Skip to main content
Erschienen in: Journal of Cardiothoracic Surgery 1/2018

Open Access 01.12.2018 | Research article

Myocardial insufficiency is related to reduced subunit 4 content of cytochrome c oxidase

verfasst von: Sebastian Vogt, Volker Ruppert, Sabine Pankuweit, Jürgen P. J. Paletta, Annika Rhiel, Petra Weber, Marc Irqsusi, Pia Cybulski, Rabia Ramzan

Erschienen in: Journal of Cardiothoracic Surgery | Ausgabe 1/2018

Abstract

Background

Treatment of heart failure remains one of the most challenging task for intensive care medicine, cardiology and cardiac surgery. New options and better indicators are always required. Understanding the basic mechanisms underlying heart failure promote the development of adjusted therapy e.g. assist devices and monitoring of recovery. If cardiac failure is related to compromised cellular respiration of the heart, remains unclear. Myocardial respiration depends on Cytochrome c- Oxidase (CytOx) activity representing the rate limiting step for the mitochondrial respiratory chain. The enzymatic activity as well as mRNA expression of enzyme’s mitochondrial encoded catalytic subunit 2, nuclear encoded regulatory subunit 4 and protein contents were studied in biopsies of cardiac patients suffering from myocardial insufficiency and dilated cardiomyopathy (DCM).

Methods

Fifty-four patients were enrolled in the study and underwent coronary angiography. Thirty male patients (mean age: 45 +/− 15 yrs.) had a reduced ejection fraction (EF) 35 ± 12% below 45% and a left ventricular end diastolic diameter (LVEDD) of 71 ± 10 mm bigger than 56 mm. They were diagnosed as having idiopathic dilated cardiomyopathy (DCM) without coronary heart disease and NYHA-class 3 and 4. Additionally, 24 male patients (mean age: 52 +/− 11 yrs.) after exclusion of secondary cardiomyopathies, coronary artery or valve disease, served as control (EF: 68 ± 7, LVEDD: 51 ± 7 mm). Total RNA was extracted from two biopsies of each person. Real-time PCR analysis was performed with specific primers followed by a melt curve analysis. Corresponding protein expression in the tissue was studied with immune-histochemistry while enzymatic activity was evaluated by spectroscopy.

Results

Gene and protein expression analysis of patients showed a significant decrease of subunit 4 (1.1 vs. 0.6, p < 0.001; 7.7 ± 3.1% vs. 2.8 ± 1.4%, p < 0.0001) but no differences in subunit 2. Correlations were found between reduced subunit 2 expression, low EF (r = 0.766, p < 0.00045) and increased LVEDD (r = 0.492, p < 0.0068). In case of DCM less subunit 4 expression and reduced shortening fraction (r = 0.524, p < 0.017) was found, but enzymatic activity was higher (0.08 ± 0.06 vs. 0.26 ± 0.08 U/mg, p < 0.001) although myocardial oxygen consumption continued to the same extent.

Conclusion

In case of myocardial insufficiency and DCM, decreased expression of COX 4 results in an impaired CytOx activity. Higher enzymatic activity but equal oxygen consumption contribute to the pathophysiology of the myocardial insufficiency and appears as an indicator of oxidative stress. This kind of dysregulation should be in the focus for the development of diagnostic and therapy procedures.
Abkürzungen
4i1 and 4i2
Subunit 4 isoforms of the Cytochrome c –Oxidase
COX 4
Gene expression of Cytochrome c Oxidase Subunit 4
CytOx
Cytochrome c –Oxidase
DCM
Dilated cardiomyopathy
EF
Ejection fraction
EMB
Endomyocardial biopsy
LV
Left ventricular
LVEDD
Left ventricular enddiastolic dimension
MT-CO2
Gene expression of Cytochrome c Oxidase Subunit 2
ROS
Reactive oxygen species
SF
Hortening fraction

Background

Deterioration of myocardial contractility is an obvious indicator for reduced oxygen supply. In coronary heart disease, when arteriosclerotic plaque formation reduces blood flow, the reduced coronary blood supply results in ischemia and damage to the myocardium. Myocardial respiration depends on Cytochrome c- Oxidase (CytOx) activity. It represents the rate limiting step for the function of the mitochondrial respiratory chain, also known as electron transmission chain (ETC). If cardiac failure is related to the compromised cellular respiration of the heart, remains unclear. But contractility requires abundant supply of adenosine triphosphate (ATP), and this kind of “energy currency” is produced in mitochondria (see Fig. 1) where oxygen consumption for water production at Cytochrome c- Oxidase (E.C. 1.9.3.1.) is a rate-limiting step. Decreased expression of COX 4 results in an impaired Cytochrome c oxidase activity [4, 5]. We hypothesize subsequent mitochondrial dysfunction associated with the formation of increased reactive oxygen species and inadequate maintenance of ATP levels when subunit 4 is reduced in the holoenzyme. This dysregulation is likely to contribute to the pathophysiology associated with myocardial insufficiency.
The extent of ROS formation herein, determines the pathophysiological consequences. Ischemic damage and reperfusion injury of myocardium proceed with an “Overspending ATP” and finally metabolic break down. The CytOx (complex IV) is directly involved and has the “center stage” [4, 5]. This enzyme is considered to be the rate limiting step of electron transfer chain (ETC) [6, 7]. The holoenzyme in mammals is always composed of 13 subunits [8] (Fig. 2) where subunit 4 is essential for the assembly and oxygen consumption of the enzyme [9].
Interestingly, Buchwald et al. [10] found in hearts of transplant recipients with dilated cardiomyopathy (DCM) reduced cytochrome content as well as decreased complex IV activity. The group claimed no differences in subunit composition, although only gel- electrophoresis was used and harvested hearts represented profound end stage status of terminal cardiac insufficiency. Opposite data were presented by Grossmann and co-workers [11] where they found in homozygous and heterozygous Cox7a1 knockout mice, although viable, the reduced enzymatic activity and development of DCM at 6 weeks of age. Surprisingly, the cardiomyopathy improves and stabilizes by 6 months of age. Cox7a1 knockout mice incorporated more of the “liver-type” isoform Cox7a2 into cardiac type of the enzyme.
Mitochondrial mtDNA mutations are known to be involved in the pathogenesis of DCM [12, 13]. Point mutations are found more frequently. Mutations involving the evolutionary conserved residues of CytOx subunit 1 and NADH dehydrogenase 5 have been identified [14]. Additionally, further mutations were located in highly conserved domains of the gene coding for the CytOx [15, 16]. After cardiac transplantation, Arbustini and collaborators [14] found in explanted recipients’ hearts suffering from DCM, significant lower CytOx- activity related to NADH dehydrogenase and succinic dehydrogenase activities. They correlated pathological mtDNA mutations to CytOx- deficiency and abnormal mitochondrial ultrastructure.
The prognosis of DCM is poor because of its progression to myocardial insufficiency. Progression results either in cardiac death or prolonged support with inotropic medication, implantation of left ventricular assist devices, or heart transplantation, respectively. Effective, early indicators are required for diagnosing heart failure and commencing justified interventions in due time. Diversely, a good prognostic parameter to start the weaning process from cardiac assist devices under intensive medical care are needed as well.
Reflecting the need of such new parameters, the present study addresses mitochondrial pathophysiology of myocardial respiration in case of myocardial insufficiency. The study addresses the question, if reduced transcription and protein translation rates of subunit 4 represents a good indicator for compromised myocardial oxygen consumption and utilization for ATP production. The mismatch between mitochondrial- and nuclear coded subunits of CytOx indicates compromised cardiac dysfunction. Subunit 2 binds to one of the copper ions (CuA) whilst subunit 1 is likely to bind the two hemes (a and a3) and the other redox-active copper (CuB). Two cysteine and two histidine residues of subunit 2 are the likely ligands of CuA, forming a centre for electron transportation [17, 18]. Subunit 4 is known to be essential for the assembly and respiratory function of the enzyme complex [19, 20]. Accordingly, MT –CO2 /COX 4 gene expression, CytOx subunit 2 and 4 protein content and enzymatic activity of the holoenzyme in biopsies of DCM patients were determined. The extent of myocardial insufficiency in patients was detected by heart catheterization and LV angiography. Hemodynamic data were correlated to the biochemical findings of CytOx subunit 2 and 4 measurements.

Methods

Patients and dichotomization of the group

Patients with suspected inflammatory heart disease were referred to our hospital. All patients underwent heart catheterization. After exclusion of coronary artery disease, arterial hypertension and cardiac valve disease, up to 9 left ventricular (LV) endomyocardial specimens were obtained with a flexible Cordis bioptome from the free wall of the left ventricle, subsequently. All biopsies were snap-frozen and conserved in liquid nitrogen and stored at − 80 °C for maximum 2 months. The ESC-classification of cardiomyopathies of 2007 as well as the WHF-classification for the exclusion of inflammation and viral persistence was applied for the diagnosis of idiopathic dilated cardiomyopathy [21, 22]. Thirty patients (mean age: 45 +/− 15 yrs.) had reduced LV ejection fraction (EF: 35 ± 12%) below 45% and an enlarged left ventricular enddiastolic diameter bigger than 56 mm (LVEDD: 71 ± 10 mm). They were considered as myocardial insufficient and qualified for further analysis (Table 1). Furthermore, all of these patients were classified as having non-inflammatory, non-familial and non-viral forms of dilated cardiomyopathy by clinical work-up and in addition by immunohistochemical and molecular biological work-up of in total 5 endomyocardial biopsies. Twenty-four male patients (mean age: 52 +/− 11 yrs.) after final exclusion of inflammatory cardiomyopathy/ myocarditis or viral heart disease were also included in the investigation. They had improved hemodynamic data and served as a control group.
Table 1
Patients’ characteristics of both groups in comparison: Patients with suspected inflammatory heart disease were referred to our hospital based on recent onset of cardiac arrhythmias, undefined electrocardiogram changes, reduced exercise, tolerance or atypical chest pain. Coronary angiography was performed and endomyocardial specimens (n = 9) were obtained with a flexible Cordis bioptome from the free wall of the left ventricle. Patients with an EF < 45% and a LVEDD > 56 mm were considered having DCM disease. Medical treatment included Angiotensin-converting-enzyme-inhibitors 12/30 (40%), beta-blockers in 10/30 (33%) cases, diuretics in 10/30 (33%) cases, Angiotensin II receptor blockers in 27/30 (90%) cases. Anticoagulation with warfarin was made in 8/30 (27%) cases
 
Age [y]
BMI
Nicotine
Diabetes
EF [%]
LVEDD [mm]
SF [%]
Controls (n = 24)
52 ± 11
28 ± 3
3/21 (12%)
2/21 (8%)
68 ± 7
51 ± 7
33 ± 12
DCM (n = 30)
45 ± 15
28 ± 5
5/18 (17%)
2/18 (7%)
35 ± 12
71 ± 10
20 ± 8
The endomyocardial biopsies used were the leftover samples from patients with suspected inflammatory disease after complete diagnostic work up. All patients gave their informed consent to use leftover samples for scientific purposes (Permission Ethics commission Az 53/18).

mRNA expression analysis

Total RNA was extracted from the two pooled endomyocardial biopsies by QIAGEN™ RNeasy Kit according to the manufacturers’ instructions, including a DNase digestion (Serva™). The mRNA of the COX subunits 2 and 4 from heart tissue were amplified with specific primer pairs by one step real-time PCR using an iCycler (BioRad™). Polymerase chain reaction was carried out according to the manufacturers recommendations in a total volume of 25 μl containing 2.5 μl total RNA from endomyocardial biopsies as well as 7.5 μM cytochrome c oxidase 2, cytochrome c oxidase 4 or GAPDH (housekeeping gene), specific forward and reverse Primer and 2.5 μl SYBR Green. Primer sequences for GAPDH were, forward 5′-gAA ggT gAA ggT Cgg AgT C-3′ and reverse 5′- gAA gAT ggT gAT ggg ATT TC -3′; for MT- CO2 subunit-II, forward 5′- AgA CgC TAC TTC CCC TAT CA -3′ and reverse 5′- ggT CgT gTA gCg gTg AAA gT − 3′ and for CytOx subunit-4 were, forward 5′- gTA CGA gCT CAT gAA AgT gTT g − 3′ and reverse 5′- ACA TAg TgC TTC TgC CAC ATg A − 3′.
The protocols for “One Step Real-time PCR” used were as follows: reverse transcription 50 °C 30 min, denaturation (95 °C for 15 min), amplification repeated 40 times (95 °C for 45 s), annealing temperature (60 °C for 45 s), extension temperature (72 °C for 45 s). A melting curve analysis was run after final amplification period via a temperature gradient from 55 to 94 °C in 0.5 °C increment steps measuring fluorescence at each temperature for a period of 10 s. All reactions were carried out in at least 5 duplicates for every sample.
The relative expression of MT –CO2 and COX 4 transcripts were calculated as the ratio between the levels of transcript and GAPDH. Using the BioRad™ iQ iCycler system software, the threshold (Ct) at which the cycle numbers were measured, was adjusted to areas of exponential amplification of the traces. The ΔΔ-method was used to determine comparative expression level by applying the formula 2(-ΔCt target - ΔCt control) as described previously [23]. RNA content was compared in each biopsy by the distribution of GAPDH. All data were related to the GAPDH normalised ratio. The mean threshold cycles (CT) of all samples were similar (no significant differences p > 0.1) between these two groups). The analysis of intraindividual variance showed no difference of COX IV expression.

Immunohistological examinations for protein expression

Immunohistochemical studies for the detection of the two subunits of the CytOx were performed on snap frozen biopsy specimens, conserved in liquid nitrogen. Biopsies were embedded in compound medium (Tissue-tek, Sakura Finetek, Torrance, U.S.A.) and serial sections of 6 μm were subsequently placed on poly-l-lysine–treated glass slides. Fixation was achieved by 100% ice-cold acetone. Endomyocardial biopsies of a subcohort of patients were subjected to staining with monoclonal antibodies against anti-human OxPhos Complex IV (MitoSciences, MitoSciences Inc., Eugene, OR 97403, U.S.A.) subunit 2 (clone 12C) and subunit 4 (clone 20E8C12) in a concentration of 1 μg/ml using a an avidin–biotin double sandwich technique (Vectastain Elite ABC Kit, Vector Laboratories, Burlingame, CA) in combination with a monoclonal antibody against the endothelial antigen EN4 (Sanbio, Am Uden, The Netherlands) to distinguish intramyocardial vessels or capillaries. Biopsy specimens were microscopically analyzed using a Leica DMRXE microscope. Histological analysis was carried out using a digital microscope (DM5000 Leica Microsystems, Bensheim, Germany) and QUIPS analysis software (Leica Microsystems, Bensheim, Germany). Evaluation was carried out by selecting 10 representative regions of interest (ROI) at 20-fold magnification. Relative stained area was calculated referring to the size of the biopsy.

Myocardial oxygen consumption and enzymatic activity of CytOx

Biopsies were gently homogenized and suspended in KCl- buffer. Protein determination of myocardial suspensions were estimated by the BCA method with a NanoDrop™ instrument (NanoDrop 2000, Thermo Fisher Scientific™) using bovine serum albumin as standard. Concentration was fixed at 1 mg/ml.
Measurements of oxygen consumption were performed polarographically with Hansatech Oxygraph System (Hansatech Instruments Ltd., Norfolk, UK) using a Clark-type oxygen electrode as already described [24].
Enzymatic activity measurements were performed spectrophotometrically. The absorption of cytochrome c at 550 nm changes with its oxidation state. Cytochrome c was reduced with 0.1 M dithiothreitol solution and then reoxidized by the cytochrome c oxidase. The difference in extinction coefficients (Δε per mM) between reduced and oxidized cytochrome c is 21.84 at 550 nm. The oxidation of cytochrome c by cytochrome c oxidase appears as a biphasic reaction with a fast initial burst of activity followed by a slower reaction rate. Initial reaction rate is measured during the first 45 s of the reaction. The decrease in absorption at 550 nm at room temperature (25 °C) was monitored with a kinetic program: Reaction was started by the addition of 50 ml of Ferrocytochrome c (Merck KGaA, Darmstadt, Germany) as substrate. Absorption at 550 nm/minute was read immediately due to the rapid reaction rate of this enzyme. The final calculation of the sample activity in Units/ml according to: ΔA/min x Dilution × 1.1 ml (reaction volume)/ Volume of enzyme × 21.84 (Δε) and ΔA/min = A/minute – A/blank. The “Unit” is defined as 1 Unit oxidizes 1.0 mmole of ferrocytochrome c per minute at pH 7.0 (25 °C).

Statistical analysis

Data were analyzed using the SigmaStat Advisory Statistics for scientists (SYSTAT®). For comparison of mRNA expression, CytOx levels and enzymatic activity in patients with DCM compared to controls, an unpaired, two-tailed t-test and a Mann-Whitney Rank Sum Test was used. A Fisher-test was used to demonstrate homogeneity of variances while in case of inhomogeneity, a Welch-test was performed. A p-value of less than or equal to 0.05 was considered significant. Linear regression analysis was also performed by SigmaStat™.

Results

In this study, we have investigated the mRNA expression of MT –CO2 (mitochondrial encoded subunit) and COX 4 (nuclear encoded subunit) in endomyocardial biopsies (EMB) of patients with non- viral, non- inflammatory and non- familial idiopathic DCM and compared to controls. Hemodynamics of 54 patients were studied. Thirty patients were classified as DCM according to international criteria [21, 22]. In 24 individuals, neither infiltrating cells, cardiotropic virus, nor dilatation of the left or right ventricle and not even wall motion abnormalities were detected, although they had the clinical signs of infectious heart disease (recurrent fever, reported arrhythmia, dizziness etc.). These patients were considered as a control group (Table 1).
A significant decrease of COX 4 mRNA expression and protein content but no significant changes in correlating MT- CO2 measurements, were found (1.1 ± 0.2 vs. 0.6 ± 0.3, p < 0.001; 7.7 ± 3.1% vs. 2.8 ± 1.4%, p < 0.0001) (Figs. 3 and 4.) COX 4 mRNA expression data correlated with ejection fractions, EF (r = 0.766, p = 0.00045,) and LVEDD (r = − 0.492, p = 0.0068) as well as shortening fractions (SF; r = 0.377, p = 0.032) (Fig. 5). Otherwise, MT- CO2 did not correlate neither to EF and LVEDD nor shortening fractions (SF). The age of patients neither correlate to the MT- CO2 mRNA nor with COX 4 mRNA data. For this reason the found alterations were age- independent. Even in the group of DCM the reduced SF correlated to the reduced COX 4 expression (r = 0.52, p = 0.017).
Interestingly, oxygen consumption testing provides no difference in both groups (3.1 ± 1.0 vs. 3.3 ± 0.6 nm/ml, p = 0.643, n.s.). However, enzymatic activity of CytOx in case of DCM was approximately 3fold increased (0.08 ± 0.06 vs. 0.26 ± 0.08 U/mg, p < 0.001, Fig. 6).

Discussion

The question of myocardial oxygen supply, consumption and utilization remains to be one of the biggest problems in cardiovascular research [25]. Dilated Cardiomyopathy (DCM) is defined as a primary heart muscle disease with heart enlargement and impairment of the ventricular contractile function [26] and appears as a sufficient model to understand pathogenesis of myocardial insufficiency and cardiac failure, respectively. Mitochondrial dysfunction is a determinant of its pathogenesis [27]. In most cases, isolated CytOx- deficiencies are autosomal recessive disorders. Onset of the diseases starts at a very early age and is associated with fatal outcome (Leigh Syndrome and myopathies [28, 29]). Mutations in nuclear- encoded structural CytOx subunits have not been found in these phenotypes but still several assembly factors were affected. For example, SURF 1 (Leigh-syndrome), SCO2 (hypertrophic cardiopathy), SCO1 (hepatic failure) and COX 10 (sensorineural hearing loss, anemia, and hypertrophic cardiomyopathy) [16, 27, 30]. Saada and Coworkers [31] found a decreased mitochondrial thymidine kinase activity in association with mtDNA depletion responsible for certain kinds of myopathies. Reduced enzymatic activities of the electron transmission chain (ETC) in patients with dilated cardiomyopathy are found only in some cases [27]. The decrease of complex III activity was considered as a secondary phenomenon and not due to a mitochondrial defect for transcription and protein translation. In contrast, Hittel and coworkers found a differential expression of mitochondrial encoded genes in hibernation and specific increase of Complex IV- expression to prevent ETC alterations caused by cold and ischemia [32]. Evidence of a link between mutations in genes for respiratory chain components on one hand and human diseases on the other hand is reported with the emphasis on defects in respiratory complex IV and its assembly factors [27]. Early mutations in the mtDNA-encoded COX genes for CytOx subunits are relatively rare, but alterations in metabolism by thyroid hormones are known to influence the subunit composition at transcriptional and posttranscriptional level [33, 34]. Moreover increased mtDNA mutations are found with age in various human tissues as a result of oxidative stress. New aspect comes into consideration related to CytOx subunit composition in case of myocardial insufficiency and hypoxia with the emphasis on subunit 4 where the oxygen binding site of the holoenzyme is located [9].
Impairment of mitochondrial respiration and oxidative phosphorylation induces an increase in ROS production that causes mtDNA rearrangements, deletions and apoptosis [35]. A previous study found activities of complexes II and V of the ETC unchanged in dilated cardiomyopathy although cytochrome- containing complexes III and IV showed impaired activity, although subunit composition of CytOx remained the same as compared to the normal hearts in this study [10].
Opposite data addresses impaired cytochrome c oxidase- assembly in pathogenesis of myocardial insufficiency [36] and a heart-type cytochrome c oxidase subunit 7a1 was found to be associated with the development of DCM [37].
In our study, gene expression of mitochondrial encoded subunit 2 (MT-CO2) was throughout the same, but COX 4 was down-regulated and protein content of subunit 4 was also reduced in cases of myocardial insufficiency. This effect is age- independent. The complex IV in the ETC is involved in the electron transfer to dioxygen via subunit 4 that determines the subsequent respiratory activity of the tissue [6, 8, 9]. Exchange of bound ADP through ATP at a high-affinity binding site in the matrix domain of subunit 4 has a regulatory function for the whole enzymatic activity and for the final respiratory performance [38, 39]. Interestingly, in concern of previous findings [10] the enzymatic activity of CytOx in our estimations was found to be increased, but myocardial oxygen consumption had the equal amount in both groups. The data opens the question if down- regulation of subunit 4 is a consequence of hypoxia [40] or it represents the malfunctioning of the molecular subunit assembly among multiple factors [41] beside the uncoupling status of respiratory control [42]. Nonetheless, reduced subunit 4 appears as an indicator for myocardial insufficiency. Additional information in this regard has also been presented by the further analysis of subunit 4 isoforms (4i1 and 4i2) and their role in cardiac diseases [43].
New phase in heart surgery has begun. Testing indications and improving the outcome of patients in heart surgery require an understanding of molecular medicine and knowledge to be transferred at the bed- side level. In early studies, assessment of myocardial blood flow suggested myocardial ischemia as a reason for cardiac insufficiency and dilated cardiomyopathy [44]. Later studies corrected this idea [45]. Myocardial hypoxia has to be discussed as a matter of supply and demand and the different status of workload, respectively [46]. A third, new and an interesting fact with clinical relevance comes into consideration. Present study appears coherent with myocardial respiratory data from patients with left ventricular hypertrophy [47] and perhaps gives an explanation for a universal pathomechanism. The myocardial oxygen consumption is unchanged but efficiency is reduced. Different states of respiration determine efficiency of ATP synthesis and extent of ROS formation [13]. Quantity of ROS production results finally in myocardial damage and a progression of myocardial insufficiency, respectively.

Conclusion

In this study, patients suspected for inflammatory heart disease and dilated cardiomyopathy (DCM) underwent heart catheterization. Thirty patients suffering from reduced LV ejection fraction below 45% and an enlarged left ventricular enddiastolic diameter bigger than 56 mm were considered to be myocardial insufficient. In biopsies of all patients the activity of Cytochrome c-oxidase (Complex IV of the mitochondrial respiratory chain) was measured. Furthermore, the subunit mRNA expression and protein content of the mitochondrial encoded catalytic subunit II (MT-CO2) and nuclear encoded regulatory subunit 4 (COX 4) were detected. Patients with myocardial insufficiency showed a significant decrease in COX 4 but not in MT-CO2. Correlations were found between COX 4 expression and EF% and LVEDD. Therefore, it is concluded that reduced COX 4 leads to impaired activity of Cytochrome c oxidase, subsequent reduction in mitochondiral respiration and hence myocardial insufficiency.

Funding

For the research reported here, no funding has to be declared. No influence on the design of the study and collection, analysis, and interpretation of data and writing the manuscript.

Availability of data and materials

Please contact author for data access.

Declaration

All authors gave their consent to publish the article. The data evaluated for our study are available.
The Ethics Committee at the University Hospital of Gießen and Marburg (UKGM) has approved the study (AZ: 53/18). All patients gave their informed consent to use leftover samples for scientific purposes.
Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Ramzan R, Weber P, Kadenbach B, Vogt S. Individual biochemical behavior versus biological robustness: spotlight on the regulation of cytochrome c oxidase. Adv Exp Med Biol. 2012;748:265–81.CrossRef Ramzan R, Weber P, Kadenbach B, Vogt S. Individual biochemical behavior versus biological robustness: spotlight on the regulation of cytochrome c oxidase. Adv Exp Med Biol. 2012;748:265–81.CrossRef
2.
Zurück zum Zitat Ramzan R, Staniek K, Kadenbach B, Vogt S. Mitochondrial respiration and membrane potential are regulated by the allosteric ATP-inhibition of cytochrome c oxidase. Biochim Biophys Acta. 2010;1797(9):1672–80.CrossRef Ramzan R, Staniek K, Kadenbach B, Vogt S. Mitochondrial respiration and membrane potential are regulated by the allosteric ATP-inhibition of cytochrome c oxidase. Biochim Biophys Acta. 2010;1797(9):1672–80.CrossRef
3.
Zurück zum Zitat Kadenbach B, Ramzan R, Wen L, Vogt S. New extension of the Mitchell theory for oxidative phosphorylation in mitochondria of living organisms. Biochim Biophys Acta. 2010;1800(3):205–12.CrossRef Kadenbach B, Ramzan R, Wen L, Vogt S. New extension of the Mitchell theory for oxidative phosphorylation in mitochondria of living organisms. Biochim Biophys Acta. 2010;1800(3):205–12.CrossRef
4.
Zurück zum Zitat Vogt S, Rhiel A, Weber P, Ramzan R. Revisiting Kadenbach: Electron flux rate through cytochrome c-oxidase determines the ATP-inhibitory effect and subsequent production of ROS. Bioessays. 2016;38(6):556–67.CrossRef Vogt S, Rhiel A, Weber P, Ramzan R. Revisiting Kadenbach: Electron flux rate through cytochrome c-oxidase determines the ATP-inhibitory effect and subsequent production of ROS. Bioessays. 2016;38(6):556–67.CrossRef
5.
Zurück zum Zitat Arnold S. The power of life--cytochrome c oxidase takes center stage in metabolic control, cell signalling and survival. Mitochondrion. 2012;12(1):46–56.CrossRef Arnold S. The power of life--cytochrome c oxidase takes center stage in metabolic control, cell signalling and survival. Mitochondrion. 2012;12(1):46–56.CrossRef
6.
Zurück zum Zitat Villani G, Attardi G. In vivo control of respiration by cytochrome c oxidase in human cells. Free Rad Biol Med. 2000;29:202–10.CrossRef Villani G, Attardi G. In vivo control of respiration by cytochrome c oxidase in human cells. Free Rad Biol Med. 2000;29:202–10.CrossRef
7.
Zurück zum Zitat Villani G, Greco M, Papa S, Attardi G. Low reserve of cytochrome c oxidase capacity in vivo in the respiratory chain of a variety of human cell types. J Biol Chem. 1998;273(48):31829–36.CrossRef Villani G, Greco M, Papa S, Attardi G. Low reserve of cytochrome c oxidase capacity in vivo in the respiratory chain of a variety of human cell types. J Biol Chem. 1998;273(48):31829–36.CrossRef
8.
Zurück zum Zitat Kadenbach B, Hüttemann M. The subunit composition and function of mammalian cytochrome c oxidase. Mitochondrion. 2015;24:64–76.CrossRef Kadenbach B, Hüttemann M. The subunit composition and function of mammalian cytochrome c oxidase. Mitochondrion. 2015;24:64–76.CrossRef
9.
Zurück zum Zitat Li Y, Park JS, Deng JH, Bai Y. Cytochrome c oxidase subunit IV is essential for assembly and respiratory function of the enzyme complex. J Bioenerg Biomembr. 2006;38(5–6):283–91.CrossRef Li Y, Park JS, Deng JH, Bai Y. Cytochrome c oxidase subunit IV is essential for assembly and respiratory function of the enzyme complex. J Bioenerg Biomembr. 2006;38(5–6):283–91.CrossRef
10.
Zurück zum Zitat Buchwald A, Till H, Unterberg C, Oberschmidt R, et al. Alterations of the mitochondrial respiratory chain in human dilated cardiomyopathy. Eur Heart J. 1990;11:509–16.CrossRef Buchwald A, Till H, Unterberg C, Oberschmidt R, et al. Alterations of the mitochondrial respiratory chain in human dilated cardiomyopathy. Eur Heart J. 1990;11:509–16.CrossRef
11.
Zurück zum Zitat Hüttemann M, Klewer S, Lee I, Pecinova A, Pecina P, Liu J, Lee M, Doan JW, Larson D, Slack E, Maghsoodi B, Erickson RP, Grossman LI. Mice deleted for heart-type cytochrome c oxidase subunit 7a1 develop dilated cardiomyopathy. Mitochondrion. 2012;12(2):294–304.CrossRef Hüttemann M, Klewer S, Lee I, Pecinova A, Pecina P, Liu J, Lee M, Doan JW, Larson D, Slack E, Maghsoodi B, Erickson RP, Grossman LI. Mice deleted for heart-type cytochrome c oxidase subunit 7a1 develop dilated cardiomyopathy. Mitochondrion. 2012;12(2):294–304.CrossRef
12.
Zurück zum Zitat Li YY, Maisch B, Rose ML, et al. Point mutations in mitochondrial DNA of patients with dilated cardiomyopathy. J Mol Cell Cardiol. 1997;29:2699–709.CrossRef Li YY, Maisch B, Rose ML, et al. Point mutations in mitochondrial DNA of patients with dilated cardiomyopathy. J Mol Cell Cardiol. 1997;29:2699–709.CrossRef
13.
Zurück zum Zitat Ruppert V, Nolte D, Aschenbrenner T, et al. Novel point mutations in the mitochondrial DNA detected in patients with dilated cardiomyopathy by screening the whole mitochondrial genome. Biochem Biophys Res Commun. 2004;28:535–43.CrossRef Ruppert V, Nolte D, Aschenbrenner T, et al. Novel point mutations in the mitochondrial DNA detected in patients with dilated cardiomyopathy by screening the whole mitochondrial genome. Biochem Biophys Res Commun. 2004;28:535–43.CrossRef
14.
Zurück zum Zitat Arbustini E, Diegoli M, Fasani R, et al. Mitochondrial DNA mutations and mitochondrial abnormalities in dilated cardiomyopathy. Am J Pathol. 1998;153:1501–10.CrossRef Arbustini E, Diegoli M, Fasani R, et al. Mitochondrial DNA mutations and mitochondrial abnormalities in dilated cardiomyopathy. Am J Pathol. 1998;153:1501–10.CrossRef
15.
Zurück zum Zitat Kadenbach B, Huttemann M, Arnold S, et al. Mitochondrial energy metabolism is related via nuclear-coded subunits of cytochrome c oxidase. Free Rad Biol Med. 2000;29:211–21.CrossRef Kadenbach B, Huttemann M, Arnold S, et al. Mitochondrial energy metabolism is related via nuclear-coded subunits of cytochrome c oxidase. Free Rad Biol Med. 2000;29:211–21.CrossRef
16.
Zurück zum Zitat Pecina P, Houstkova H, Hansikova H, et al. Genetic defects of cytochrome c oxidase assembly. Physiol Res. 2004;53:S213–23.PubMed Pecina P, Houstkova H, Hansikova H, et al. Genetic defects of cytochrome c oxidase assembly. Physiol Res. 2004;53:S213–23.PubMed
17.
Zurück zum Zitat Holm L, Saraste M, Wikström M. Structural models of the redox centres in cytochrome oxidase. EMBO J. 1987;6:2819–23.CrossRef Holm L, Saraste M, Wikström M. Structural models of the redox centres in cytochrome oxidase. EMBO J. 1987;6:2819–23.CrossRef
18.
Zurück zum Zitat Steffens GC, Soulimane T, Wolff G, Buse G. Stoichiometry and redox behaviour of metals in cytochrome-c oxidase. Eur J Biochem. 1993;213:1149–57.CrossRef Steffens GC, Soulimane T, Wolff G, Buse G. Stoichiometry and redox behaviour of metals in cytochrome-c oxidase. Eur J Biochem. 1993;213:1149–57.CrossRef
19.
Zurück zum Zitat Li Y, Park JS, Deng JH, Bai Y. Cytochrome c oxidase subunit IV is essential for assembly and respiratory function of the enzyme complex. J Bioenerg Biomembr. 2006;38:283–91.CrossRef Li Y, Park JS, Deng JH, Bai Y. Cytochrome c oxidase subunit IV is essential for assembly and respiratory function of the enzyme complex. J Bioenerg Biomembr. 2006;38:283–91.CrossRef
20.
Zurück zum Zitat Ramzan R, Weber P, Kadenbach B, Vogt S. Individual biochemical behaviour versus biological robustness: spotlight on the regulation of cytochrome c oxidase. Adv Exp Med Biol. 2012;748:265–81.CrossRef Ramzan R, Weber P, Kadenbach B, Vogt S. Individual biochemical behaviour versus biological robustness: spotlight on the regulation of cytochrome c oxidase. Adv Exp Med Biol. 2012;748:265–81.CrossRef
21.
Zurück zum Zitat Elliott P, Andersson B, Arbustini E, et al. Classification of the cardiomyopathies: a position statement from the european society of cardiology working group on myocardial and pericardial diseases. Eur Heart J. 2008;29:270–6.CrossRef Elliott P, Andersson B, Arbustini E, et al. Classification of the cardiomyopathies: a position statement from the european society of cardiology working group on myocardial and pericardial diseases. Eur Heart J. 2008;29:270–6.CrossRef
22.
Zurück zum Zitat Richardson P, McKenna W, Bristow M, et al. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the definition and classification of cardiomyopathies. Circulation. 1996;93:841–2.CrossRef Richardson P, McKenna W, Bristow M, et al. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the definition and classification of cardiomyopathies. Circulation. 1996;93:841–2.CrossRef
23.
Zurück zum Zitat Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45.CrossRef Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45.CrossRef
24.
Zurück zum Zitat Ramzan R, Schaper AK, Weber P, Rhiel A, Siddiq MS, Vogt S. Mitochondrial cytochrome c oxidase is inhibited by ATP only at very high ATP/ADP ratios. Biol Chem. 2017;398(7):737–50.CrossRef Ramzan R, Schaper AK, Weber P, Rhiel A, Siddiq MS, Vogt S. Mitochondrial cytochrome c oxidase is inhibited by ATP only at very high ATP/ADP ratios. Biol Chem. 2017;398(7):737–50.CrossRef
25.
Zurück zum Zitat Braunwald E. 50th anniversary historical article. Myocardial oxygen consumption: the quest for its determinants and some clinical fallout. J Am Coll Cardiol. 1999;34(5):1365–8.CrossRef Braunwald E. 50th anniversary historical article. Myocardial oxygen consumption: the quest for its determinants and some clinical fallout. J Am Coll Cardiol. 1999;34(5):1365–8.CrossRef
26.
Zurück zum Zitat Dec GW, Fuster V. Idiopathic dilated cardiomyopathy. N Engl J Med. 1994;331:1564–75.CrossRef Dec GW, Fuster V. Idiopathic dilated cardiomyopathy. N Engl J Med. 1994;331:1564–75.CrossRef
27.
Zurück zum Zitat Jarreta D, Orus J, Barrientos A, et al. Mitochondrial function in heart muscle from patients with idiopathic dilated cardiomyopathy. Cardiovasc Res. 2000;45:860–5.CrossRef Jarreta D, Orus J, Barrientos A, et al. Mitochondrial function in heart muscle from patients with idiopathic dilated cardiomyopathy. Cardiovasc Res. 2000;45:860–5.CrossRef
28.
Zurück zum Zitat Borisov VB. Mutations in respiratory chain complexes and human diseases. Ital J Biochem. 2004;53:34–40.PubMed Borisov VB. Mutations in respiratory chain complexes and human diseases. Ital J Biochem. 2004;53:34–40.PubMed
29.
Zurück zum Zitat Shoubridge EA. Cytochrome c oxidase deficiency. Am J Med Genet. 2001;106:46–52.CrossRef Shoubridge EA. Cytochrome c oxidase deficiency. Am J Med Genet. 2001;106:46–52.CrossRef
30.
Zurück zum Zitat Antonicka H, Leary SC, Guercin GH, Agar JN, Horvath R, Kennaway NG, Harding CO, Jaksch M, Shoubridge EA. Mutations in COX10 result in a defect in mitochondrial heme A biosynthesis and account for multiple, early-onset clinical phenotypes associated with isolated COX deficiency. Hum Molec Genet. 2003;12:2693–702.CrossRef Antonicka H, Leary SC, Guercin GH, Agar JN, Horvath R, Kennaway NG, Harding CO, Jaksch M, Shoubridge EA. Mutations in COX10 result in a defect in mitochondrial heme A biosynthesis and account for multiple, early-onset clinical phenotypes associated with isolated COX deficiency. Hum Molec Genet. 2003;12:2693–702.CrossRef
31.
Zurück zum Zitat Saada A, Shaag A, Elpeleg O. mtDNA depletion myopathy: elucidation of the tissue specificity in the mitochondrial thymidine kinase (TK 2) deficiency. Mol Genetics Metabol. 2003;79:1–5.CrossRef Saada A, Shaag A, Elpeleg O. mtDNA depletion myopathy: elucidation of the tissue specificity in the mitochondrial thymidine kinase (TK 2) deficiency. Mol Genetics Metabol. 2003;79:1–5.CrossRef
32.
Zurück zum Zitat Hittel DS, Storey KM. Differential expression of mitochondria-encoded genes in a hibernating mammal. J Exp Biol. 2002;205:1625–31.PubMed Hittel DS, Storey KM. Differential expression of mitochondria-encoded genes in a hibernating mammal. J Exp Biol. 2002;205:1625–31.PubMed
33.
Zurück zum Zitat Zhang D, Mott JL, Farrar P, et al. Mitochondrial DNA mutations activate the mitochondrial apoptotic pathway and cause dilated cardiomyopathy. Cardiovasc Res. 2003;57:147–57.CrossRef Zhang D, Mott JL, Farrar P, et al. Mitochondrial DNA mutations activate the mitochondrial apoptotic pathway and cause dilated cardiomyopathy. Cardiovasc Res. 2003;57:147–57.CrossRef
34.
Zurück zum Zitat Sheehan TE, Kumar PA, Hood DA. Tissue-specific regulation of cytochrome c oxidase subunit expression by thyroid hormone. Am J Physiol Endocrinol Metab. 2004;286:E968–74.CrossRef Sheehan TE, Kumar PA, Hood DA. Tissue-specific regulation of cytochrome c oxidase subunit expression by thyroid hormone. Am J Physiol Endocrinol Metab. 2004;286:E968–74.CrossRef
35.
Zurück zum Zitat Wei YH, Lee HC. Oxidative stress, mitochondrial DNA mutation, and impairment of antioxidant enzymes in aging. Exp Biol Med. 2002;227:671–82.CrossRef Wei YH, Lee HC. Oxidative stress, mitochondrial DNA mutation, and impairment of antioxidant enzymes in aging. Exp Biol Med. 2002;227:671–82.CrossRef
36.
Zurück zum Zitat Huigsloot M, Nijtmans LG, Szklarczyk R, Baars MJ, van den Brand MA, Hendriksfranssen MG, van den Heuvel LP, Smeitink JA, Huynen MA, Rodenburg RJ. A mutation in C2orf64 causes impaired cytochrome c oxidase assembly and mitochondrial cardiomyopathy. Am J Hum Genet. 2011;88:488–9.CrossRef Huigsloot M, Nijtmans LG, Szklarczyk R, Baars MJ, van den Brand MA, Hendriksfranssen MG, van den Heuvel LP, Smeitink JA, Huynen MA, Rodenburg RJ. A mutation in C2orf64 causes impaired cytochrome c oxidase assembly and mitochondrial cardiomyopathy. Am J Hum Genet. 2011;88:488–9.CrossRef
37.
Zurück zum Zitat Hüttemann M, Klewer S, Lee I, Pecinova A, Pecina P, Liu J, Lee M, Doan JW, Larson D, Slack E, Maghsoodi B, Erickson RP, Grossman LI. Mice deleted for heart-type cytochrome c oxidase subunit 7a1 develop dilated cardiomyopathy. Mitochondrion. 2012;12:294–304.CrossRef Hüttemann M, Klewer S, Lee I, Pecinova A, Pecina P, Liu J, Lee M, Doan JW, Larson D, Slack E, Maghsoodi B, Erickson RP, Grossman LI. Mice deleted for heart-type cytochrome c oxidase subunit 7a1 develop dilated cardiomyopathy. Mitochondrion. 2012;12:294–304.CrossRef
38.
Zurück zum Zitat Napiwotzki J, Shinzawa-Itoh K, Yoshikawa S, Kadenbach B. ATP and ADP bind to cytochrome c oxidase and regulate its activity. Biol Chem. 1997;378:1013–21.CrossRef Napiwotzki J, Shinzawa-Itoh K, Yoshikawa S, Kadenbach B. ATP and ADP bind to cytochrome c oxidase and regulate its activity. Biol Chem. 1997;378:1013–21.CrossRef
39.
Zurück zum Zitat Napiwotzki J, Kadenbach B. Extramitochondrial ATP/ADP ratios regulate cytochrome c oxidase activity via binding to the cytosolic domain of subunit IV. Biol Chem. 1998;379:335–9.CrossRef Napiwotzki J, Kadenbach B. Extramitochondrial ATP/ADP ratios regulate cytochrome c oxidase activity via binding to the cytosolic domain of subunit IV. Biol Chem. 1998;379:335–9.CrossRef
40.
Zurück zum Zitat Vijayasarathy C, Damle S, Prabu SK, et al. Adaptive changes in the expression of nuclear and mitochondrial encoded subunits of cytochrome c oxidase and the catalytic activity during hypoxia. Eur J Biochem. 2003;270:871–9.CrossRef Vijayasarathy C, Damle S, Prabu SK, et al. Adaptive changes in the expression of nuclear and mitochondrial encoded subunits of cytochrome c oxidase and the catalytic activity during hypoxia. Eur J Biochem. 2003;270:871–9.CrossRef
41.
Zurück zum Zitat Dennerlein S, Rehling P. Human mitochondrial COX1 assembly into cytochrome c oxidase at a glance. J Cell Sci. 2015;128(5):833–7.CrossRef Dennerlein S, Rehling P. Human mitochondrial COX1 assembly into cytochrome c oxidase at a glance. J Cell Sci. 2015;128(5):833–7.CrossRef
42.
Zurück zum Zitat Desquiret V, Loiseau D, Jacques C, et al. Dinitrophenol- induced mitochondrial uncoupling in vivo triggers respiratory adaptation in HepG2 cells. Biochim Biophys Acta. 2006;1757:21–30.CrossRef Desquiret V, Loiseau D, Jacques C, et al. Dinitrophenol- induced mitochondrial uncoupling in vivo triggers respiratory adaptation in HepG2 cells. Biochim Biophys Acta. 2006;1757:21–30.CrossRef
43.
Zurück zum Zitat Sinkler CA, Kalpage H, Shay J, Lee I, Malek MH, Grossman LI, Hüttemann M. Tissue- and condition-specific isoforms of mammalian cytochrome c oxidase subunits: from function to human disease. Oxidative Med Cell Longev. 2017;2017:1534056.CrossRef Sinkler CA, Kalpage H, Shay J, Lee I, Malek MH, Grossman LI, Hüttemann M. Tissue- and condition-specific isoforms of mammalian cytochrome c oxidase subunits: from function to human disease. Oxidative Med Cell Longev. 2017;2017:1534056.CrossRef
44.
Zurück zum Zitat Fang W, Zhang J, He ZX. Myocardial ischemia in patients with dilated cardiomyopathy. Nucl Med Commun. 2010;31(11):981–4.CrossRef Fang W, Zhang J, He ZX. Myocardial ischemia in patients with dilated cardiomyopathy. Nucl Med Commun. 2010;31(11):981–4.CrossRef
45.
Zurück zum Zitat Dass S, Holloway CJ, Cochlin LE, Rider OJ, Mahmod M, Robson M, Sever E, Clarke K, Watkins H, Ashrafian H, Karamitsos TD, Neubauer S. No evidence of myocardial oxygen deprivation in nonischemic heart failure. Circ Heart Fail. 2015;8(6):1088–93.PubMedPubMedCentral Dass S, Holloway CJ, Cochlin LE, Rider OJ, Mahmod M, Robson M, Sever E, Clarke K, Watkins H, Ashrafian H, Karamitsos TD, Neubauer S. No evidence of myocardial oxygen deprivation in nonischemic heart failure. Circ Heart Fail. 2015;8(6):1088–93.PubMedPubMedCentral
46.
Zurück zum Zitat Zheng J, Gropler RJ. Myocardial Hypoxia in Dilated Cardiomyopathy: Is it Just a Matter of Supply and Demand? Circ Heart Fail. 2015;8(6):1011–3.CrossRef Zheng J, Gropler RJ. Myocardial Hypoxia in Dilated Cardiomyopathy: Is it Just a Matter of Supply and Demand? Circ Heart Fail. 2015;8(6):1011–3.CrossRef
47.
Zurück zum Zitat Laine H, Katoh C, Luotolahti M, Yki-Järvinen H, Kantola I, Jula A, Takala TO, Ruotsalainen U, Iida H, Haaparanta M, Nuutila P, Knuuti J. Myocardial oxygen consumption is unchanged but efficiency is reduced in patients with essential hypertension and left ventricular hypertrophy. Circulation. 1999;100(24):2425–30.CrossRef Laine H, Katoh C, Luotolahti M, Yki-Järvinen H, Kantola I, Jula A, Takala TO, Ruotsalainen U, Iida H, Haaparanta M, Nuutila P, Knuuti J. Myocardial oxygen consumption is unchanged but efficiency is reduced in patients with essential hypertension and left ventricular hypertrophy. Circulation. 1999;100(24):2425–30.CrossRef
Metadaten
Titel
Myocardial insufficiency is related to reduced subunit 4 content of cytochrome c oxidase
verfasst von
Sebastian Vogt
Volker Ruppert
Sabine Pankuweit
Jürgen P. J. Paletta
Annika Rhiel
Petra Weber
Marc Irqsusi
Pia Cybulski
Rabia Ramzan
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
Journal of Cardiothoracic Surgery / Ausgabe 1/2018
Elektronische ISSN: 1749-8090
DOI
https://doi.org/10.1186/s13019-018-0785-7

Weitere Artikel der Ausgabe 1/2018

Journal of Cardiothoracic Surgery 1/2018 Zur Ausgabe

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.