al (2015) CX3CR1-expressing inflammatory dendritic cells contribute to the progression of steatohepatitis. Clin Sci (Lond) 129:797–808CrossRef Sutti S, Locatelli I, Bruzzi S, Jindal A, Vacchiano M, Bozzola C et al (2015) CX3CR1-expressing inflammatory dendritic cells contribute to the progression of steatohepatitis. Clin Sci (Lond) 129:797–808CrossRef
34.
Zurück zum Zitat Morell M, Varela N, Maranon C (2017) Myeloid populations in systemic autoimmune diseases. Clin Rev Allergy Immunol 53:198–218PubMedCrossRef Morell M, Varela N, Maranon C (2017) Myeloid populations in systemic autoimmune diseases. Clin Rev Allergy Immunol 53:198–218PubMedCrossRef
35.
Zurück zum Zitat Karlmark KR, Weiskirchen R, Zimmermann HW, Gassler N, Ginhoux F, Weber C et al (2009) Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology 50:261–274PubMedCrossRef Karlmark KR, Weiskirchen R, Zimmermann HW, Gassler N, Ginhoux F, Weber C et al (2009) Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology 50:261–274PubMedCrossRef
36.
Zurück zum Zitat Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN et al (2010) Nomenclature of monocytes and dendritic cells in blood. Blood 116:e74–e80PubMedCrossRef Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN et al (2010) Nomenclature of monocytes and dendritic cells in blood. Blood 116:e74–e80PubMedCrossRef
37.
Zurück zum Zitat Grage-Griebenow E, Flad HD, Ernst M (2001) Heterogeneity of human peripheral blood monocyte subsets. J Leukoc Biol 69:11–20PubMed Grage-Griebenow E, Flad HD, Ernst M (2001) Heterogeneity of human peripheral blood monocyte subsets. J Leukoc Biol 69:11–20PubMed
39.
Zurück zum Zitat Heymann F, Trautwein C, Tacke F (2009) Monocytes and macrophages as cellular targets in liver fibrosis. Inflamm Allergy Drug Targets 8:307–318PubMedCrossRef Heymann F, Trautwein C, Tacke F (2009) Monocytes and macrophages as cellular targets in liver fibrosis. Inflamm Allergy Drug Targets 8:307–318PubMedCrossRef
40.
Zurück zum Zitat Liaskou E, Zimmermann HW, Li KK, Oo YH, Suresh S, Stamataki Z et al (2013) Monocyte subsets in human liver disease show distinct phenotypic and functional characteristics. Hepatology 57:385–398PubMedCrossRef Liaskou E, Zimmermann HW, Li KK, Oo YH, Suresh S, Stamataki Z et al (2013) Monocyte subsets in human liver disease show distinct phenotypic and functional characteristics. Hepatology 57:385–398PubMedCrossRef
41.
Zurück zum Zitat Zimmermann HW, Bruns T, Weston CJ, Curbishley SM, Liaskou E, Li KK et al (2016) Bidirectional transendothelial migration of monocytes across hepatic sinusoidal endothelium shapes monocyte differentiation and regulates the balance between immunity and tolerance in liver. Hepatology 63:233–246PubMedCrossRef Zimmermann HW, Bruns T, Weston CJ, Curbishley SM, Liaskou E, Li KK et al (2016) Bidirectional transendothelial migration of monocytes across hepatic sinusoidal endothelium shapes monocyte differentiation and regulates the balance between immunity and tolerance in liver. Hepatology 63:233–246PubMedCrossRef
42.
Zurück zum Zitat Thomson AW, Knolle PA (2010) Antigen-presenting cell function in the tolerogenic liver environment. Nat Rev Immunol 10:753–766PubMedCrossRef Thomson AW, Knolle PA (2010) Antigen-presenting cell function in the tolerogenic liver environment. Nat Rev Immunol 10:753–766PubMedCrossRef
43.
Zurück zum Zitat Mai P, Yang L, Tian L, Wang L, Jia S, Zhang Y et al (2015) Endocannabinoid system contributes to liver injury and inflammation by activation of bone marrow-derived monocytes/macrophages in a CB1-dependent manner. J Immunol 195:3390–3401PubMedCrossRef Mai P, Yang L, Tian L, Wang L, Jia S, Zhang Y et al (2015) Endocannabinoid system contributes to liver injury and inflammation by activation of bone marrow-derived monocytes/macrophages in a CB1-dependent manner. J Immunol 195:3390–3401PubMedCrossRef
44.
Zurück zum Zitat McMahan RH, Wang XX, Cheng LL, Krisko T, Smith M, El Kasmi K et al (2013) Bile acid receptor activation modulates hepatic monocyte activity and improves nonalcoholic fatty liver disease. J Biol Chem 288:11761–11770PubMedPubMedCentralCrossRef McMahan RH, Wang XX, Cheng LL, Krisko T, Smith M, El Kasmi K et al (2013) Bile acid receptor activation modulates hepatic monocyte activity and improves nonalcoholic fatty liver disease. J Biol Chem 288:11761–11770PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL et al (2007) The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 204:3037–3047PubMedPubMedCentralCrossRef Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL et al (2007) The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 204:3037–3047PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Dal-Secco D, Wang J, Zeng Z, Kolaczkowska E, Wong CH, Petri B et al (2015) A dynamic spectrum of monocytes arising from the in situ reprogramming of CCR2+ monocytes at a site of sterile injury. J Exp Med 212:447–456PubMedPubMedCentralCrossRef Dal-Secco D, Wang J, Zeng Z, Kolaczkowska E, Wong CH, Petri B et al (2015) A dynamic spectrum of monocytes arising from the in situ reprogramming of CCR2+ monocytes at a site of sterile injury. J Exp Med 212:447–456PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Miura K, Yang L, van Rooijen N, Ohnishi H, Seki E (2012) Hepatic recruitment of macrophages promotes nonalcoholic steatohepatitis through CCR2. Am J Physiol Gastrointest Liver Physiol 302:G1310–G1321PubMedPubMedCentralCrossRef Miura K, Yang L, van Rooijen N, Ohnishi H, Seki E (2012) Hepatic recruitment of macrophages promotes nonalcoholic steatohepatitis through CCR2. Am J Physiol Gastrointest Liver Physiol 302:G1310–G1321PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Mossanen JC, Krenkel O, Ergen C, Govaere O, Liepelt A, Puengel T et al (2016) Chemokine (C-C motif) receptor 2-positive monocytes aggravate the early phase of acetaminophen-induced acute liver injury. Hepatology 64:1667–1682PubMedCrossRef Mossanen JC, Krenkel O, Ergen C, Govaere O, Liepelt A, Puengel T et al (2016) Chemokine (C-C motif) receptor 2-positive monocytes aggravate the early phase of acetaminophen-induced acute liver injury. Hepatology 64:1667–1682PubMedCrossRef
49.
Zurück zum Zitat Karlmark KR, Zimmermann HW, Roderburg C, Gassler N, Wasmuth HE, Luedde T et al (2010) The fractalkine receptor CX(3)CR1 protects against liver fibrosis by controlling differentiation and survival of infiltrating hepatic monocytes. Hepatology 52:1769–1782PubMedCrossRef Karlmark KR, Zimmermann HW, Roderburg C, Gassler N, Wasmuth HE, Luedde T et al (2010) The fractalkine receptor CX(3)CR1 protects against liver fibrosis by controlling differentiation and survival of infiltrating hepatic monocytes. Hepatology 52:1769–1782PubMedCrossRef
50.
Zurück zum Zitat Landsman L, Bar-On L, Zernecke A, Kim KW, Krauthgamer R, Shagdarsuren E et al (2009) CX3CR1 is required for monocyte homeostasis and atherogenesis by promoting cell survival. Blood 113:963–972PubMedCrossRef Landsman L, Bar-On L, Zernecke A, Kim KW, Krauthgamer R, Shagdarsuren E et al (2009) CX3CR1 is required for monocyte homeostasis and atherogenesis by promoting cell survival. Blood 113:963–972PubMedCrossRef
51.
Zurück zum Zitat Aspinall AI, Curbishley SM, Lalor PF, Weston CJ, Blahova M, Liaskou E et al (2010) CX(3)CR1 and vascular adhesion protein-1-dependent recruitment of CD16(+) monocytes across human liver sinusoidal endothelium. Hepatology 51:2030–2039PubMedPubMedCentralCrossRef Aspinall AI, Curbishley SM, Lalor PF, Weston CJ, Blahova M, Liaskou E et al (2010) CX(3)CR1 and vascular adhesion protein-1-dependent recruitment of CD16(+) monocytes across human liver sinusoidal endothelium. Hepatology 51:2030–2039PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Ji J, Eggert T, Budhu A, Forgues M, Takai A, Dang H et al (2015) Hepatic stellate cell and monocyte interaction contributes to poor prognosis in hepatocellular carcinoma. Hepatology 62:481–495PubMedPubMedCentralCrossRef Ji J, Eggert T, Budhu A, Forgues M, Takai A, Dang H et al (2015) Hepatic stellate cell and monocyte interaction contributes to poor prognosis in hepatocellular carcinoma. Hepatology 62:481–495PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Elsegood CL, Chan CW, Degli-Esposti MA, Wikstrom ME, Domenichini A, Lazarus K et al (2015) Kupffer cell-monocyte communication is essential for initiating murine liver progenitor cell-mediated liver regeneration. Hepatology 62:1272–1284PubMedCrossRef Elsegood CL, Chan CW, Degli-Esposti MA, Wikstrom ME, Domenichini A, Lazarus K et al (2015) Kupffer cell-monocyte communication is essential for initiating murine liver progenitor cell-mediated liver regeneration. Hepatology 62:1272–1284PubMedCrossRef
54.
Zurück zum Zitat Melgar-Lesmes P, Edelman ER (2015) Monocyte-endothelial cell interactions in the regulation of vascular sprouting and liver regeneration in mouse. J Hepatol 63:917–925PubMedPubMedCentralCrossRef Melgar-Lesmes P, Edelman ER (2015) Monocyte-endothelial cell interactions in the regulation of vascular sprouting and liver regeneration in mouse. J Hepatol 63:917–925PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Ramachandran P, Pellicoro A, Vernon MA, Boulter L, Aucott RL, Ali A et al (2012) Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc Natl Acad Sci U S A 109:E3186–E3195PubMedPubMedCentralCrossRef Ramachandran P, Pellicoro A, Vernon MA, Boulter L, Aucott RL, Ali A et al (2012) Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc Natl Acad Sci U S A 109:E3186–E3195PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Sica A, Invernizzi P, Mantovani A (2014) Macrophage plasticity and polarization in liver homeostasis and pathology. Hepatology 59:2034–2042PubMedCrossRef Sica A, Invernizzi P, Mantovani A (2014) Macrophage plasticity and polarization in liver homeostasis and pathology. Hepatology 59:2034–2042PubMedCrossRef
57.
Zurück zum Zitat Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K et al (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336:86–90PubMedCrossRef Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K et al (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336:86–90PubMedCrossRef
58.
Zurück zum Zitat Hoeffel G, Chen J, Lavin Y, Low D, Almeida FF, See P et al (2015) C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 42:665–678PubMedPubMedCentralCrossRef Hoeffel G, Chen J, Lavin Y, Low D, Almeida FF, See P et al (2015) C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 42:665–678PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Nakazawa D, Shida H, Kusunoki Y, Miyoshi A, Nishio S, Tomaru U et al (2016) The responses of macrophages in interaction with neutrophils that undergo NETosis. J Autoimmun 67:19–28PubMedCrossRef Nakazawa D, Shida H, Kusunoki Y, Miyoshi A, Nishio S, Tomaru U et al (2016) The responses of macrophages in interaction with neutrophils that undergo NETosis. J Autoimmun 67:19–28PubMedCrossRef
61.
Zurück zum Zitat Matsuda M, Tsurusaki S, Miyata N, Saijou E, Okochi H, Miyajima A et al (2017) Oncostatin M causes liver fibrosis by regulating cooperation between hepatic stellate cells and macrophages in mice. Hepatology 67(1):296–312 Matsuda M, Tsurusaki S, Miyata N, Saijou E, Okochi H, Miyajima A et al (2017) Oncostatin M causes liver fibrosis by regulating cooperation between hepatic stellate cells and macrophages in mice. Hepatology 67(1):296–312
62.
Zurück zum Zitat Amiya T, Nakamoto N, Chu PS, Teratani T, Nakajima H, Fukuchi Y et al (2016) Bone marrow-derived macrophages distinct from tissue-resident macrophages play a pivotal role in concanavalin A-induced murine liver injury via CCR9 axis. Sci Rep 6:35146PubMedPubMedCentralCrossRef Amiya T, Nakamoto N, Chu PS, Teratani T, Nakajima H, Fukuchi Y et al (2016) Bone marrow-derived macrophages distinct from tissue-resident macrophages play a pivotal role in concanavalin A-induced murine liver injury via CCR9 axis. Sci Rep 6:35146PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Lages CS, Simmons J, Maddox A, Jones K, Karns R, Sheridan R et al (2017) The dendritic cell-T helper 17-macrophage axis controls cholangiocyte injury and disease progression in murine and human biliary atresia. Hepatology 65:174–188PubMedCrossRef Lages CS, Simmons J, Maddox A, Jones K, Karns R, Sheridan R et al (2017) The dendritic cell-T helper 17-macrophage axis controls cholangiocyte injury and disease progression in murine and human biliary atresia. Hepatology 65:174–188PubMedCrossRef
64.
Zurück zum Zitat Meng F, Wang K, Aoyama T, Grivennikov SI, Paik Y, Scholten D et al (2012) Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology 143:765–776 e3PubMedPubMedCentralCrossRef Meng F, Wang K, Aoyama T, Grivennikov SI, Paik Y, Scholten D et al (2012) Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology 143:765–776 e3PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Cheng Y, Tian Y, Xia J, Wu X, Yang Y, Li X et al (2017) The role of PTEN in regulation of hepatic macrophages activation and function in progression and reversal of liver fibrosis. Toxicol Appl Pharmacol 317:51–62PubMedCrossRef Cheng Y, Tian Y, Xia J, Wu X, Yang Y, Li X et al (2017) The role of PTEN in regulation of hepatic macrophages activation and function in progression and reversal of liver fibrosis. Toxicol Appl Pharmacol 317:51–62PubMedCrossRef
66.
Zurück zum Zitat Bain CC, Bravo-Blas A, Scott CL, Perdiguero EG, Geissmann F, Henri S et al (2014) Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nat Immunol 15:929–937PubMedPubMedCentralCrossRef Bain CC, Bravo-Blas A, Scott CL, Perdiguero EG, Geissmann F, Henri S et al (2014) Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nat Immunol 15:929–937PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Tamoutounour S, Guilliams M, Montanana Sanchis F, Liu H, Terhorst D, Malosse C et al (2013) Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. Immunity 39:925–938PubMedCrossRef Tamoutounour S, Guilliams M, Montanana Sanchis F, Liu H, Terhorst D, Malosse C et al (2013) Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. Immunity 39:925–938PubMedCrossRef
68.
Zurück zum Zitat Davies LC, Rosas M, Jenkins SJ, Liao CT, Scurr MJ, Brombacher F et al (2013) Distinct bone marrow-derived and tissue-resident macrophage lineages proliferate at key stages during inflammation. Nat Commun 4:1886PubMedCrossRef Davies LC, Rosas M, Jenkins SJ, Liao CT, Scurr MJ, Brombacher F et al (2013) Distinct bone marrow-derived and tissue-resident macrophage lineages proliferate at key stages during inflammation. Nat Commun 4:1886PubMedCrossRef
69.
Zurück zum Zitat Epelman S, Lavine KJ, Beaudin AE, Sojka DK, Carrero JA, Calderon B et al (2014) Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40:91–104PubMedPubMedCentralCrossRef Epelman S, Lavine KJ, Beaudin AE, Sojka DK, Carrero JA, Calderon B et al (2014) Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40:91–104PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Ju C, Tacke F (2016) Hepatic macrophages in homeostasis and liver diseases: from pathogenesis to novel therapeutic strategies. Cell Mol Immunol 13:316–327PubMedPubMedCentralCrossRef Ju C, Tacke F (2016) Hepatic macrophages in homeostasis and liver diseases: from pathogenesis to novel therapeutic strategies. Cell Mol Immunol 13:316–327PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Scott CL, Zheng F, De Baetselier P, Martens L, Saeys Y, De Prijck S et al (2016) Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nat Commun 7:10321PubMedPubMedCentralCrossRef Scott CL, Zheng F, De Baetselier P, Martens L, Saeys Y, De Prijck S et al (2016) Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nat Commun 7:10321PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Bleriot C, Dupuis T, Jouvion G, Eberl G, Disson O, Lecuit M (2015) Liver-resident macrophage necroptosis orchestrates type 1 microbicidal inflammation and type-2-mediated tissue repair during bacterial infection. Immunity 42:145–158PubMedCrossRef Bleriot C, Dupuis T, Jouvion G, Eberl G, Disson O, Lecuit M (2015) Liver-resident macrophage necroptosis orchestrates type 1 microbicidal inflammation and type-2-mediated tissue repair during bacterial infection. Immunity 42:145–158PubMedCrossRef
73.
Zurück zum Zitat Nascimento M, Huang SC, Smith A, Everts B, Lam W, Bassity E et al (2014) Ly6Chi monocyte recruitment is responsible for Th2 associated host-protective macrophage accumulation in liver inflammation due to schistosomiasis. PLoS Pathog 10:e1004282PubMedPubMedCentralCrossRef Nascimento M, Huang SC, Smith A, Everts B, Lam W, Bassity E et al (2014) Ly6Chi monocyte recruitment is responsible for Th2 associated host-protective macrophage accumulation in liver inflammation due to schistosomiasis. PLoS Pathog 10:e1004282PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Nishijima H, Kajimoto T, Matsuoka Y, Mouri Y, Morimoto J, Matsumoto M et al (2017) Paradoxical development of polymyositis-like autoimmunity through augmented expression of autoimmune regulator (AIRE). J Autoimmun 86:75–92 Nishijima H, Kajimoto T, Matsuoka Y, Mouri Y, Morimoto J, Matsumoto M et al (2017) Paradoxical development of polymyositis-like autoimmunity through augmented expression of autoimmune regulator (AIRE). J Autoimmun 86:75–92
75.
Zurück zum Zitat Jordan KR, Amaria RN, Ramirez O, Callihan EB, Gao D, Borakove M et al (2013) Myeloid-derived suppressor cells are associated with disease progression and decreased overall survival in advanced-stage melanoma patients. Cancer Immunol Immunother 62:1711–1722PubMedPubMedCentralCrossRef Jordan KR, Amaria RN, Ramirez O, Callihan EB, Gao D, Borakove M et al (2013) Myeloid-derived suppressor cells are associated with disease progression and decreased overall survival in advanced-stage melanoma patients. Cancer Immunol Immunother 62:1711–1722PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Ham B, Wang N, D'Costa Z, Fernandez MC, Bourdeau F, Auguste P et al (2015) TNF receptor-2 facilitates an immunosuppressive microenvironment in the liver to promote the colonization and growth of hepatic metastases. Cancer Res 75:5235–5247PubMedCrossRef Ham B, Wang N, D'Costa Z, Fernandez MC, Bourdeau F, Auguste P et al (2015) TNF receptor-2 facilitates an immunosuppressive microenvironment in the liver to promote the colonization and growth of hepatic metastases. Cancer Res 75:5235–5247PubMedCrossRef
77.
Zurück zum Zitat Zhang G, Huang H, Zhu Y, Yu G, Gao X, Xu Y et al (2015) A novel subset of B7-H3+CD14+HLA-DR−/low myeloid-derived suppressor cells are associated with progression of human NSCLC. Oncoimmunology 4:e977164PubMedPubMedCentralCrossRef Zhang G, Huang H, Zhu Y, Yu G, Gao X, Xu Y et al (2015) A novel subset of B7-H3+CD14+HLA-DR−/low myeloid-derived suppressor cells are associated with progression of human NSCLC. Oncoimmunology 4:e977164PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Lei A, Yang Q, Li X, Chen H, Shi M, Xiao Q et al (2016) Atorvastatin promotes the expansion of myeloid-derived suppressor cells and attenuates murine colitis. Immunology 149:432–446PubMedPubMedCentralCrossRef Lei A, Yang Q, Li X, Chen H, Shi M, Xiao Q et al (2016) Atorvastatin promotes the expansion of myeloid-derived suppressor cells and attenuates murine colitis. Immunology 149:432–446PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Park MJ, Lee SH, Kim EK, Lee EJ, Park SH, Kwok SK et al (2016) Myeloid-derived suppressor cells induce the expansion of regulatory B cells and ameliorate autoimmunity in the Sanroque mouse model of systemic lupus erythematosus. Arthritis Rheumatol 68:2717–2727PubMedCrossRef Park MJ, Lee SH, Kim EK, Lee EJ, Park SH, Kwok SK et al (2016) Myeloid-derived suppressor cells induce the expansion of regulatory B cells and ameliorate autoimmunity in the Sanroque mouse model of systemic lupus erythematosus. Arthritis Rheumatol 68:2717–2727PubMedCrossRef
80.
Zurück zum Zitat Hammerich L, Tacke F (2015) Emerging roles of myeloid derived suppressor cells in hepatic inflammation and fibrosis. World J Gastrointest Pathophysiol 6:43–50PubMedPubMedCentralCrossRef Hammerich L, Tacke F (2015) Emerging roles of myeloid derived suppressor cells in hepatic inflammation and fibrosis. World J Gastrointest Pathophysiol 6:43–50PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat Bronte V, Brandau S, Chen SH, Colombo MP, Frey AB, Greten TF et al (2016) Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun 7:12150PubMedPubMedCentralCrossRef Bronte V, Brandau S, Chen SH, Colombo MP, Frey AB, Greten TF et al (2016) Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun 7:12150PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Jeong Ryu S, Ju JM, Kim W, Bum Kim M, Hee Oh K, Sup Lee D et al (2015) Alleviation of skin inflammation after Lin(−) cell transplantation correlates with their differentiation into myeloid-derived suppressor cells. Sci Rep 5:14663PubMedPubMedCentralCrossRef Jeong Ryu S, Ju JM, Kim W, Bum Kim M, Hee Oh K, Sup Lee D et al (2015) Alleviation of skin inflammation after Lin(−) cell transplantation correlates with their differentiation into myeloid-derived suppressor cells. Sci Rep 5:14663PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Mandruzzato S, Brandau S, Britten CM, Bronte V, Damuzzo V, Gouttefangeas C et al (2016) Toward harmonized phenotyping of human myeloid-derived suppressor cells by flow cytometry: results from an interim study. Cancer Immunol Immunother 65:161–169PubMedPubMedCentralCrossRef Mandruzzato S, Brandau S, Britten CM, Bronte V, Damuzzo V, Gouttefangeas C et al (2016) Toward harmonized phenotyping of human myeloid-derived suppressor cells by flow cytometry: results from an interim study. Cancer Immunol Immunother 65:161–169PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Parker KH, Beury DW, Ostrand-Rosenberg S (2015) Myeloid-derived suppressor cells: critical cells driving immune suppression in the tumor microenvironment. Adv Cancer Res 128:95–139PubMedPubMedCentralCrossRef Parker KH, Beury DW, Ostrand-Rosenberg S (2015) Myeloid-derived suppressor cells: critical cells driving immune suppression in the tumor microenvironment. Adv Cancer Res 128:95–139PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Chou HS, Hsieh CC, Yang HR, Wang L, Arakawa Y, Brown K et al (2011) Hepatic stellate cells regulate immune response by way of induction of myeloid suppressor cells in mice. Hepatology 53:1007–1019PubMedPubMedCentralCrossRef Chou HS, Hsieh CC, Yang HR, Wang L, Arakawa Y, Brown K et al (2011) Hepatic stellate cells regulate immune response by way of induction of myeloid suppressor cells in mice. Hepatology 53:1007–1019PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Yen BL, Yen ML, Hsu PJ, Liu KJ, Wang CJ, Bai CH et al (2013) Multipotent human mesenchymal stromal cells mediate expansion of myeloid-derived suppressor cells via hepatocyte growth factor/c-met and STAT3. Stem Cell Reports 1:139–151PubMedPubMedCentralCrossRef Yen BL, Yen ML, Hsu PJ, Liu KJ, Wang CJ, Bai CH et al (2013) Multipotent human mesenchymal stromal cells mediate expansion of myeloid-derived suppressor cells via hepatocyte growth factor/c-met and STAT3. Stem Cell Reports 1:139–151PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Goh CC, Roggerson KM, Lee HC, Golden-Mason L, Rosen HR, Hahn YS (2016) Hepatitis C virus-induced myeloid-derived suppressor cells suppress NK cell IFN-gamma production by altering cellular metabolism via arginase-1. J Immunol 196:2283–2292PubMedPubMedCentralCrossRef Goh CC, Roggerson KM, Lee HC, Golden-Mason L, Rosen HR, Hahn YS (2016) Hepatitis C virus-induced myeloid-derived suppressor cells suppress NK cell IFN-gamma production by altering cellular metabolism via arginase-1. J Immunol 196:2283–2292PubMedPubMedCentralCrossRef
88.
89.
Zurück zum Zitat Hsu SH, Wang B, Kota J, Yu J, Costinean S, Kutay H et al (2012) Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J Clin Invest 122:2871–2883PubMedPubMedCentralCrossRef Hsu SH, Wang B, Kota J, Yu J, Costinean S, Kutay H et al (2012) Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J Clin Invest 122:2871–2883PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Cantoni C, Cignarella F, Ghezzi L, Mikesell B, Bollman B, Berrien-Elliott MM et al (2017) Mir-223 regulates the number and function of myeloid-derived suppressor cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Acta Neuropathol 133:61–77PubMedCrossRef Cantoni C, Cignarella F, Ghezzi L, Mikesell B, Bollman B, Berrien-Elliott MM et al (2017) Mir-223 regulates the number and function of myeloid-derived suppressor cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Acta Neuropathol 133:61–77PubMedCrossRef
91.
Zurück zum Zitat Wang J, Cao X, Zhao J, Zhao H, Wei J, Li Q et al (2017) Critical roles of conventional dendritic cells in promoting T cell-dependent hepatitis through regulating natural killer T cells. Clin Exp Immunol 188:127–137PubMedPubMedCentralCrossRef Wang J, Cao X, Zhao J, Zhao H, Wei J, Li Q et al (2017) Critical roles of conventional dendritic cells in promoting T cell-dependent hepatitis through regulating natural killer T cells. Clin Exp Immunol 188:127–137PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Gronbaek H, Kreutzfeldt M, Kazankov K, Jessen N, Sandahl T, Hamilton-Dutoit S et al (2016) Single-centre experience of the macrophage activation marker soluble (s)CD163—associations with disease activity and treatment response in patients with autoimmune hepatitis. Aliment Pharmacol Ther 44:1062–1070PubMedCrossRef Gronbaek H, Kreutzfeldt M, Kazankov K, Jessen N, Sandahl T, Hamilton-Dutoit S et al (2016) Single-centre experience of the macrophage activation marker soluble (s)CD163—associations with disease activity and treatment response in patients with autoimmune hepatitis. Aliment Pharmacol Ther 44:1062–1070PubMedCrossRef
93.
Zurück zum Zitat Lafdil F, Wang H, Park O, Zhang W, Moritoki Y, Yin S et al (2009) Myeloid STAT3 inhibits T cell-mediated hepatitis by regulating T helper 1 cytokine and interleukin-17 production. Gastroenterology 137:2125–35 e1–2PubMedPubMedCentralCrossRef Lafdil F, Wang H, Park O, Zhang W, Moritoki Y, Yin S et al (2009) Myeloid STAT3 inhibits T cell-mediated hepatitis by regulating T helper 1 cytokine and interleukin-17 production. Gastroenterology 137:2125–35 e1–2PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Hardtke-Wolenski M, Dywicki J, Fischer K, Hapke M, Sievers M, Schlue J et al (2017) The influence of genetic predisposition and autoimmune hepatitis inducing antigens in disease development. J Autoimmun 78:39–45PubMedCrossRef Hardtke-Wolenski M, Dywicki J, Fischer K, Hapke M, Sievers M, Schlue J et al (2017) The influence of genetic predisposition and autoimmune hepatitis inducing antigens in disease development. J Autoimmun 78:39–45PubMedCrossRef
95.
Zurück zum Zitat Hudspeth K, Donadon M, Cimino M, Pontarini E, Tentorio P, Preti M et al (2016) Human liver-resident CD56(bright)/CD16(neg) NK cells are retained within hepatic sinusoids via the engagement of CCR5 and CXCR6 pathways. J Autoimmun 66:40–50PubMedCrossRef Hudspeth K, Donadon M, Cimino M, Pontarini E, Tentorio P, Preti M et al (2016) Human liver-resident CD56(bright)/CD16(neg) NK cells are retained within hepatic sinusoids via the engagement of CCR5 and CXCR6 pathways. J Autoimmun 66:40–50PubMedCrossRef
96.
Zurück zum Zitat Diao W, Jin F, Wang B, Zhang CY, Chen J, Zen K et al (2014) The protective role of myeloid-derived suppressor cells in concanavalin A-induced hepatic injury. Protein Cell 5:714–724PubMedPubMedCentralCrossRef Diao W, Jin F, Wang B, Zhang CY, Chen J, Zen K et al (2014) The protective role of myeloid-derived suppressor cells in concanavalin A-induced hepatic injury. Protein Cell 5:714–724PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Zhang H, Liu Y, Bian Z, Huang S, Han X, You Z et al (2014) The critical role of myeloid-derived suppressor cells and FXR activation in immune-mediated liver injury. J Autoimmun 53:55–66PubMedCrossRef Zhang H, Liu Y, Bian Z, Huang S, Han X, You Z et al (2014) The critical role of myeloid-derived suppressor cells and FXR activation in immune-mediated liver injury. J Autoimmun 53:55–66PubMedCrossRef
98.
Zurück zum Zitat Hammerich L, Warzecha KT, Stefkova M, Bartneck M, Ohl K, Gassler N et al (2015) Cyclic adenosine monophosphate-responsive element modulator alpha overexpression impairs function of hepatic myeloid-derived suppressor cells and aggravates immune-mediated hepatitis in mice. Hepatology 61:990–1002PubMedCrossRef Hammerich L, Warzecha KT, Stefkova M, Bartneck M, Ohl K, Gassler N et al (2015) Cyclic adenosine monophosphate-responsive element modulator alpha overexpression impairs function of hepatic myeloid-derived suppressor cells and aggravates immune-mediated hepatitis in mice. Hepatology 61:990–1002PubMedCrossRef
99.
Zurück zum Zitat Wang Q, Yang F, Miao Q, Krawitt EL, Gershwin ME, Ma X (2016) The clinical phenotypes of autoimmune hepatitis: a comprehensive review. J Autoimmun 66:98–107PubMedCrossRef Wang Q, Yang F, Miao Q, Krawitt EL, Gershwin ME, Ma X (2016) The clinical phenotypes of autoimmune hepatitis: a comprehensive review. J Autoimmun 66:98–107PubMedCrossRef
100.
Zurück zum Zitat You Z, Wang Q, Bian Z, Liu Y, Han X, Peng Y et al (2012) The immunopathology of liver granulomas in primary biliary cirrhosis. J Autoimmun 39:216–221PubMedPubMedCentralCrossRef You Z, Wang Q, Bian Z, Liu Y, Han X, Peng Y et al (2012) The immunopathology of liver granulomas in primary biliary cirrhosis. J Autoimmun 39:216–221PubMedPubMedCentralCrossRef
101.
102.
Zurück zum Zitat Tian J, Yang G, Chen HY, Hsu DK, Tomilov A, Olson KA et al (2016) Galectin-3 regulates inflammasome activation in cholestatic liver injury. FASEB J 30:4202–4213PubMedPubMedCentralCrossRef Tian J, Yang G, Chen HY, Hsu DK, Tomilov A, Olson KA et al (2016) Galectin-3 regulates inflammasome activation in cholestatic liver injury. FASEB J 30:4202–4213PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Allina J, Hu B, Sullivan DM, Fiel MI, Thung SN, Bronk SF et al (2006) T cell targeting and phagocytosis of apoptotic biliary epithelial cells in primary biliary cirrhosis. J Autoimmun 27:232–241PubMedCrossRef Allina J, Hu B, Sullivan DM, Fiel MI, Thung SN, Bronk SF et al (2006) T cell targeting and phagocytosis of apoptotic biliary epithelial cells in primary biliary cirrhosis. J Autoimmun 27:232–241PubMedCrossRef
104.
Zurück zum Zitat Lleo A, Invernizzi P (2013) Apotopes and innate immune system: novel players in the primary biliary cirrhosis scenario. Dig Liver Dis 45:630–636PubMedCrossRef Lleo A, Invernizzi P (2013) Apotopes and innate immune system: novel players in the primary biliary cirrhosis scenario. Dig Liver Dis 45:630–636PubMedCrossRef
105.
Zurück zum Zitat Lleo A, Bowlus CL, Yang GX, Invernizzi P, Podda M, Van de Water J et al (2010) Biliary apotopes and anti-mitochondrial antibodies activate innate immune responses in primary biliary cirrhosis. Hepatology 52:987–998PubMedPubMedCentralCrossRef Lleo A, Bowlus CL, Yang GX, Invernizzi P, Podda M, Van de Water J et al (2010) Biliary apotopes and anti-mitochondrial antibodies activate innate immune responses in primary biliary cirrhosis. Hepatology 52:987–998PubMedPubMedCentralCrossRef
106.
Zurück zum Zitat Hisamoto S, Shimoda S, Harada K, Iwasaka S, Onohara S, Chong Y et al (2016) Hydrophobic bile acids suppress expression of AE2 in biliary epithelial cells and induce bile duct inflammation in primary biliary cholangitis. J Autoimmun 75:150–160PubMedCrossRef Hisamoto S, Shimoda S, Harada K, Iwasaka S, Onohara S, Chong Y et al (2016) Hydrophobic bile acids suppress expression of AE2 in biliary epithelial cells and induce bile duct inflammation in primary biliary cholangitis. J Autoimmun 75:150–160PubMedCrossRef
107.
Zurück zum Zitat Webb GJ, Hirschfield GM (2016) Using GWAS to identify genetic predisposition in hepatic autoimmunity. J Autoimmun 66:25–39PubMedCrossRef Webb GJ, Hirschfield GM (2016) Using GWAS to identify genetic predisposition in hepatic autoimmunity. J Autoimmun 66:25–39PubMedCrossRef
108.
Zurück zum Zitat Hsueh YH, Chang YN, Loh CE, Gershwin ME, Chuang YH (2016) AAV-IL-22 modifies liver chemokine activity and ameliorates portal inflammation in murine autoimmune cholangitis. J Autoimmun 66:89–97PubMedCrossRef Hsueh YH, Chang YN, Loh CE, Gershwin ME, Chuang YH (2016) AAV-IL-22 modifies liver chemokine activity and ameliorates portal inflammation in murine autoimmune cholangitis. J Autoimmun 66:89–97PubMedCrossRef
110.
Zurück zum Zitat Lumeng CN, Bodzin JL, Saltiel AR (2007) Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 117:175–184PubMedPubMedCentralCrossRef Lumeng CN, Bodzin JL, Saltiel AR (2007) Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 117:175–184PubMedPubMedCentralCrossRef
111.
Zurück zum Zitat Obstfeld AE, Sugaru E, Thearle M, Francisco AM, Gayet C, Ginsberg HN et al (2010) C-C chemokine receptor 2 (CCR2) regulates the hepatic recruitment of myeloid cells that promote obesity-induced hepatic steatosis. Diabetes 59:916–925PubMedPubMedCentralCrossRef Obstfeld AE, Sugaru E, Thearle M, Francisco AM, Gayet C, Ginsberg HN et al (2010) C-C chemokine receptor 2 (CCR2) regulates the hepatic recruitment of myeloid cells that promote obesity-induced hepatic steatosis. Diabetes 59:916–925PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Chen Z, Shen H, Sun C, Yin L, Tang F, Zheng P et al (2015) Myeloid cell TRAF3 promotes metabolic inflammation, insulin resistance, and hepatic steatosis in obesity. Am J Physiol Endocrinol Metab 308:E460–E469PubMedPubMedCentralCrossRef Chen Z, Shen H, Sun C, Yin L, Tang F, Zheng P et al (2015) Myeloid cell TRAF3 promotes metabolic inflammation, insulin resistance, and hepatic steatosis in obesity. Am J Physiol Endocrinol Metab 308:E460–E469PubMedPubMedCentralCrossRef
113.
Zurück zum Zitat Muller P, Messmer M, Bayer M, Pfeilschifter JM, Hintermann E, Christen U (2016) Non-alcoholic fatty liver disease (NAFLD) potentiates autoimmune hepatitis in the CYP2D6 mouse model. J Autoimmun 69:51–58PubMedCrossRef Muller P, Messmer M, Bayer M, Pfeilschifter JM, Hintermann E, Christen U (2016) Non-alcoholic fatty liver disease (NAFLD) potentiates autoimmune hepatitis in the CYP2D6 mouse model. J Autoimmun 69:51–58PubMedCrossRef
114.
Zurück zum Zitat Baeck C, Wehr A, Karlmark KR, Heymann F, Vucur M, Gassler N et al (2012) Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. Gut 61:416–426PubMedCrossRef Baeck C, Wehr A, Karlmark KR, Heymann F, Vucur M, Gassler N et al (2012) Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. Gut 61:416–426PubMedCrossRef
115.
Zurück zum Zitat Spadaro O, Camell CD, Bosurgi L, Nguyen KY, Youm YH, Rothlin CV et al (2017) IGF1 shapes macrophage activation in response to immunometabolic challenge. Cell Rep 19:225–234PubMedPubMedCentralCrossRef Spadaro O, Camell CD, Bosurgi L, Nguyen KY, Youm YH, Rothlin CV et al (2017) IGF1 shapes macrophage activation in response to immunometabolic challenge. Cell Rep 19:225–234PubMedPubMedCentralCrossRef
116.
Zurück zum Zitat Deng ZB, Liu Y, Liu C, Xiang X, Wang J, Cheng Z et al (2009) Immature myeloid cells induced by a high-fat diet contribute to liver inflammation. Hepatology 50:1412–1420PubMedPubMedCentralCrossRef Deng ZB, Liu Y, Liu C, Xiang X, Wang J, Cheng Z et al (2009) Immature myeloid cells induced by a high-fat diet contribute to liver inflammation. Hepatology 50:1412–1420PubMedPubMedCentralCrossRef
117.
Zurück zum Zitat Chen L, Zhang Z, Chen W, Zhang Z, Li Y, Shi M et al (2007) B7-H1 up-regulation on myeloid dendritic cells significantly suppresses T cell immune function in patients with chronic hepatitis B. J Immunol 178:6634–6641PubMedCrossRef Chen L, Zhang Z, Chen W, Zhang Z, Li Y, Shi M et al (2007) B7-H1 up-regulation on myeloid dendritic cells significantly suppresses T cell immune function in patients with chronic hepatitis B. J Immunol 178:6634–6641PubMedCrossRef
118.
Zurück zum Zitat Li X, Liu X, Tian L, Chen Y (2016) Cytokine-mediated immunopathogenesis of hepatitis B virus infections. Clin Rev Allergy Immunol 50:41–54PubMedCrossRef Li X, Liu X, Tian L, Chen Y (2016) Cytokine-mediated immunopathogenesis of hepatitis B virus infections. Clin Rev Allergy Immunol 50:41–54PubMedCrossRef
119.
Zurück zum Zitat Pallett LJ, Gill US, Quaglia A, Sinclair LV, Jover-Cobos M, Schurich A et al (2015) Metabolic regulation of hepatitis B immunopathology by myeloid-derived suppressor cells. Nat Med 21:591–600PubMedPubMedCentralCrossRef Pallett LJ, Gill US, Quaglia A, Sinclair LV, Jover-Cobos M, Schurich A et al (2015) Metabolic regulation of hepatitis B immunopathology by myeloid-derived suppressor cells. Nat Med 21:591–600PubMedPubMedCentralCrossRef
120.
Zurück zum Zitat Huang LR, Wohlleber D, Reisinger F, Jenne CN, Cheng RL, Abdullah Z et al (2013) Intrahepatic myeloid-cell aggregates enable local proliferation of CD8(+) T cells and successful immunotherapy against chronic viral liver infection. Nat Immunol 14:574–583PubMedCrossRef Huang LR, Wohlleber D, Reisinger F, Jenne CN, Cheng RL, Abdullah Z et al (2013) Intrahepatic myeloid-cell aggregates enable local proliferation of CD8(+) T cells and successful immunotherapy against chronic viral liver infection. Nat Immunol 14:574–583PubMedCrossRef
121.
Zurück zum Zitat Yoshio S, Kanto T, Kuroda S, Matsubara T, Higashitani K, Kakita N et al (2013) Human blood dendritic cell antigen 3 (BDCA3)(+) dendritic cells are a potent producer of interferon-lambda in response to hepatitis C virus. Hepatology 57:1705–1715PubMedCrossRef Yoshio S, Kanto T, Kuroda S, Matsubara T, Higashitani K, Kakita N et al (2013) Human blood dendritic cell antigen 3 (BDCA3)(+) dendritic cells are a potent producer of interferon-lambda in response to hepatitis C virus. Hepatology 57:1705–1715PubMedCrossRef
122.
Zurück zum Zitat Ju C, Colgan SP, Eltzschig HK (2016) Hypoxia-inducible factors as molecular targets for liver diseases. J Mol Med (Berl) 94:613–627CrossRef Ju C, Colgan SP, Eltzschig HK (2016) Hypoxia-inducible factors as molecular targets for liver diseases. J Mol Med (Berl) 94:613–627CrossRef
123.
Zurück zum Zitat Copple BL, Kaska S, Wentling C (2012) Hypoxia-inducible factor activation in myeloid cells contributes to the development of liver fibrosis in cholestatic mice. J Pharmacol Exp Ther 341:307–316PubMedPubMedCentralCrossRef Copple BL, Kaska S, Wentling C (2012) Hypoxia-inducible factor activation in myeloid cells contributes to the development of liver fibrosis in cholestatic mice. J Pharmacol Exp Ther 341:307–316PubMedPubMedCentralCrossRef
124.
Zurück zum Zitat Gaia S, Smedile A, Omede P, Olivero A, Sanavio F, Balzola F et al (2006) Feasibility and safety of G-CSF administration to induce bone marrow-derived cells mobilization in patients with end stage liver disease. J Hepatol 45:13–19PubMedCrossRef Gaia S, Smedile A, Omede P, Olivero A, Sanavio F, Balzola F et al (2006) Feasibility and safety of G-CSF administration to induce bone marrow-derived cells mobilization in patients with end stage liver disease. J Hepatol 45:13–19PubMedCrossRef
125.
126.
Zurück zum Zitat Neuberger J (2016) An update on liver transplantation: a critical review. J Autoimmun 66:51–59PubMedCrossRef Neuberger J (2016) An update on liver transplantation: a critical review. J Autoimmun 66:51–59PubMedCrossRef
Metadaten
Titel
Myeloid Cells and Chronic Liver Disease: a Comprehensive Review
verfasst von
Min Lian
Carlo Selmi
M. Eric Gershwin
Xiong Ma
Publikationsdatum
08.01.2018
Verlag
Springer US
Erschienen in
Clinical Reviews in Allergy & Immunology / Ausgabe 2/2018
Print ISSN: 1080-0549
Elektronische ISSN: 1559-0267
DOI
https://doi.org/10.1007/s12016-017-8664-x

Weitere Artikel der Ausgabe 2/2018

Clinical Reviews in Allergy & Immunology 2/2018 Zur Ausgabe

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.