Skip to main content
Erschienen in: Diabetologia 6/2014

01.06.2014 | Review

Myokines in insulin resistance and type 2 diabetes

verfasst von: Kristin Eckardt, Sven W. Görgens, Silja Raschke, Jürgen Eckel

Erschienen in: Diabetologia | Ausgabe 6/2014

Einloggen, um Zugang zu erhalten

Abstract

Skeletal muscle represents the largest organ of the body in non-obese individuals and is now considered to be an active endocrine organ releasing a host of so-called myokines. These myokines are part of a complex network that mediates communication between muscle, the liver, adipose tissue, the brain and other organs. Recent data suggest that myokines regulated by muscle contraction may play a key role in mediating the health-promoting effects of regular physical activity. Although hundreds of myokines have recently been described in proteomic studies, we currently have a rather limited knowledge of the specific role these myokines play in the prevention of insulin resistance, inflammation and associated metabolic dysfunction. Several myokines are known to have both local and endocrine functions, but in many cases the contribution of physical activity to the systemic level of these molecules remains as yet unexplored. Very recently, novel myokines such as irisin, which is thought to induce a white to brown shift in adipocytes, have gained considerable interest as potential therapeutic targets. In this review, we summarise the most recent findings on the role of myokines in the regulation of substrate metabolism and insulin sensitivity. We further explore the role of myokines in the regulation of inflammation and provide a critical assessment of irisin and other myokines regarding their potential as therapeutic targets.
Literatur
1.
Zurück zum Zitat Febbraio MA, Pedersen BK (2005) Contraction-induced myokine production and release: is skeletal muscle an endocrine organ? Exerc Sport Sci Rev 33:114–119PubMed Febbraio MA, Pedersen BK (2005) Contraction-induced myokine production and release: is skeletal muscle an endocrine organ? Exerc Sport Sci Rev 33:114–119PubMed
2.
Zurück zum Zitat Raschke S, Eckardt K, Holven KB, Jensen J, Eckel J (2013) Identification and validation of novel contraction-regulated myokines released from primary human skeletal muscle cells. PLoS One 8:e62008PubMedCentralPubMed Raschke S, Eckardt K, Holven KB, Jensen J, Eckel J (2013) Identification and validation of novel contraction-regulated myokines released from primary human skeletal muscle cells. PLoS One 8:e62008PubMedCentralPubMed
4.
Zurück zum Zitat Norheim F, Raastad T, Thiede B, Rustan AC, Drevon CA, Haugen F (2011) Proteomic identification of secreted proteins from human skeletal muscle cells and expression in response to strength training. Am J Physiol Endocrinol Metab 301:E1013–E1021PubMed Norheim F, Raastad T, Thiede B, Rustan AC, Drevon CA, Haugen F (2011) Proteomic identification of secreted proteins from human skeletal muscle cells and expression in response to strength training. Am J Physiol Endocrinol Metab 301:E1013–E1021PubMed
5.
Zurück zum Zitat Raschke S, Eckel J (2013) Adipo-myokines: two sides of the same coin—mediators of inflammation and mediators of exercise. Mediat Inflamm 2013:320724 Raschke S, Eckel J (2013) Adipo-myokines: two sides of the same coin—mediators of inflammation and mediators of exercise. Mediat Inflamm 2013:320724
6.
Zurück zum Zitat Pedersen BK, Febbraio MA (2012) Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol 8:457–465PubMed Pedersen BK, Febbraio MA (2012) Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol 8:457–465PubMed
7.
Zurück zum Zitat Thyfault JP, Booth FW (2011) Lack of regular physical exercise or too much inactivity. Curr Opin Clin Nutr Metab Care 14:374–378PubMed Thyfault JP, Booth FW (2011) Lack of regular physical exercise or too much inactivity. Curr Opin Clin Nutr Metab Care 14:374–378PubMed
8.
Zurück zum Zitat Bergouignan A, Rudwill F, Simon C, Blanc S (2011) Physical inactivity as the culprit of metabolic inflexibility: evidences from bed-rest studies. J Appl Physiol 11:1201–1210 Bergouignan A, Rudwill F, Simon C, Blanc S (2011) Physical inactivity as the culprit of metabolic inflexibility: evidences from bed-rest studies. J Appl Physiol 11:1201–1210
9.
Zurück zum Zitat Alibegovic AC, Sonne MP, Hojbjerre L et al (2010) Insulin resistance induced by physical inactivity is associated with multiple transcriptional changes in skeletal muscle in young men. Am J Physiol Endocrinol Metab 299:E752–E763PubMed Alibegovic AC, Sonne MP, Hojbjerre L et al (2010) Insulin resistance induced by physical inactivity is associated with multiple transcriptional changes in skeletal muscle in young men. Am J Physiol Endocrinol Metab 299:E752–E763PubMed
10.
Zurück zum Zitat Steensberg A, van Hall G, Osada T, Sacchetti M, Saltin B, Klarlund PB (2000) Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J Physiol 529:237–242PubMedCentralPubMed Steensberg A, van Hall G, Osada T, Sacchetti M, Saltin B, Klarlund PB (2000) Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J Physiol 529:237–242PubMedCentralPubMed
11.
Zurück zum Zitat Steensberg A, Febbraio MA, Osada T et al (2001) Interleukin-6 production in contracting human skeletal muscle is influenced by pre-exercise muscle glycogen content. J Physiol 537:633–639PubMedCentralPubMed Steensberg A, Febbraio MA, Osada T et al (2001) Interleukin-6 production in contracting human skeletal muscle is influenced by pre-exercise muscle glycogen content. J Physiol 537:633–639PubMedCentralPubMed
12.
Zurück zum Zitat Hiscock N, Chan MH, Bisucci T, Darby IA, Febbraio MA (2004) Skeletal myocytes are a source of interleukin-6 mRNA expression and protein release during contraction: evidence of fiber type specificity. FASEB J 18:992–994PubMed Hiscock N, Chan MH, Bisucci T, Darby IA, Febbraio MA (2004) Skeletal myocytes are a source of interleukin-6 mRNA expression and protein release during contraction: evidence of fiber type specificity. FASEB J 18:992–994PubMed
13.
Zurück zum Zitat Pedersen BK, Febbraio MA (2008) Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 88:1379–1406PubMed Pedersen BK, Febbraio MA (2008) Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 88:1379–1406PubMed
14.
Zurück zum Zitat Whitham M, Chan MH, Pal M et al (2012) Contraction-induced interleukin-6 gene transcription in skeletal muscle is regulated by c-Jun terminal kinase/activator protein-1. J Biol Chem 287:10771–10779PubMedCentralPubMed Whitham M, Chan MH, Pal M et al (2012) Contraction-induced interleukin-6 gene transcription in skeletal muscle is regulated by c-Jun terminal kinase/activator protein-1. J Biol Chem 287:10771–10779PubMedCentralPubMed
15.
Zurück zum Zitat Nieto-Vazquez I, Fernandez-Veledo S, de Alvaro C, Lorenzo M (2008) Dual role of interleukin-6 in regulating insulin sensitivity in murine skeletal muscle. Diabetes 57:3211–3221PubMedCentralPubMed Nieto-Vazquez I, Fernandez-Veledo S, de Alvaro C, Lorenzo M (2008) Dual role of interleukin-6 in regulating insulin sensitivity in murine skeletal muscle. Diabetes 57:3211–3221PubMedCentralPubMed
16.
Zurück zum Zitat Holmes AG, Mesa JL, Neill BA et al (2008) Prolonged interleukin-6 administration enhances glucose tolerance and increases skeletal muscle PPARα and UCP2 expression in rats. J Endocrinol 198:367–374PubMed Holmes AG, Mesa JL, Neill BA et al (2008) Prolonged interleukin-6 administration enhances glucose tolerance and increases skeletal muscle PPARα and UCP2 expression in rats. J Endocrinol 198:367–374PubMed
17.
Zurück zum Zitat Sadagurski M, Norquay L, Farhang J, D’Aquino K, Copps K, White MF (2010) Human IL6 enhances leptin action in mice. Diabetologia 53:525–535PubMedCentralPubMed Sadagurski M, Norquay L, Farhang J, D’Aquino K, Copps K, White MF (2010) Human IL6 enhances leptin action in mice. Diabetologia 53:525–535PubMedCentralPubMed
18.
Zurück zum Zitat Al-Khalili L, Bouzakri K, Glund S, Lonnqvist F, Koistinen HA, Krook A (2006) Signaling specificity of interleukin-6 action on glucose and lipid metabolism in skeletal muscle. Mol Endocrinol 20:3364–3375PubMed Al-Khalili L, Bouzakri K, Glund S, Lonnqvist F, Koistinen HA, Krook A (2006) Signaling specificity of interleukin-6 action on glucose and lipid metabolism in skeletal muscle. Mol Endocrinol 20:3364–3375PubMed
19.
Zurück zum Zitat Carey AL, Steinberg GR, Macaulay SL et al (2006) Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes 55:2688–2697PubMed Carey AL, Steinberg GR, Macaulay SL et al (2006) Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes 55:2688–2697PubMed
20.
Zurück zum Zitat Jiang LQ, Duque-Guimaraes DE, Machado UF, Zierath JR, Krook A (2012) Altered response of skeletal muscle to IL-6 in type 2 diabetic patients. Diabetes 62:355–361PubMed Jiang LQ, Duque-Guimaraes DE, Machado UF, Zierath JR, Krook A (2012) Altered response of skeletal muscle to IL-6 in type 2 diabetic patients. Diabetes 62:355–361PubMed
21.
Zurück zum Zitat Febbraio MA, Steensberg A, Keller C et al (2003) Glucose ingestion attenuates interleukin-6 release from contracting skeletal muscle in humans. J Physiol 549:607–612PubMedCentralPubMed Febbraio MA, Steensberg A, Keller C et al (2003) Glucose ingestion attenuates interleukin-6 release from contracting skeletal muscle in humans. J Physiol 549:607–612PubMedCentralPubMed
22.
Zurück zum Zitat Keller C, Steensberg A, Pilegaard H et al (2001) Transcriptional activation of the IL-6 gene in human contracting skeletal muscle: influence of muscle glycogen content. FASEB J 15:2748–2750PubMed Keller C, Steensberg A, Pilegaard H et al (2001) Transcriptional activation of the IL-6 gene in human contracting skeletal muscle: influence of muscle glycogen content. FASEB J 15:2748–2750PubMed
23.
Zurück zum Zitat Febbraio MA, Hiscock N, Sacchetti M, Fischer CP, Pedersen BK (2004) Interleukin-6 is a novel factor mediating glucose homeostasis during skeletal muscle contraction. Diabetes 53:1643–1648PubMed Febbraio MA, Hiscock N, Sacchetti M, Fischer CP, Pedersen BK (2004) Interleukin-6 is a novel factor mediating glucose homeostasis during skeletal muscle contraction. Diabetes 53:1643–1648PubMed
24.
Zurück zum Zitat Steensberg A, Fischer CP, Sacchetti M et al (2003) Acute interleukin-6 administration does not impair muscle glucose uptake or whole-body glucose disposal in healthy humans. J Physiol 548:631–638PubMedCentralPubMed Steensberg A, Fischer CP, Sacchetti M et al (2003) Acute interleukin-6 administration does not impair muscle glucose uptake or whole-body glucose disposal in healthy humans. J Physiol 548:631–638PubMedCentralPubMed
25.
Zurück zum Zitat Fritsche L, Hoene M, Lehmann R et al (2010) IL-6 deficiency in mice neither impairs induction of metabolic genes in the liver nor affects blood glucose levels during fasting and moderately intense exercise. Diabetologia 53:1732–1742PubMed Fritsche L, Hoene M, Lehmann R et al (2010) IL-6 deficiency in mice neither impairs induction of metabolic genes in the liver nor affects blood glucose levels during fasting and moderately intense exercise. Diabetologia 53:1732–1742PubMed
26.
Zurück zum Zitat Kim HJ, Higashimori T, Park SY et al (2004) Differential effects of interleukin-6 and -10 on skeletal muscle and liver insulin action in vivo. Diabetes 53:1060–1067PubMed Kim HJ, Higashimori T, Park SY et al (2004) Differential effects of interleukin-6 and -10 on skeletal muscle and liver insulin action in vivo. Diabetes 53:1060–1067PubMed
27.
Zurück zum Zitat Klover PJ, Zimmers TA, Koniaris LG, Mooney RA (2003) Chronic exposure to interleukin-6 causes hepatic insulin resistance in mice. Diabetes 52:2784–2789PubMed Klover PJ, Zimmers TA, Koniaris LG, Mooney RA (2003) Chronic exposure to interleukin-6 causes hepatic insulin resistance in mice. Diabetes 52:2784–2789PubMed
28.
Zurück zum Zitat Jiang LQ, Franck N, Egan B et al (2013) Autocrine role of interleukin-13 on skeletal muscle glucose metabolism in type 2 diabetic patients involves microRNA let-7. Am J Physiol Endocrinol Metab 305:E1359–E1366PubMed Jiang LQ, Franck N, Egan B et al (2013) Autocrine role of interleukin-13 on skeletal muscle glucose metabolism in type 2 diabetic patients involves microRNA let-7. Am J Physiol Endocrinol Metab 305:E1359–E1366PubMed
29.
Zurück zum Zitat Stanya KJ, Jacobi D, Liu S et al (2013) Direct control of hepatic glucose production by interleukin-13 in mice. J Clin Invest 123:261–271PubMedCentralPubMed Stanya KJ, Jacobi D, Liu S et al (2013) Direct control of hepatic glucose production by interleukin-13 in mice. J Clin Invest 123:261–271PubMedCentralPubMed
30.
Zurück zum Zitat van Hall G, Steensberg A, Sacchetti M et al (2003) Interleukin-6 stimulates lipolysis and fat oxidation in humans. J Clin Endocrinol Metab 88:3005–3010PubMed van Hall G, Steensberg A, Sacchetti M et al (2003) Interleukin-6 stimulates lipolysis and fat oxidation in humans. J Clin Endocrinol Metab 88:3005–3010PubMed
31.
Zurück zum Zitat Wolsk E, Mygind H, Grondahl TS, Pedersen BK, van Hall G (2010) IL-6 selectively stimulates fat metabolism in human skeletal muscle. Am J Physiol Endocrinol Metab 299:E832–E840PubMed Wolsk E, Mygind H, Grondahl TS, Pedersen BK, van Hall G (2010) IL-6 selectively stimulates fat metabolism in human skeletal muscle. Am J Physiol Endocrinol Metab 299:E832–E840PubMed
32.
Zurück zum Zitat Petersen EW, Carey AL, Sacchetti M et al (2005) Acute IL-6 treatment increases fatty acid turnover in elderly humans in vivo and in tissue culture in vitro. Am J Physiol Endocrinol Metab 288:E155–E162PubMed Petersen EW, Carey AL, Sacchetti M et al (2005) Acute IL-6 treatment increases fatty acid turnover in elderly humans in vivo and in tissue culture in vitro. Am J Physiol Endocrinol Metab 288:E155–E162PubMed
33.
Zurück zum Zitat Kelly M, Gauthier MS, Saha AK, Ruderman NB (2009) Activation of AMP-activated protein kinase by interleukin-6 in rat skeletal muscle: association with changes in cAMP, energy state, and endogenous fuel mobilization. Diabetes 58:1953–1960PubMedCentralPubMed Kelly M, Gauthier MS, Saha AK, Ruderman NB (2009) Activation of AMP-activated protein kinase by interleukin-6 in rat skeletal muscle: association with changes in cAMP, energy state, and endogenous fuel mobilization. Diabetes 58:1953–1960PubMedCentralPubMed
34.
Zurück zum Zitat Macdonald TL, Wan Z, Frendo-Cumbo S, Dyck DJ, Wright DC (2013) IL-6 and epinephrine have divergent fiber type effects on intramuscular lipolysis. J Appl Physiol (1985) 115:1457–1463 Macdonald TL, Wan Z, Frendo-Cumbo S, Dyck DJ, Wright DC (2013) IL-6 and epinephrine have divergent fiber type effects on intramuscular lipolysis. J Appl Physiol (1985) 115:1457–1463
35.
Zurück zum Zitat Peterson JM, Pizza FX (2009) Cytokines derived from cultured skeletal muscle cells after mechanical strain promote neutrophil chemotaxis in vitro. J Appl Physiol 106:130–137PubMed Peterson JM, Pizza FX (2009) Cytokines derived from cultured skeletal muscle cells after mechanical strain promote neutrophil chemotaxis in vitro. J Appl Physiol 106:130–137PubMed
36.
Zurück zum Zitat Nieman DC, Davis JM, Brown VA et al (2004) Influence of carbohydrate ingestion on immune changes after 2 h of intensive resistance training. J Appl Physiol 96:1292–1298PubMed Nieman DC, Davis JM, Brown VA et al (2004) Influence of carbohydrate ingestion on immune changes after 2 h of intensive resistance training. J Appl Physiol 96:1292–1298PubMed
37.
Zurück zum Zitat Nielsen AR, Mounier R, Plomgaard P et al (2007) Expression of interleukin-15 in human skeletal muscle effect of exercise and muscle fibre type composition. J Physiol 584:305–312PubMedCentralPubMed Nielsen AR, Mounier R, Plomgaard P et al (2007) Expression of interleukin-15 in human skeletal muscle effect of exercise and muscle fibre type composition. J Physiol 584:305–312PubMedCentralPubMed
38.
Zurück zum Zitat Tamura Y, Watanabe K, Kantani T, Hayashi J, Ishida N, Kaneki M (2011) Upregulation of circulating IL-15 by treadmill running in healthy individuals: is IL-15 an endocrine mediator of the beneficial effects of endurance exercise? Endocr J 58:211–215PubMed Tamura Y, Watanabe K, Kantani T, Hayashi J, Ishida N, Kaneki M (2011) Upregulation of circulating IL-15 by treadmill running in healthy individuals: is IL-15 an endocrine mediator of the beneficial effects of endurance exercise? Endocr J 58:211–215PubMed
39.
Zurück zum Zitat Yeo NH, Woo J, Shin KO, Park JY, Kang S (2012) The effects of different exercise intensity on myokine and angiogenesis factors. J Sports Med Phys Fitness 52:448–454PubMed Yeo NH, Woo J, Shin KO, Park JY, Kang S (2012) The effects of different exercise intensity on myokine and angiogenesis factors. J Sports Med Phys Fitness 52:448–454PubMed
40.
Zurück zum Zitat Riechman SE, Balasekaran G, Roth SM, Ferrell RE (2004) Association of interleukin-15 protein and interleukin-15 receptor genetic variation with resistance exercise training responses. J Appl Physiol 97:2214–2219 Riechman SE, Balasekaran G, Roth SM, Ferrell RE (2004) Association of interleukin-15 protein and interleukin-15 receptor genetic variation with resistance exercise training responses. J Appl Physiol 97:2214–2219
41.
Zurück zum Zitat Al-Shukaili A, Al-Ghafri S, Al-Marhoobi S, Al-Abri S, Al-Lawati J, Al-Maskari M (2013) Analysis of inflammatory mediators in type 2 diabetes patients. Int J Endocrinol 2013:976810PubMedCentralPubMed Al-Shukaili A, Al-Ghafri S, Al-Marhoobi S, Al-Abri S, Al-Lawati J, Al-Maskari M (2013) Analysis of inflammatory mediators in type 2 diabetes patients. Int J Endocrinol 2013:976810PubMedCentralPubMed
42.
Zurück zum Zitat Barra NG, Reid S, MacKenzie R et al (2010) Interleukin-15 contributes to the regulation of murine adipose tissue and human adipocytes. Obesity (Silver Spring) 18:1601–1607 Barra NG, Reid S, MacKenzie R et al (2010) Interleukin-15 contributes to the regulation of murine adipose tissue and human adipocytes. Obesity (Silver Spring) 18:1601–1607
43.
Zurück zum Zitat Almendro V, Busquets S, Ametller E et al (2006) Effects of interleukin-15 on lipid oxidation: disposal of an oral [14C]-triolein load. Biochim Biophys Acta 1761:37–42PubMed Almendro V, Busquets S, Ametller E et al (2006) Effects of interleukin-15 on lipid oxidation: disposal of an oral [14C]-triolein load. Biochim Biophys Acta 1761:37–42PubMed
44.
Zurück zum Zitat Quinn LS, Strait-Bodey L, Anderson BG, Argiles JM, Havel PJ (2005) Interleukin-15 stimulates adiponectin secretion by 3T3-L1 adipocytes: evidence for a skeletal muscle-to-fat signaling pathway. Cell Biol Int 29:449–457PubMed Quinn LS, Strait-Bodey L, Anderson BG, Argiles JM, Havel PJ (2005) Interleukin-15 stimulates adiponectin secretion by 3T3-L1 adipocytes: evidence for a skeletal muscle-to-fat signaling pathway. Cell Biol Int 29:449–457PubMed
45.
Zurück zum Zitat Quinn LS, Anderson BG, Strait-Bodey L, Stroud AM, Argiles JM (2009) Oversecretion of interleukin-15 from skeletal muscle reduces adiposity. Am J Physiol Endocrinol Metab 296:E191–E202PubMedCentralPubMed Quinn LS, Anderson BG, Strait-Bodey L, Stroud AM, Argiles JM (2009) Oversecretion of interleukin-15 from skeletal muscle reduces adiposity. Am J Physiol Endocrinol Metab 296:E191–E202PubMedCentralPubMed
46.
Zurück zum Zitat Matthews VB, Astrom MB, Chan MH et al (2009) Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia 52:1409–1418PubMed Matthews VB, Astrom MB, Chan MH et al (2009) Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia 52:1409–1418PubMed
47.
Zurück zum Zitat Krabbe KS, Nielsen AR, Krogh-Madsen R et al (2007) Brain-derived neurotrophic factor (BDNF) and type 2 diabetes. Diabetologia 50:431–438PubMed Krabbe KS, Nielsen AR, Krogh-Madsen R et al (2007) Brain-derived neurotrophic factor (BDNF) and type 2 diabetes. Diabetologia 50:431–438PubMed
48.
Zurück zum Zitat Rasmussen P, Brassard P, Adser H et al (2009) Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp Physiol 94:1062–1069PubMed Rasmussen P, Brassard P, Adser H et al (2009) Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp Physiol 94:1062–1069PubMed
49.
Zurück zum Zitat Tsuchida A, Nakagawa T, Itakura Y et al (2001) The effects of brain-derived neurotrophic factor on insulin signal transduction in the liver of diabetic mice. Diabetologia 44:555–566PubMed Tsuchida A, Nakagawa T, Itakura Y et al (2001) The effects of brain-derived neurotrophic factor on insulin signal transduction in the liver of diabetic mice. Diabetologia 44:555–566PubMed
50.
Zurück zum Zitat Bouzakri K, Plomgaard P, Berney T, Donath MY, Pedersen BK, Halban PA (2011) Bimodal effect on pancreatic beta-cells of secretory products from normal or insulin-resistant human skeletal muscle. Diabetes 60:1111–1121PubMedCentralPubMed Bouzakri K, Plomgaard P, Berney T, Donath MY, Pedersen BK, Halban PA (2011) Bimodal effect on pancreatic beta-cells of secretory products from normal or insulin-resistant human skeletal muscle. Diabetes 60:1111–1121PubMedCentralPubMed
51.
Zurück zum Zitat Ellingsgaard H, Ehses JA, Hammar EB et al (2008) Interleukin-6 regulates pancreatic alpha-cell mass expansion. Proc Natl Acad Sci U S A 105:13163–13168PubMedCentralPubMed Ellingsgaard H, Ehses JA, Hammar EB et al (2008) Interleukin-6 regulates pancreatic alpha-cell mass expansion. Proc Natl Acad Sci U S A 105:13163–13168PubMedCentralPubMed
52.
Zurück zum Zitat Ellingsgaard H, Hauselmann I, Schuler B et al (2011) Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat Med 17:1481–1489PubMed Ellingsgaard H, Hauselmann I, Schuler B et al (2011) Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat Med 17:1481–1489PubMed
53.
Zurück zum Zitat Ueda SY, Yoshikawa T, Katsura Y, Usui T, Nakao H, Fujimoto S (2009) Changes in gut hormone levels and negative energy balance during aerobic exercise in obese young males. J Endocrinol 201:151–159PubMed Ueda SY, Yoshikawa T, Katsura Y, Usui T, Nakao H, Fujimoto S (2009) Changes in gut hormone levels and negative energy balance during aerobic exercise in obese young males. J Endocrinol 201:151–159PubMed
54.
Zurück zum Zitat Martins C, Robertson MD, Morgan LM (2008) Effects of exercise and restrained eating behaviour on appetite control. Proc Nutr Soc 67:28–41PubMed Martins C, Robertson MD, Morgan LM (2008) Effects of exercise and restrained eating behaviour on appetite control. Proc Nutr Soc 67:28–41PubMed
55.
Zurück zum Zitat Shirazi R, Palsdottir V, Collander J et al (2013) Glucagon-like peptide 1 receptor induced suppression of food intake, and body weight is mediated by central IL-1 and IL-6. Proc Natl Acad Sci U S A 110:16199–16204PubMedCentralPubMed Shirazi R, Palsdottir V, Collander J et al (2013) Glucagon-like peptide 1 receptor induced suppression of food intake, and body weight is mediated by central IL-1 and IL-6. Proc Natl Acad Sci U S A 110:16199–16204PubMedCentralPubMed
56.
Zurück zum Zitat Henningsen J, Rigbolt KT, Blagoev B, Pedersen BK, Kratchmarova I (2010) Dynamics of the skeletal muscle secretome during myoblast differentiation. Mol Cell Proteomics 9:2482–2496PubMedCentralPubMed Henningsen J, Rigbolt KT, Blagoev B, Pedersen BK, Kratchmarova I (2010) Dynamics of the skeletal muscle secretome during myoblast differentiation. Mol Cell Proteomics 9:2482–2496PubMedCentralPubMed
57.
Zurück zum Zitat Shah R, Hinkle CC, Ferguson JF et al (2011) Fractalkine is a novel human adipochemokine associated with type 2 diabetes. Diabetes 60:1512–1518PubMedCentralPubMed Shah R, Hinkle CC, Ferguson JF et al (2011) Fractalkine is a novel human adipochemokine associated with type 2 diabetes. Diabetes 60:1512–1518PubMedCentralPubMed
58.
Zurück zum Zitat Plomgaard P, Hansen J, Bianda V, Pedersen BK, Bouzakri K (2013) Fractalkine is a novel myokine which protects myotubes from TNF-alpha induced insulin resistance. Diabetologia 56(Suppl 1):S79 (Abstract 178) Plomgaard P, Hansen J, Bianda V, Pedersen BK, Bouzakri K (2013) Fractalkine is a novel myokine which protects myotubes from TNF-alpha induced insulin resistance. Diabetologia 56(Suppl 1):S79 (Abstract 178)
59.
Zurück zum Zitat Lee YS, Morinaga H, Kim JJ et al (2013) The fractalkine/CX3CR1 system regulates beta cell function and insulin secretion. Cell 153:413–425PubMedCentralPubMed Lee YS, Morinaga H, Kim JJ et al (2013) The fractalkine/CX3CR1 system regulates beta cell function and insulin secretion. Cell 153:413–425PubMedCentralPubMed
60.
Zurück zum Zitat Sell H, Habich C, Eckel J (2012) Adaptive immunity in obesity and insulin resistance. Nat Rev Endocrinol 8:709–716PubMed Sell H, Habich C, Eckel J (2012) Adaptive immunity in obesity and insulin resistance. Nat Rev Endocrinol 8:709–716PubMed
61.
Zurück zum Zitat Gleeson M (2007) Immune function in sport and exercise. J Appl Physiol 103:693–699PubMed Gleeson M (2007) Immune function in sport and exercise. J Appl Physiol 103:693–699PubMed
62.
Zurück zum Zitat Pedersen BK, Saltin B (2006) Evidence for prescribing exercise as therapy in chronic disease. Scand J Med Sci Sports 16(Suppl 1):3–63PubMed Pedersen BK, Saltin B (2006) Evidence for prescribing exercise as therapy in chronic disease. Scand J Med Sci Sports 16(Suppl 1):3–63PubMed
63.
Zurück zum Zitat Donges CE, Duffield R, Drinkwater EJ (2010) Effects of resistance or aerobic exercise training on interleukin-6, C-reactive protein, and body composition. Med Sci Sports Exerc 42:304–313PubMed Donges CE, Duffield R, Drinkwater EJ (2010) Effects of resistance or aerobic exercise training on interleukin-6, C-reactive protein, and body composition. Med Sci Sports Exerc 42:304–313PubMed
64.
Zurück zum Zitat Christiansen T, Paulsen SK, Bruun JM, Pedersen SB, Richelsen B (2010) Exercise training versus diet-induced weight-loss on metabolic risk factors and inflammatory markers in obese subjects: a 12-week randomized intervention study. Am J Physiol Endocrinol Metab 298:E824–E831PubMed Christiansen T, Paulsen SK, Bruun JM, Pedersen SB, Richelsen B (2010) Exercise training versus diet-induced weight-loss on metabolic risk factors and inflammatory markers in obese subjects: a 12-week randomized intervention study. Am J Physiol Endocrinol Metab 298:E824–E831PubMed
65.
Zurück zum Zitat Fischer CP, Berntsen A, Perstrup LB, Eskildsen P, Pedersen BK (2007) Plasma levels of interleukin-6 and C-reactive protein are associated with physical inactivity independent of obesity. Scand J Med Sci Sports 17:580–587PubMed Fischer CP, Berntsen A, Perstrup LB, Eskildsen P, Pedersen BK (2007) Plasma levels of interleukin-6 and C-reactive protein are associated with physical inactivity independent of obesity. Scand J Med Sci Sports 17:580–587PubMed
66.
Zurück zum Zitat Drummond MJ, Timmerman KL, Markofski MM et al (2013) Short-term bed rest increases TLR4 and IL-6 expression in skeletal muscle of older adults. Am J Physiol Regul Integr Comp Physiol 305:R216–R223PubMed Drummond MJ, Timmerman KL, Markofski MM et al (2013) Short-term bed rest increases TLR4 and IL-6 expression in skeletal muscle of older adults. Am J Physiol Regul Integr Comp Physiol 305:R216–R223PubMed
67.
Zurück zum Zitat King DE, Carek P, Mainous AG III, Pearson WS (2003) Inflammatory markers and exercise: differences related to exercise type. Med Sci Sports Exerc 35:575–581PubMed King DE, Carek P, Mainous AG III, Pearson WS (2003) Inflammatory markers and exercise: differences related to exercise type. Med Sci Sports Exerc 35:575–581PubMed
68.
Zurück zum Zitat Abramson JL, Vaccarino V (2002) Relationship between physical activity and inflammation among apparently healthy middle-aged and older US adults. Arch Intern Med 162:1286–1292PubMed Abramson JL, Vaccarino V (2002) Relationship between physical activity and inflammation among apparently healthy middle-aged and older US adults. Arch Intern Med 162:1286–1292PubMed
69.
Zurück zum Zitat Geffken DF, Cushman M, Burke GL, Polak JF, Sakkinen PA, Tracy RP (2001) Association between physical activity and markers of inflammation in a healthy elderly population. Am J Epidemiol 153:242–250PubMed Geffken DF, Cushman M, Burke GL, Polak JF, Sakkinen PA, Tracy RP (2001) Association between physical activity and markers of inflammation in a healthy elderly population. Am J Epidemiol 153:242–250PubMed
70.
Zurück zum Zitat Mattusch F, Dufaux B, Heine O, Mertens I, Rost R (2000) Reduction of the plasma concentration of C-reactive protein following nine months of endurance training. Int J Sports Med 21:21–24PubMed Mattusch F, Dufaux B, Heine O, Mertens I, Rost R (2000) Reduction of the plasma concentration of C-reactive protein following nine months of endurance training. Int J Sports Med 21:21–24PubMed
71.
Zurück zum Zitat de Lemos ET, Oliveira J, Pinheiro JP, Reis F (2012) Regular physical exercise as a strategy to improve antioxidant and anti-inflammatory status: benefits in type 2 diabetes mellitus. Oxidative Med Cell Longev 2012:741545 de Lemos ET, Oliveira J, Pinheiro JP, Reis F (2012) Regular physical exercise as a strategy to improve antioxidant and anti-inflammatory status: benefits in type 2 diabetes mellitus. Oxidative Med Cell Longev 2012:741545
72.
Zurück zum Zitat Stewart LK, Flynn MG, Campbell WW et al (2007) The influence of exercise training on inflammatory cytokines and C-reactive protein. Med Sci Sports Exerc 39:1714–1719PubMed Stewart LK, Flynn MG, Campbell WW et al (2007) The influence of exercise training on inflammatory cytokines and C-reactive protein. Med Sci Sports Exerc 39:1714–1719PubMed
73.
Zurück zum Zitat Francaux M (2009) Toll-like receptor signalling induced by endurance exercise. Appl Physiol Nutr Metab 34:454–458PubMed Francaux M (2009) Toll-like receptor signalling induced by endurance exercise. Appl Physiol Nutr Metab 34:454–458PubMed
74.
Zurück zum Zitat Lambert CP, Wright NR, Finck BN, Villareal DT (2008) Exercise but not diet-induced weight loss decreases skeletal muscle inflammatory gene expression in frail obese elderly persons. J Appl Physiol (1985) 105:473–478 Lambert CP, Wright NR, Finck BN, Villareal DT (2008) Exercise but not diet-induced weight loss decreases skeletal muscle inflammatory gene expression in frail obese elderly persons. J Appl Physiol (1985) 105:473–478
75.
Zurück zum Zitat Gleeson M, Bishop NC, Stensel DJ, Lindley MR, Mastana SS, Nimmo MA (2011) The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol 11:607–615PubMed Gleeson M, Bishop NC, Stensel DJ, Lindley MR, Mastana SS, Nimmo MA (2011) The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol 11:607–615PubMed
76.
Zurück zum Zitat Liang H, Hussey SE, Sanchez-Avila A, Tantiwong P, Musi N (2013) Effect of lipopolysaccharide on inflammation and insulin action in human muscle. PLoS One 8:e63983PubMedCentralPubMed Liang H, Hussey SE, Sanchez-Avila A, Tantiwong P, Musi N (2013) Effect of lipopolysaccharide on inflammation and insulin action in human muscle. PLoS One 8:e63983PubMedCentralPubMed
77.
Zurück zum Zitat Starkie R, Ostrowski SR, Jauffred S, Febbraio M, Pedersen BK (2003) Exercise and IL-6 infusion inhibit endotoxin-induced TNF-α production in humans. FASEB J 17:884–886PubMed Starkie R, Ostrowski SR, Jauffred S, Febbraio M, Pedersen BK (2003) Exercise and IL-6 infusion inhibit endotoxin-induced TNF-α production in humans. FASEB J 17:884–886PubMed
78.
Zurück zum Zitat Lambernd S, Taube A, Schober A et al (2012) Contractile activity of human skeletal muscle cells prevents insulin resistance by inhibiting pro-inflammatory signalling pathways. Diabetologia 55:1128–1139PubMed Lambernd S, Taube A, Schober A et al (2012) Contractile activity of human skeletal muscle cells prevents insulin resistance by inhibiting pro-inflammatory signalling pathways. Diabetologia 55:1128–1139PubMed
79.
Zurück zum Zitat Pedersen BK, Akerstrom TC, Nielsen AR, Fischer CP (2007) Role of myokines in exercise and metabolism. J Appl Physiol 103:1093–1098PubMed Pedersen BK, Akerstrom TC, Nielsen AR, Fischer CP (2007) Role of myokines in exercise and metabolism. J Appl Physiol 103:1093–1098PubMed
80.
Zurück zum Zitat Dandona P, Aljada A, Bandyopadhyay A (2004) Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol 25:4–7PubMed Dandona P, Aljada A, Bandyopadhyay A (2004) Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol 25:4–7PubMed
81.
Zurück zum Zitat Duncan BB, Schmidt MI, Pankow JS et al (2003) Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes 52:1799–1805PubMed Duncan BB, Schmidt MI, Pankow JS et al (2003) Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes 52:1799–1805PubMed
82.
Zurück zum Zitat Kern PA, Ranganathan S, Li C, Wood L, Ranganathan G (2001) Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab 280:E745–E751PubMed Kern PA, Ranganathan S, Li C, Wood L, Ranganathan G (2001) Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab 280:E745–E751PubMed
83.
Zurück zum Zitat Im SH, Rao A (2004) Activation and deactivation of gene expression by Ca2+/calcineurin-NFAT-mediated signaling. Mol Cells 18:1–9PubMed Im SH, Rao A (2004) Activation and deactivation of gene expression by Ca2+/calcineurin-NFAT-mediated signaling. Mol Cells 18:1–9PubMed
84.
Zurück zum Zitat Banzet S, Koulmann N, Sanchez H et al (2007) Contraction-induced interleukin-6 transcription in rat slow-type muscle is partly dependent on calcineurin activation. J Cell Physiol 210:596–601PubMed Banzet S, Koulmann N, Sanchez H et al (2007) Contraction-induced interleukin-6 transcription in rat slow-type muscle is partly dependent on calcineurin activation. J Cell Physiol 210:596–601PubMed
85.
Zurück zum Zitat Chan MH, McGee SL, Watt MJ, Hargreaves M, Febbraio MA (2004) Altering dietary nutrient intake that reduces glycogen content leads to phosphorylation of nuclear p38 MAP kinase in human skeletal muscle: association with IL-6 gene transcription during contraction. FASEB J 18:1785–1787PubMed Chan MH, McGee SL, Watt MJ, Hargreaves M, Febbraio MA (2004) Altering dietary nutrient intake that reduces glycogen content leads to phosphorylation of nuclear p38 MAP kinase in human skeletal muscle: association with IL-6 gene transcription during contraction. FASEB J 18:1785–1787PubMed
86.
Zurück zum Zitat Petersen AM, Pedersen BK (2005) The anti-inflammatory effect of exercise. J Appl Physiol 98:1154–1162PubMed Petersen AM, Pedersen BK (2005) The anti-inflammatory effect of exercise. J Appl Physiol 98:1154–1162PubMed
87.
Zurück zum Zitat Dinarello CA (2000) The role of the interleukin-1-receptor antagonist in blocking inflammation mediated by interleukin-1. N Engl J Med 343:732–734PubMed Dinarello CA (2000) The role of the interleukin-1-receptor antagonist in blocking inflammation mediated by interleukin-1. N Engl J Med 343:732–734PubMed
88.
Zurück zum Zitat Görgens SW, Eckardt K, Elsen M, Tennagels N, Eckel J (2014) Chitinase-3-like protein 1 protects skeletal muscle from TNFα-induced inflammation and insulin resistance. Biochem J. doi:10.1042/BJ20131151 PubMed Görgens SW, Eckardt K, Elsen M, Tennagels N, Eckel J (2014) Chitinase-3-like protein 1 protects skeletal muscle from TNFα-induced inflammation and insulin resistance. Biochem J. doi:10.​1042/​BJ20131151 PubMed
89.
Zurück zum Zitat Nielsen AR, Erikstrup C, Johansen JS et al (2008) Plasma YKL-40: a BMI-independent marker of type 2 diabetes. Diabetes 57:3078–3082PubMedCentralPubMed Nielsen AR, Erikstrup C, Johansen JS et al (2008) Plasma YKL-40: a BMI-independent marker of type 2 diabetes. Diabetes 57:3078–3082PubMedCentralPubMed
90.
Zurück zum Zitat Ostrowski K, Rohde T, Asp S, Schjerling P, Pedersen BK (1999) Pro- and anti-inflammatory cytokine balance in strenuous exercise in humans. J Physiol 515:287–291PubMedCentralPubMed Ostrowski K, Rohde T, Asp S, Schjerling P, Pedersen BK (1999) Pro- and anti-inflammatory cytokine balance in strenuous exercise in humans. J Physiol 515:287–291PubMedCentralPubMed
91.
Zurück zum Zitat Bernecker C, Scherr J, Schinner S, Braun S, Scherbaum WA, Halle M (2013) Evidence for an exercise induced increase of TNF-α and IL-6 in marathon runners. Scand J Med Sci Sports 23:207–214PubMed Bernecker C, Scherr J, Schinner S, Braun S, Scherbaum WA, Halle M (2013) Evidence for an exercise induced increase of TNF-α and IL-6 in marathon runners. Scand J Med Sci Sports 23:207–214PubMed
92.
Zurück zum Zitat Paulsen G, Mikkelsen UR, Raastad T, Peake JM (2012) Leucocytes, cytokines and satellite cells: what role do they play in muscle damage and regeneration following eccentric exercise? Exerc Immunol Rev 18:42–97PubMed Paulsen G, Mikkelsen UR, Raastad T, Peake JM (2012) Leucocytes, cytokines and satellite cells: what role do they play in muscle damage and regeneration following eccentric exercise? Exerc Immunol Rev 18:42–97PubMed
93.
Zurück zum Zitat Sigal RJ, Kenny GP, Boule NG et al (2007) Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes: a randomized trial. Ann Intern Med 147:357–369PubMed Sigal RJ, Kenny GP, Boule NG et al (2007) Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes: a randomized trial. Ann Intern Med 147:357–369PubMed
94.
Zurück zum Zitat Cypess AM, Lehman S, Williams G et al (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360:1509–1517PubMedCentralPubMed Cypess AM, Lehman S, Williams G et al (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360:1509–1517PubMedCentralPubMed
95.
Zurück zum Zitat Ouellet V, Routhier-Labadie A, Bellemare W et al (2011) Outdoor temperature, age, sex, body mass index, and diabetic status determine the prevalence, mass, and glucose-uptake activity of 18F-FDG-detected BAT in humans. J Clin Endocrinol Metab 96:192–199PubMed Ouellet V, Routhier-Labadie A, Bellemare W et al (2011) Outdoor temperature, age, sex, body mass index, and diabetic status determine the prevalence, mass, and glucose-uptake activity of 18F-FDG-detected BAT in humans. J Clin Endocrinol Metab 96:192–199PubMed
96.
Zurück zum Zitat Zingaretti MC, Crosta F, Vitali A et al (2009) The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J 23:3113–3120PubMed Zingaretti MC, Crosta F, Vitali A et al (2009) The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J 23:3113–3120PubMed
97.
Zurück zum Zitat van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM et al (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360:1500–1508PubMed van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM et al (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360:1500–1508PubMed
98.
Zurück zum Zitat Bostrom P, Wu J, Jedrychowski MP et al (2012) A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481:463–468PubMedCentralPubMed Bostrom P, Wu J, Jedrychowski MP et al (2012) A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481:463–468PubMedCentralPubMed
99.
Zurück zum Zitat Camporez JP, Jornayvaz FR, Petersen MC et al (2013) Cellular mechanisms by which FGF21 improves insulin sensitivity in male mice. Endocrinology 154:3099–3109PubMed Camporez JP, Jornayvaz FR, Petersen MC et al (2013) Cellular mechanisms by which FGF21 improves insulin sensitivity in male mice. Endocrinology 154:3099–3109PubMed
100.
Zurück zum Zitat Raschke S, Elsen M, Gassenhuber H et al (2013) Evidence against a beneficial effect of irisin in humans. PLoS One 8:e73680PubMedCentralPubMed Raschke S, Elsen M, Gassenhuber H et al (2013) Evidence against a beneficial effect of irisin in humans. PLoS One 8:e73680PubMedCentralPubMed
101.
Zurück zum Zitat Erickson HP (2013) Irisin and FNDC5 in retrospect: an exercise hormone or a transmembrane receptor? Adipocyte 2:289–293PubMedCentralPubMed Erickson HP (2013) Irisin and FNDC5 in retrospect: an exercise hormone or a transmembrane receptor? Adipocyte 2:289–293PubMedCentralPubMed
102.
Zurück zum Zitat Timmons JA, Baar K, Davidsen PK, Atherton PJ (2012) Is irisin a human exercise gene? Nature 488:E9–E10PubMed Timmons JA, Baar K, Davidsen PK, Atherton PJ (2012) Is irisin a human exercise gene? Nature 488:E9–E10PubMed
103.
Zurück zum Zitat Pekkala S, Wiklund P, Hulmi JJ et al (2013) Are skeletal muscle FNDC5 gene expression and irisin release regulated by exercise and related to health? J Physiol 591:5393–5400PubMed Pekkala S, Wiklund P, Hulmi JJ et al (2013) Are skeletal muscle FNDC5 gene expression and irisin release regulated by exercise and related to health? J Physiol 591:5393–5400PubMed
104.
Zurück zum Zitat Norheim F, Langleite TM, Hjorth M et al (2014) The effects of acute and chronic exercise on PGC-1α, irisin and browning of subcutaneous adipose tissue in humans. FEBS J 281:739–749PubMed Norheim F, Langleite TM, Hjorth M et al (2014) The effects of acute and chronic exercise on PGC-1α, irisin and browning of subcutaneous adipose tissue in humans. FEBS J 281:739–749PubMed
105.
Zurück zum Zitat Huh JY, Panagiotou G, Mougios V et al (2012) FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise. Metabolism 61:1725–1738PubMedCentralPubMed Huh JY, Panagiotou G, Mougios V et al (2012) FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise. Metabolism 61:1725–1738PubMedCentralPubMed
106.
Zurück zum Zitat Kraemer RR, Shockett P, Webb ND, Shah U, Castracane VD (2014) A transient elevated irisin blood concentration in response to prolonged, moderate aerobic exercise in young men and women. Horm Metab Res 46:150–154PubMed Kraemer RR, Shockett P, Webb ND, Shah U, Castracane VD (2014) A transient elevated irisin blood concentration in response to prolonged, moderate aerobic exercise in young men and women. Horm Metab Res 46:150–154PubMed
107.
Zurück zum Zitat Gouni-Berthold I, Berthold HK, Huh JY et al (2013) Effects of lipid-lowering drugs on irisin in human subjects in vivo and in human skeletal muscle cells ex vivo. PLoS ONE 8:e72858PubMedCentralPubMed Gouni-Berthold I, Berthold HK, Huh JY et al (2013) Effects of lipid-lowering drugs on irisin in human subjects in vivo and in human skeletal muscle cells ex vivo. PLoS ONE 8:e72858PubMedCentralPubMed
108.
Zurück zum Zitat Moreno-Navarrete JM, Ortega F, Serrano M et al (2013) Irisin is expressed and produced by human muscle and adipose tissue in association with obesity and insulin resistance. J Clin Endocrinol Metab 98:E769–E778PubMed Moreno-Navarrete JM, Ortega F, Serrano M et al (2013) Irisin is expressed and produced by human muscle and adipose tissue in association with obesity and insulin resistance. J Clin Endocrinol Metab 98:E769–E778PubMed
109.
Zurück zum Zitat Stengel A, Hofmann T, Goebel-Stengel M, Elbelt U, Kobelt P, Klapp BF (2013) Circulating levels of irisin in patients with anorexia nervosa and different stages of obesity—correlation with body mass index. Peptides 39:125–130PubMed Stengel A, Hofmann T, Goebel-Stengel M, Elbelt U, Kobelt P, Klapp BF (2013) Circulating levels of irisin in patients with anorexia nervosa and different stages of obesity—correlation with body mass index. Peptides 39:125–130PubMed
110.
Zurück zum Zitat Choi YK, Kim MK, Bae KH et al (2013) Serum irisin levels in new-onset type 2 diabetes. Diabetes Res Clin Pract 100:96–101PubMed Choi YK, Kim MK, Bae KH et al (2013) Serum irisin levels in new-onset type 2 diabetes. Diabetes Res Clin Pract 100:96–101PubMed
111.
Zurück zum Zitat Zhang Y, Li R, Meng Y et al (2013) Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling. Diabetes 63:514–525PubMed Zhang Y, Li R, Meng Y et al (2013) Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling. Diabetes 63:514–525PubMed
112.
Zurück zum Zitat Lee D, Zhou Y, Tu M et al (2013) Irisin does not induce browning of mouse or human adipocytes. Diabetes 62(Suppl 1):A25 (Abstract) Lee D, Zhou Y, Tu M et al (2013) Irisin does not induce browning of mouse or human adipocytes. Diabetes 62(Suppl 1):A25 (Abstract)
113.
Zurück zum Zitat Cheng X, Zhu B, Jiang F, Fan H (2011) Serum FGF-21 levels in type 2 diabetic patients. Endocr Res 36:142–148PubMed Cheng X, Zhu B, Jiang F, Fan H (2011) Serum FGF-21 levels in type 2 diabetic patients. Endocr Res 36:142–148PubMed
114.
Zurück zum Zitat Izumiya Y, Bina HA, Ouchi N, Akasaki Y, Kharitonenkov A, Walsh K (2008) FGF21 is an Akt-regulated myokine. FEBS Lett 582:3805–3810PubMedCentralPubMed Izumiya Y, Bina HA, Ouchi N, Akasaki Y, Kharitonenkov A, Walsh K (2008) FGF21 is an Akt-regulated myokine. FEBS Lett 582:3805–3810PubMedCentralPubMed
115.
Zurück zum Zitat Hojman P, Pedersen M, Nielsen AR et al (2009) Fibroblast growth factor-21 is induced in human skeletal muscles by hyperinsulinemia. Diabetes 58:2797–2801PubMedCentralPubMed Hojman P, Pedersen M, Nielsen AR et al (2009) Fibroblast growth factor-21 is induced in human skeletal muscles by hyperinsulinemia. Diabetes 58:2797–2801PubMedCentralPubMed
116.
Zurück zum Zitat Yang SJ, Hong HC, Choi HY et al (2011) Effects of a three-month combined exercise programme on fibroblast growth factor 21 and fetuin-A levels and arterial stiffness in obese women. Clin Endocrinol (Oxf) 75:464–469 Yang SJ, Hong HC, Choi HY et al (2011) Effects of a three-month combined exercise programme on fibroblast growth factor 21 and fetuin-A levels and arterial stiffness in obese women. Clin Endocrinol (Oxf) 75:464–469
117.
Zurück zum Zitat Besse-Patin A, Montastier E, Vinel C et al (2013) Effect of endurance training on skeletal muscle myokine expression in obese men: identification of apelin as a novel myokine. Int J Obes (Lond). doi:10.1038/ijo.2013.158 Besse-Patin A, Montastier E, Vinel C et al (2013) Effect of endurance training on skeletal muscle myokine expression in obese men: identification of apelin as a novel myokine. Int J Obes (Lond). doi:10.​1038/​ijo.​2013.​158
118.
Zurück zum Zitat Cuevas-Ramos D, Almeda-Valdes P, Meza-Arana CE et al (2012) Exercise increases serum fibroblast growth factor 21 (FGF21) levels. PLoS One 7:e38022PubMedCentralPubMed Cuevas-Ramos D, Almeda-Valdes P, Meza-Arana CE et al (2012) Exercise increases serum fibroblast growth factor 21 (FGF21) levels. PLoS One 7:e38022PubMedCentralPubMed
119.
Zurück zum Zitat Kim KH, Kim SH, Min YK, Yang HM, Lee JB, Lee MS (2013) Acute exercise induces FGF21 expression in mice and in healthy humans. PLoS One 8:e63517PubMedCentralPubMed Kim KH, Kim SH, Min YK, Yang HM, Lee JB, Lee MS (2013) Acute exercise induces FGF21 expression in mice and in healthy humans. PLoS One 8:e63517PubMedCentralPubMed
120.
Zurück zum Zitat Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E (2007) Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 5:426–437PubMed Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E (2007) Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 5:426–437PubMed
121.
Zurück zum Zitat Inagaki T, Dutchak P, Zhao G et al (2007) Endocrine regulation of the fasting response by PPARα-mediated induction of fibroblast growth factor 21. Cell Metab 5:415–425PubMed Inagaki T, Dutchak P, Zhao G et al (2007) Endocrine regulation of the fasting response by PPARα-mediated induction of fibroblast growth factor 21. Cell Metab 5:415–425PubMed
122.
Zurück zum Zitat Cuevas-Ramos D, Aguilar-Salinas CA, Gomez-Perez FJ (2012) Metabolic actions of fibroblast growth factor 21. Curr Opin Pediatr 24:523–529PubMed Cuevas-Ramos D, Aguilar-Salinas CA, Gomez-Perez FJ (2012) Metabolic actions of fibroblast growth factor 21. Curr Opin Pediatr 24:523–529PubMed
123.
Zurück zum Zitat Coskun T, Bina HA, Schneider MA et al (2008) Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 149:6018–6027PubMed Coskun T, Bina HA, Schneider MA et al (2008) Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 149:6018–6027PubMed
124.
Zurück zum Zitat Kharitonenkov A, Shiyanova TL, Koester A et al (2005) FGF-21 as a novel metabolic regulator. J Clin Invest 115:1627–1635PubMedCentralPubMed Kharitonenkov A, Shiyanova TL, Koester A et al (2005) FGF-21 as a novel metabolic regulator. J Clin Invest 115:1627–1635PubMedCentralPubMed
125.
Zurück zum Zitat Kharitonenkov A, Wroblewski VJ, Koester A et al (2007) The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology 148:774–781PubMed Kharitonenkov A, Wroblewski VJ, Koester A et al (2007) The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology 148:774–781PubMed
126.
Zurück zum Zitat Xu J, Lloyd DJ, Hale C et al (2009) Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes 58:250–259PubMedCentralPubMed Xu J, Lloyd DJ, Hale C et al (2009) Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes 58:250–259PubMedCentralPubMed
127.
Zurück zum Zitat Holland WL, Adams AC, Brozinick JT et al (2013) An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice. Cell Metab 17:790–797PubMedCentralPubMed Holland WL, Adams AC, Brozinick JT et al (2013) An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice. Cell Metab 17:790–797PubMedCentralPubMed
128.
Zurück zum Zitat Lin Z, Tian H, Lam KS et al (2013) Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab 17:779–789PubMed Lin Z, Tian H, Lam KS et al (2013) Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab 17:779–789PubMed
129.
Zurück zum Zitat Gaich G, Chien JY, Fu H et al (2013) The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab 18:333–340PubMed Gaich G, Chien JY, Fu H et al (2013) The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab 18:333–340PubMed
130.
Zurück zum Zitat Ouchi N, Oshima Y, Ohashi K et al (2008) Follistatin-like 1, a secreted muscle protein, promotes endothelial cell function and revascularization in ischemic tissue through a nitric-oxide synthase-dependent mechanism. J Biol Chem 283:32802–32811PubMedCentralPubMed Ouchi N, Oshima Y, Ohashi K et al (2008) Follistatin-like 1, a secreted muscle protein, promotes endothelial cell function and revascularization in ischemic tissue through a nitric-oxide synthase-dependent mechanism. J Biol Chem 283:32802–32811PubMedCentralPubMed
131.
Zurück zum Zitat Gorgens SW, Raschke S, Holven KB, Jensen J, Eckardt K, Eckel J (2013) Regulation of follistatin-like protein 1 expression and secretion in primary human skeletal muscle cells. Arch Physiol Biochem 119:75–80PubMed Gorgens SW, Raschke S, Holven KB, Jensen J, Eckardt K, Eckel J (2013) Regulation of follistatin-like protein 1 expression and secretion in primary human skeletal muscle cells. Arch Physiol Biochem 119:75–80PubMed
132.
Zurück zum Zitat Lehr S, Hartwig S, Lamers D et al (2012) Identification and validation of novel adipokines released from primary human adipocytes. Mol Cell Proteomics 11:M111.010504PubMedCentralPubMed Lehr S, Hartwig S, Lamers D et al (2012) Identification and validation of novel adipokines released from primary human adipocytes. Mol Cell Proteomics 11:M111.010504PubMedCentralPubMed
133.
Zurück zum Zitat Shimano M, Ouchi N, Nakamura K et al (2011) Cardiac myocyte follistatin-like 1 functions to attenuate hypertrophy following pressure overload. Proc Natl Acad Sci U S A 108:E899–E906PubMedCentralPubMed Shimano M, Ouchi N, Nakamura K et al (2011) Cardiac myocyte follistatin-like 1 functions to attenuate hypertrophy following pressure overload. Proc Natl Acad Sci U S A 108:E899–E906PubMedCentralPubMed
134.
Zurück zum Zitat Oshima Y, Ouchi N, Sato K, Izumiya Y, Pimentel DR, Walsh K (2008) Follistatin-like 1 is an Akt-regulated cardioprotective factor that is secreted by the heart. Circulation 117:3099–3108PubMedCentralPubMed Oshima Y, Ouchi N, Sato K, Izumiya Y, Pimentel DR, Walsh K (2008) Follistatin-like 1 is an Akt-regulated cardioprotective factor that is secreted by the heart. Circulation 117:3099–3108PubMedCentralPubMed
135.
Zurück zum Zitat Ogura Y, Ouchi N, Ohashi K et al (2012) Therapeutic impact of follistatin-like 1 on myocardial ischemic injury in preclinical models. Circulation 126:1728–1738PubMedCentralPubMed Ogura Y, Ouchi N, Ohashi K et al (2012) Therapeutic impact of follistatin-like 1 on myocardial ischemic injury in preclinical models. Circulation 126:1728–1738PubMedCentralPubMed
136.
Zurück zum Zitat Mashili FL, Austin RL, Deshmukh AS et al (2011) Direct effects of FGF21 on glucose uptake in human skeletal muscle: implications for type 2 diabetes and obesity. Diabetes Metab Res Rev 27:286–297PubMed Mashili FL, Austin RL, Deshmukh AS et al (2011) Direct effects of FGF21 on glucose uptake in human skeletal muscle: implications for type 2 diabetes and obesity. Diabetes Metab Res Rev 27:286–297PubMed
137.
Zurück zum Zitat Potthoff MJ, Inagaki T, Satapati S et al (2009) FGF21 induces PGC-1α and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc Natl Acad Sci U S A 106:10853–10858PubMedCentralPubMed Potthoff MJ, Inagaki T, Satapati S et al (2009) FGF21 induces PGC-1α and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc Natl Acad Sci U S A 106:10853–10858PubMedCentralPubMed
138.
Zurück zum Zitat Nishimura T, Nakatake Y, Konishi M, Itoh N (2000) Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim Biophys Acta 1492:203–206PubMed Nishimura T, Nakatake Y, Konishi M, Itoh N (2000) Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim Biophys Acta 1492:203–206PubMed
139.
Zurück zum Zitat Adams DC, Karolak MJ, Larman BW, Liaw L, Nolin JD, Oxburgh L (2010) Follistatin-like 1 regulates renal IL-1β expression in cisplatin nephrotoxicity. Am J Physiol Ren Physiol 299:F1320–F1327 Adams DC, Karolak MJ, Larman BW, Liaw L, Nolin JD, Oxburgh L (2010) Follistatin-like 1 regulates renal IL-1β expression in cisplatin nephrotoxicity. Am J Physiol Ren Physiol 299:F1320–F1327
Metadaten
Titel
Myokines in insulin resistance and type 2 diabetes
verfasst von
Kristin Eckardt
Sven W. Görgens
Silja Raschke
Jürgen Eckel
Publikationsdatum
01.06.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Diabetologia / Ausgabe 6/2014
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-014-3224-x

Weitere Artikel der Ausgabe 6/2014

Diabetologia 6/2014 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.