Skip to main content
Erschienen in: Cancer and Metastasis Reviews 1-2/2019

04.02.2019

Na+,HCO3 cotransporter NBCn1 accelerates breast carcinogenesis

verfasst von: Ebbe Boedtkjer

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 1-2/2019

Einloggen, um Zugang zu erhalten

Abstract

Cell metabolism increases during carcinogenesis. Yet, intracellular pH in solid cancer tissue is typically maintained equal to or above that of normal tissue. This is achieved through accelerated cellular acid extrusion that compensates for the enhanced metabolic acid production. Upregulated Na+,HCO3 cotransport is the predominant mechanism of net acid extrusion in human and murine breast cancer tissue, and in congruence, the protein expression of the electroneutral Na+,HCO3 cotransporter NBCn1 is increased in primary breast carcinomas and lymph node metastases compared to matched normal breast tissue. The capacity for net acid extrusion and level of steady-state intracellular pH are lower in carcinogen- and ErbB2-induced breast cancer tissue from NBCn1 knockout mice compared to wild-type mice. Consistent with importance of intracellular pH control for breast cancer development, tumor-free survival is prolonged and tumor growth rate decelerated in NBCn1 knockout mice compared to wild-type mice. Glycolytic activity increases as function of tumor size and in areas of poor oxygenation. Because cell proliferation in NBCn1 knockout mice is particularly reduced in larger-sized breast carcinomas and central tumor regions with expected hypoxia, current evidence supports that NBCn1 facilitates cancer progression by eliminating intracellular acidic waste products derived from cancer cell metabolism. The present review explores the mechanisms and consequences of acid-base regulation in breast cancer tissue. Emphasis is on the Na+,HCO3 cotransporter NBCn1 that accelerates net acid extrusion from breast cancer tissue and thereby maintains intracellular pH in a range permissive for cell proliferation and development of breast cancer.
Literatur
7.
Zurück zum Zitat Vaupel, P., Kallinowski, F., & Okunieff, P. (1989). Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Research, 49(23), 6449–6465.PubMed Vaupel, P., Kallinowski, F., & Okunieff, P. (1989). Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Research, 49(23), 6449–6465.PubMed
13.
Zurück zum Zitat Trivedi, B., & Danforth, W. H. (1966). Effect of pH on the kinetics of frog muscle phosphofructokinase. The Journal of Biological Chemistry, 241(17), 4110–4112.PubMed Trivedi, B., & Danforth, W. H. (1966). Effect of pH on the kinetics of frog muscle phosphofructokinase. The Journal of Biological Chemistry, 241(17), 4110–4112.PubMed
16.
Zurück zum Zitat Boedtkjer, E., Moreira, J. M., Mele, M., Vahl, P., Wielenga, V. T., Christiansen, P. M., et al. (2013). Contribution of Na+,HCO3 −-cotransport to cellular pH control in human breast cancer: a role for the breast cancer susceptibility locus NBCn1 (SLC4A7). International Journal of Cancer, 132(6), 1288–1299. https://doi.org/10.1002/ijc.27782.CrossRefPubMed Boedtkjer, E., Moreira, J. M., Mele, M., Vahl, P., Wielenga, V. T., Christiansen, P. M., et al. (2013). Contribution of Na+,HCO3 -cotransport to cellular pH control in human breast cancer: a role for the breast cancer susceptibility locus NBCn1 (SLC4A7). International Journal of Cancer, 132(6), 1288–1299. https://​doi.​org/​10.​1002/​ijc.​27782.CrossRefPubMed
17.
Zurück zum Zitat Lee, S., Mele, M., Vahl, P., Christiansen, P. M., Jensen, V. E. D., & Boedtkjer, E. (2015). Na+,HCO3 −-cotransport is functionally upregulated during human breast carcinogenesis and required for the inverted pH gradient across the plasma membrane. Pflügers Archiv, 467(2), 367–377. https://doi.org/10.1007/s00424-014-1524-0.CrossRefPubMed Lee, S., Mele, M., Vahl, P., Christiansen, P. M., Jensen, V. E. D., & Boedtkjer, E. (2015). Na+,HCO3 -cotransport is functionally upregulated during human breast carcinogenesis and required for the inverted pH gradient across the plasma membrane. Pflügers Archiv, 467(2), 367–377. https://​doi.​org/​10.​1007/​s00424-014-1524-0.CrossRefPubMed
20.
Zurück zum Zitat Raghunand, N., Altbach, M. I., van Sluis, R., Baggett, B., Taylor, C. W., Bhujwalla, Z. M., & Gillies, R. J. (1999). Plasmalemmal pH-gradients in drug-sensitive and drug-resistant MCF-7 human breast carcinoma xenografts measured by 31P magnetic resonance spectroscopy. Biochemical Pharmacology, 57(3), 309–312. https://doi.org/10.1016/S0006-2952(98)00306-2.CrossRefPubMed Raghunand, N., Altbach, M. I., van Sluis, R., Baggett, B., Taylor, C. W., Bhujwalla, Z. M., & Gillies, R. J. (1999). Plasmalemmal pH-gradients in drug-sensitive and drug-resistant MCF-7 human breast carcinoma xenografts measured by 31P magnetic resonance spectroscopy. Biochemical Pharmacology, 57(3), 309–312. https://​doi.​org/​10.​1016/​S0006-2952(98)00306-2.CrossRefPubMed
22.
Zurück zum Zitat Chiche, J., Le, F. Y., Vilmen, C., Frassineti, F., Daniel, L., Halestrap, A. P., et al. (2012). In vivo pH in metabolic-defective Ras-transformed fibroblast tumors: key role of the monocarboxylate transporter, MCT4, for inducing an alkaline intracellular pH. International Journal of Cancer, 130(7), 1511–1520. https://doi.org/10.1002/ijc.26125.CrossRefPubMed Chiche, J., Le, F. Y., Vilmen, C., Frassineti, F., Daniel, L., Halestrap, A. P., et al. (2012). In vivo pH in metabolic-defective Ras-transformed fibroblast tumors: key role of the monocarboxylate transporter, MCT4, for inducing an alkaline intracellular pH. International Journal of Cancer, 130(7), 1511–1520. https://​doi.​org/​10.​1002/​ijc.​26125.CrossRefPubMed
41.
Zurück zum Zitat Chen, Y., Choong, L. Y., Lin, Q., Philp, R., Wong, C. H., Ang, B. K., Tan, Y. L., Loh, M. C. S., Hew, C. L., Shah, N., Druker, B. J., Chong, P. K., & Lim, Y. P. (2007). Differential expression of novel tyrosine kinase substrates during breast cancer development. Molecular & Cellular Proteomics, 6(12), 2072–2087. https://doi.org/10.1074/mcp.M700395-MCP200.CrossRef Chen, Y., Choong, L. Y., Lin, Q., Philp, R., Wong, C. H., Ang, B. K., Tan, Y. L., Loh, M. C. S., Hew, C. L., Shah, N., Druker, B. J., Chong, P. K., & Lim, Y. P. (2007). Differential expression of novel tyrosine kinase substrates during breast cancer development. Molecular & Cellular Proteomics, 6(12), 2072–2087. https://​doi.​org/​10.​1074/​mcp.​M700395-MCP200.CrossRef
44.
Zurück zum Zitat Antoniou, A. C., Beesley, J., McGuffog, L., Sinilnikova, O. M., Healey, S., Neuhausen, S. L., Ding, Y. C., Rebbeck, T. R., Weitzel, J. N., Lynch, H. T., Isaacs, C., Ganz, P. A., Tomlinson, G., Olopade, O. I., Couch, F. J., Wang, X., Lindor, N. M., Pankratz, V. S., Radice, P., Manoukian, S., Peissel, B., Zaffaroni, D., Barile, M., Viel, A., Allavena, A., Dall’Olio, V., Peterlongo, P., Szabo, C. I., Zikan, M., Claes, K., Poppe, B., Foretova, L., Mai, P. L., Greene, M. H., Rennert, G., Lejbkowicz, F., Glendon, G., Ozcelik, H., Andrulis, I. L., for the Ontario Cancer Genetics Network, Thomassen, M., Gerdes, A. M., Sunde, L., Cruger, D., Birk Jensen, U., Caligo, M., Friedman, E., Kaufman, B., Laitman, Y., Milgrom, R., Dubrovsky, M., Cohen, S., Borg, A., Jernstrom, H., Lindblom, A., Rantala, J., Stenmark-Askmalm, M., Melin, B., for SWE-BRCA, Nathanson, K., Domchek, S., Jakubowska, A., Lubinski, J., Huzarski, T., Osorio, A., Lasa, A., Duran, M., Tejada, M. I., Godino, J., Benitez, J., Hamann, U., Kriege, M., Hoogerbrugge, N., van der Luijt, R. B., Asperen, C. J., Devilee, P., Meijers-Heijboer, E. J., Blok, M. J., Aalfs, C. M., Hogervorst, F., Rookus, M., for HEBON, Cook, M., Oliver, C., Frost, D., Conroy, D., Evans, D. G., Lalloo, F., Pichert, G., Davidson, R., Cole, T., Cook, J., Paterson, J., Hodgson, S., Morrison, P. J., Porteous, M. E., Walker, L., Kennedy, M. J., Dorkins, H., Peock, S., for EMBRACE, Godwin, A. K., Stoppa-Lyonnet, D., de Pauw, A., Mazoyer, S., Bonadona, V., Lasset, C., Dreyfus, H., Leroux, D., Hardouin, A., Berthet, P., Faivre, L., for GEMO, Loustalot, C., Noguchi, T., Sobol, H., Rouleau, E., Nogues, C., Frenay, M., Venat-Bouvet, L., for GEMO, Hopper, J. L., Daly, M. B., Terry, M. B., John, E. M., Buys, S. S., Yassin, Y., Miron, A., Goldgar, D., for the Breast Cancer Family Registry, Singer, C. F., Dressler, A. C., Gschwantler-Kaulich, D., Pfeiler, G., Hansen, T. V. O., Jonson, L., Agnarsson, B. A., Kirchhoff, T., Offit, K., Devlin, V., Dutra-Clarke, A., Piedmonte, M., Rodriguez, G. C., Wakeley, K., Boggess, J. F., Basil, J., Schwartz, P. E., Blank, S. V., Toland, A. E., Montagna, M., Casella, C., Imyanitov, E., Tihomirova, L., Blanco, I., Lazaro, C., Ramus, S. J., Sucheston, L., Karlan, B. Y., Gross, J., Schmutzler, R., Wappenschmidt, B., Engel, C., Meindl, A., Lochmann, M., Arnold, N., Heidemann, S., Varon-Mateeva, R., Niederacher, D., Sutter, C., Deissler, H., Gadzicki, D., Preisler-Adams, S., Kast, K., Schonbuchner, I., Caldes, T., de la Hoya, M., Aittomaki, K., Nevanlinna, H., Simard, J., Spurdle, A. B., Holland, H., Chen, X., for kConFab, Platte, R., Chenevix-Trench, G., Easton, D. F., & on behalf of CIMBA. (2010). Common breast cancer susceptibility alleles and the risk of breast cancer for BRCA1 and BRCA2 mutation carriers: implications for risk prediction. Cancer Research, 70(23), 9742–9754. https://doi.org/10.1158/0008-5472.can-10-1907.CrossRefPubMedPubMedCentral Antoniou, A. C., Beesley, J., McGuffog, L., Sinilnikova, O. M., Healey, S., Neuhausen, S. L., Ding, Y. C., Rebbeck, T. R., Weitzel, J. N., Lynch, H. T., Isaacs, C., Ganz, P. A., Tomlinson, G., Olopade, O. I., Couch, F. J., Wang, X., Lindor, N. M., Pankratz, V. S., Radice, P., Manoukian, S., Peissel, B., Zaffaroni, D., Barile, M., Viel, A., Allavena, A., Dall’Olio, V., Peterlongo, P., Szabo, C. I., Zikan, M., Claes, K., Poppe, B., Foretova, L., Mai, P. L., Greene, M. H., Rennert, G., Lejbkowicz, F., Glendon, G., Ozcelik, H., Andrulis, I. L., for the Ontario Cancer Genetics Network, Thomassen, M., Gerdes, A. M., Sunde, L., Cruger, D., Birk Jensen, U., Caligo, M., Friedman, E., Kaufman, B., Laitman, Y., Milgrom, R., Dubrovsky, M., Cohen, S., Borg, A., Jernstrom, H., Lindblom, A., Rantala, J., Stenmark-Askmalm, M., Melin, B., for SWE-BRCA, Nathanson, K., Domchek, S., Jakubowska, A., Lubinski, J., Huzarski, T., Osorio, A., Lasa, A., Duran, M., Tejada, M. I., Godino, J., Benitez, J., Hamann, U., Kriege, M., Hoogerbrugge, N., van der Luijt, R. B., Asperen, C. J., Devilee, P., Meijers-Heijboer, E. J., Blok, M. J., Aalfs, C. M., Hogervorst, F., Rookus, M., for HEBON, Cook, M., Oliver, C., Frost, D., Conroy, D., Evans, D. G., Lalloo, F., Pichert, G., Davidson, R., Cole, T., Cook, J., Paterson, J., Hodgson, S., Morrison, P. J., Porteous, M. E., Walker, L., Kennedy, M. J., Dorkins, H., Peock, S., for EMBRACE, Godwin, A. K., Stoppa-Lyonnet, D., de Pauw, A., Mazoyer, S., Bonadona, V., Lasset, C., Dreyfus, H., Leroux, D., Hardouin, A., Berthet, P., Faivre, L., for GEMO, Loustalot, C., Noguchi, T., Sobol, H., Rouleau, E., Nogues, C., Frenay, M., Venat-Bouvet, L., for GEMO, Hopper, J. L., Daly, M. B., Terry, M. B., John, E. M., Buys, S. S., Yassin, Y., Miron, A., Goldgar, D., for the Breast Cancer Family Registry, Singer, C. F., Dressler, A. C., Gschwantler-Kaulich, D., Pfeiler, G., Hansen, T. V. O., Jonson, L., Agnarsson, B. A., Kirchhoff, T., Offit, K., Devlin, V., Dutra-Clarke, A., Piedmonte, M., Rodriguez, G. C., Wakeley, K., Boggess, J. F., Basil, J., Schwartz, P. E., Blank, S. V., Toland, A. E., Montagna, M., Casella, C., Imyanitov, E., Tihomirova, L., Blanco, I., Lazaro, C., Ramus, S. J., Sucheston, L., Karlan, B. Y., Gross, J., Schmutzler, R., Wappenschmidt, B., Engel, C., Meindl, A., Lochmann, M., Arnold, N., Heidemann, S., Varon-Mateeva, R., Niederacher, D., Sutter, C., Deissler, H., Gadzicki, D., Preisler-Adams, S., Kast, K., Schonbuchner, I., Caldes, T., de la Hoya, M., Aittomaki, K., Nevanlinna, H., Simard, J., Spurdle, A. B., Holland, H., Chen, X., for kConFab, Platte, R., Chenevix-Trench, G., Easton, D. F., & on behalf of CIMBA. (2010). Common breast cancer susceptibility alleles and the risk of breast cancer for BRCA1 and BRCA2 mutation carriers: implications for risk prediction. Cancer Research, 70(23), 9742–9754. https://​doi.​org/​10.​1158/​0008-5472.​can-10-1907.CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Milne, R. L., Gaudet, M. M., Spurdle, A. B., Fasching, P. A., Couch, F. J., Benítez, J., et al. (2010). Assessing interactions between the associations of common genetic susceptibility variants, reproductive history and body mass index with breast cancer risk in the breast cancer association consortium: a combined case-control study. Breast Cancer Research, 12(6), 1–11. https://doi.org/10.1186/bcr2797.CrossRef Milne, R. L., Gaudet, M. M., Spurdle, A. B., Fasching, P. A., Couch, F. J., Benítez, J., et al. (2010). Assessing interactions between the associations of common genetic susceptibility variants, reproductive history and body mass index with breast cancer risk in the breast cancer association consortium: a combined case-control study. Breast Cancer Research, 12(6), 1–11. https://​doi.​org/​10.​1186/​bcr2797.CrossRef
46.
Zurück zum Zitat Han, W., Woo, J. H., Yu, J. H., Lee, M. J., Moon, H. G., Kang, D., & Noh, D. Y. (2011). Common genetic variants associated with breast cancer in Korean women and differential susceptibility according to intrinsic subtype. Cancer Epidemiology, Biomarkers & Prevention, 20(5), 793–798. https://doi.org/10.1158/1055-9965.EPI-10-1282.CrossRef Han, W., Woo, J. H., Yu, J. H., Lee, M. J., Moon, H. G., Kang, D., & Noh, D. Y. (2011). Common genetic variants associated with breast cancer in Korean women and differential susceptibility according to intrinsic subtype. Cancer Epidemiology, Biomarkers & Prevention, 20(5), 793–798. https://​doi.​org/​10.​1158/​1055-9965.​EPI-10-1282.CrossRef
49.
Zurück zum Zitat Sueta, A., Ito, H., Kawase, T., Hirose, K., Hosono, S., Yatabe, Y., Tajima, K., Tanaka, H., Iwata, H., Iwase, H., & Matsuo, K. (2012). A genetic risk predictor for breast cancer using a combination of low-penetrance polymorphisms in a Japanese population. Breast Cancer Research and Treatment, 132(2), 711–721. https://doi.org/10.1007/s10549-011-1904-5.CrossRefPubMed Sueta, A., Ito, H., Kawase, T., Hirose, K., Hosono, S., Yatabe, Y., Tajima, K., Tanaka, H., Iwata, H., Iwase, H., & Matsuo, K. (2012). A genetic risk predictor for breast cancer using a combination of low-penetrance polymorphisms in a Japanese population. Breast Cancer Research and Treatment, 132(2), 711–721. https://​doi.​org/​10.​1007/​s10549-011-1904-5.CrossRefPubMed
50.
Zurück zum Zitat Chen, W., Zhong, R., Ming, J., Zou, L., Zhu, B., Lu, X., Ke, J., Zhang, Y., Liu, L., Miao, X., & Huang, T. (2012). The SLC4A7 variant rs4973768 is associated with breast cancer risk: evidence from a case-control study and a meta-analysis. Breast Cancer Research and Treatment, 136(3), 847–857. https://doi.org/10.1007/s10549-012-2309-9.CrossRefPubMed Chen, W., Zhong, R., Ming, J., Zou, L., Zhu, B., Lu, X., Ke, J., Zhang, Y., Liu, L., Miao, X., & Huang, T. (2012). The SLC4A7 variant rs4973768 is associated with breast cancer risk: evidence from a case-control study and a meta-analysis. Breast Cancer Research and Treatment, 136(3), 847–857. https://​doi.​org/​10.​1007/​s10549-012-2309-9.CrossRefPubMed
51.
Zurück zum Zitat Warren Andersen, S., Trentham-Dietz, A., Gangnon, R. E., Hampton, J. M., Figueroa, J. D., Skinner, H. G., Engelman, C. D., Klein, B. E., Titus, L. J., & Newcomb, P. A. (2013). The associations between a polygenic score, reproductive and menstrual risk factors and breast cancer risk. Breast Cancer Research and Treatment, 140(2), 427–434. https://doi.org/10.1007/s10549-013-2646-3.CrossRefPubMed Warren Andersen, S., Trentham-Dietz, A., Gangnon, R. E., Hampton, J. M., Figueroa, J. D., Skinner, H. G., Engelman, C. D., Klein, B. E., Titus, L. J., & Newcomb, P. A. (2013). The associations between a polygenic score, reproductive and menstrual risk factors and breast cancer risk. Breast Cancer Research and Treatment, 140(2), 427–434. https://​doi.​org/​10.​1007/​s10549-013-2646-3.CrossRefPubMed
53.
Zurück zum Zitat Mulligan, A. M., Couch, F. J., Barrowdale, D., Domchek, S. M., Eccles, D., Nevanlinna, H., et al. (2011). Common breast cancer susceptibility alleles are associated with tumour subtypes in BRCA1 and BRCA2 mutation carriers: results from the consortium of investigators of modifiers of BRCA1/2. Breast Cancer Research, 13(6), R110. https://doi.org/10.1186/bcr3052.CrossRefPubMed Mulligan, A. M., Couch, F. J., Barrowdale, D., Domchek, S. M., Eccles, D., Nevanlinna, H., et al. (2011). Common breast cancer susceptibility alleles are associated with tumour subtypes in BRCA1 and BRCA2 mutation carriers: results from the consortium of investigators of modifiers of BRCA1/2. Breast Cancer Research, 13(6), R110. https://​doi.​org/​10.​1186/​bcr3052.CrossRefPubMed
54.
Zurück zum Zitat Fernandez-Navarro, P., Pita, G., Santamarina, C., Moreno, M. P., Vidal, C., Miranda-Garcia, J., et al. (2013). Association analysis between breast cancer genetic variants and mammographic density in a large population-based study (Determinants of Density in Mammographies in Spain) identifies susceptibility loci in TOX3 gene. European Journal of Cancer, 49(2), 474–481. https://doi.org/10.1016/j.ejca.2012.08.026.CrossRefPubMed Fernandez-Navarro, P., Pita, G., Santamarina, C., Moreno, M. P., Vidal, C., Miranda-Garcia, J., et al. (2013). Association analysis between breast cancer genetic variants and mammographic density in a large population-based study (Determinants of Density in Mammographies in Spain) identifies susceptibility loci in TOX3 gene. European Journal of Cancer, 49(2), 474–481. https://​doi.​org/​10.​1016/​j.​ejca.​2012.​08.​026.CrossRefPubMed
55.
Zurück zum Zitat Fasching, P. A., Pharoah, P. D. P., Cox, A., Nevanlinna, H., Bojesen, S. E., Karn, T., Broeks, A., van Leeuwen, F. E., van ’t Veer, L. J., Udo, R., Dunning, A. M., Greco, D., Aittomäki, K., Blomqvist, C., Shah, M., Nordestgaard, B. G., Flyger, H., Hopper, J. L., Southey, M. C., Apicella, C., Garcia-Closas, M., Sherman, M., Lissowska, J., Seynaeve, C., Huijts, P. E. A., Tollenaar, R. A. E. M., Ziogas, A., Ekici, A. B., Rauh, C., Mannermaa, A., Kataja, V., Kosma, V. M., Hartikainen, J. M., Andrulis, I. L., Ozcelik, H., Mulligan, A. M., Glendon, G., Hall, P., Czene, K., Liu, J., Chang-Claude, J., Wang-Gohrke, S., Eilber, U., Nickels, S., Dörk, T., Schiekel, M., Bremer, M., Park-Simon, T. W., Giles, G. G., Severi, G., Baglietto, L., Hooning, M. J., Martens, J. W. M., Jager, A., Kriege, M., Lindblom, A., Margolin, S., Couch, F. J., Stevens, K. N., Olson, J. E., Kosel, M., Cross, S. S., Balasubramanian, S. P., Reed, M. W. R., Miron, A., John, E. M., Winqvist, R., Pylkäs, K., Jukkola-Vuorinen, A., Kauppila, S., Burwinkel, B., Marme, F., Schneeweiss, A., Sohn, C., Chenevix-Trench, G., kConFab Investigators, Lambrechts, D., Dieudonne, A. S., Hatse, S., van Limbergen, E., Benitez, J., Milne, R. L., Zamora, M. P., Pérez, J. I. A., Bonanni, B., Peissel, B., Loris, B., Peterlongo, P., Rajaraman, P., Schonfeld, S. J., Anton-Culver, H., Devilee, P., Beckmann, M. W., Slamon, D. J., Phillips, K. A., Figueroa, J. D., Humphreys, M. K., Easton, D. F., & Schmidt, M. K. (2012). The role of genetic breast cancer susceptibility variants as prognostic factors. Human Molecular Genetics, 21(17), 3926–3939. https://doi.org/10.1093/hmg/dds159.CrossRefPubMedPubMedCentral Fasching, P. A., Pharoah, P. D. P., Cox, A., Nevanlinna, H., Bojesen, S. E., Karn, T., Broeks, A., van Leeuwen, F. E., van ’t Veer, L. J., Udo, R., Dunning, A. M., Greco, D., Aittomäki, K., Blomqvist, C., Shah, M., Nordestgaard, B. G., Flyger, H., Hopper, J. L., Southey, M. C., Apicella, C., Garcia-Closas, M., Sherman, M., Lissowska, J., Seynaeve, C., Huijts, P. E. A., Tollenaar, R. A. E. M., Ziogas, A., Ekici, A. B., Rauh, C., Mannermaa, A., Kataja, V., Kosma, V. M., Hartikainen, J. M., Andrulis, I. L., Ozcelik, H., Mulligan, A. M., Glendon, G., Hall, P., Czene, K., Liu, J., Chang-Claude, J., Wang-Gohrke, S., Eilber, U., Nickels, S., Dörk, T., Schiekel, M., Bremer, M., Park-Simon, T. W., Giles, G. G., Severi, G., Baglietto, L., Hooning, M. J., Martens, J. W. M., Jager, A., Kriege, M., Lindblom, A., Margolin, S., Couch, F. J., Stevens, K. N., Olson, J. E., Kosel, M., Cross, S. S., Balasubramanian, S. P., Reed, M. W. R., Miron, A., John, E. M., Winqvist, R., Pylkäs, K., Jukkola-Vuorinen, A., Kauppila, S., Burwinkel, B., Marme, F., Schneeweiss, A., Sohn, C., Chenevix-Trench, G., kConFab Investigators, Lambrechts, D., Dieudonne, A. S., Hatse, S., van Limbergen, E., Benitez, J., Milne, R. L., Zamora, M. P., Pérez, J. I. A., Bonanni, B., Peissel, B., Loris, B., Peterlongo, P., Rajaraman, P., Schonfeld, S. J., Anton-Culver, H., Devilee, P., Beckmann, M. W., Slamon, D. J., Phillips, K. A., Figueroa, J. D., Humphreys, M. K., Easton, D. F., & Schmidt, M. K. (2012). The role of genetic breast cancer susceptibility variants as prognostic factors. Human Molecular Genetics, 21(17), 3926–3939. https://​doi.​org/​10.​1093/​hmg/​dds159.CrossRefPubMedPubMedCentral
57.
Zurück zum Zitat Ng, F. L., Boedtkjer, E., Witkowska, K., Ren, M., Zhang, R., Tucker, A., Aalkjær, C., Caulfield, M. J., & Ye, S. (2017). Increased NBCn1 expression, Na+/HCO3 − co-transport and intracellular pH in human vascular smooth muscle cells with a risk allele for hypertension. Human Molecular Genetics, 26(5), 989–1002. https://doi.org/10.1093/hmg/ddx015.CrossRefPubMedPubMedCentral Ng, F. L., Boedtkjer, E., Witkowska, K., Ren, M., Zhang, R., Tucker, A., Aalkjær, C., Caulfield, M. J., & Ye, S. (2017). Increased NBCn1 expression, Na+/HCO3 co-transport and intracellular pH in human vascular smooth muscle cells with a risk allele for hypertension. Human Molecular Genetics, 26(5), 989–1002. https://​doi.​org/​10.​1093/​hmg/​ddx015.CrossRefPubMedPubMedCentral
58.
59.
61.
Zurück zum Zitat Andersen, A. P., Samsøe-Petersen, J., Oernbo, E. K., Boedtkjer, E., Moreira, J. M. A., Kveiborg, M., et al. (2018). The net acid extruders NHE1, NBCn1 and MCT4 promote mammary tumor growth through distinct but overlapping mechanisms. International Journal of Cancer, 142(12), 2529–2542. https://doi.org/10.1002/ijc.31276.CrossRefPubMed Andersen, A. P., Samsøe-Petersen, J., Oernbo, E. K., Boedtkjer, E., Moreira, J. M. A., Kveiborg, M., et al. (2018). The net acid extruders NHE1, NBCn1 and MCT4 promote mammary tumor growth through distinct but overlapping mechanisms. International Journal of Cancer, 142(12), 2529–2542. https://​doi.​org/​10.​1002/​ijc.​31276.CrossRefPubMed
62.
Zurück zum Zitat Larsen, A. M., Krogsgaard-Larsen, N., Lauritzen, G., Olesen, C. W., Honoré Hansen, S., Boedtkjer, E., et al. (2012). Gram-scale solution-phase synthesis of selective sodium bicarbonate co-transport inhibitor S0859: in vitro efficacy studies in breast cancer cells. ChemMedChem, 7(10), 1808–1814. https://doi.org/10.1002/cmdc.201200335.CrossRefPubMed Larsen, A. M., Krogsgaard-Larsen, N., Lauritzen, G., Olesen, C. W., Honoré Hansen, S., Boedtkjer, E., et al. (2012). Gram-scale solution-phase synthesis of selective sodium bicarbonate co-transport inhibitor S0859: in vitro efficacy studies in breast cancer cells. ChemMedChem, 7(10), 1808–1814. https://​doi.​org/​10.​1002/​cmdc.​201200335.CrossRefPubMed
63.
Zurück zum Zitat Steinkamp, A.-D., Seling, N., Lee, S., Boedtkjer, E., & Bolm, C. (2015). Synthesis of N-cyano-substituted sulfilimine and sulfoximine derivatives of S0859 and their biological evaluation as sodium bicarbonate co-transport inhibitors. MedChemComm, 6(12), 2163–2169. https://doi.org/10.1039/C5MD00367A.CrossRef Steinkamp, A.-D., Seling, N., Lee, S., Boedtkjer, E., & Bolm, C. (2015). Synthesis of N-cyano-substituted sulfilimine and sulfoximine derivatives of S0859 and their biological evaluation as sodium bicarbonate co-transport inhibitors. MedChemComm, 6(12), 2163–2169. https://​doi.​org/​10.​1039/​C5MD00367A.CrossRef
65.
Zurück zum Zitat Rotin, D., Steele-Norwood, D., Grinstein, S., & Tannock, I. (1989). Requirement of the Na+/H+ exchanger for tumor growth. Cancer Research, 49(1), 205–211.PubMed Rotin, D., Steele-Norwood, D., Grinstein, S., & Tannock, I. (1989). Requirement of the Na+/H+ exchanger for tumor growth. Cancer Research, 49(1), 205–211.PubMed
66.
Zurück zum Zitat Pouyssegur, J., Franchi, A., & Pages, G. (2001). pHi, aerobic glycolysis and vascular endothelial growth factor in tumour growth. Novartis Foundation Symposium, 240, 186–196.PubMed Pouyssegur, J., Franchi, A., & Pages, G. (2001). pHi, aerobic glycolysis and vascular endothelial growth factor in tumour growth. Novartis Foundation Symposium, 240, 186–196.PubMed
67.
Zurück zum Zitat Busco, G., Cardone, R. A., Greco, M. R., Bellizzi, A., Colella, M., Antelmi, E., Mancini, M. T., Dell’Aquila, M. E., Casavola, V., Paradiso, A., & Reshkin, S. J. (2010). NHE1 promotes invadopodial ECM proteolysis through acidification of the peri-invadopodial space. The FASEB Journal, 24(10), 3903–3915. https://doi.org/10.1096/fj.09-149518.CrossRefPubMed Busco, G., Cardone, R. A., Greco, M. R., Bellizzi, A., Colella, M., Antelmi, E., Mancini, M. T., Dell’Aquila, M. E., Casavola, V., Paradiso, A., & Reshkin, S. J. (2010). NHE1 promotes invadopodial ECM proteolysis through acidification of the peri-invadopodial space. The FASEB Journal, 24(10), 3903–3915. https://​doi.​org/​10.​1096/​fj.​09-149518.CrossRefPubMed
82.
Zurück zum Zitat Ilie, M. I., Hofman, V., Ortholan, C., Ammadi, R. E., Bonnetaud, C., Havet, K., Venissac, N., Mouroux, J., Mazure, N. M., Pouysségur, J., & Hofman, P. (2011). Overexpression of carbonic anhydrase XII in tissues from resectable non-small cell lung cancers is a biomarker of good prognosis. International Journal of Cancer, 128(7), 1614–1623. https://doi.org/10.1002/ijc.25491.CrossRefPubMed Ilie, M. I., Hofman, V., Ortholan, C., Ammadi, R. E., Bonnetaud, C., Havet, K., Venissac, N., Mouroux, J., Mazure, N. M., Pouysségur, J., & Hofman, P. (2011). Overexpression of carbonic anhydrase XII in tissues from resectable non-small cell lung cancers is a biomarker of good prognosis. International Journal of Cancer, 128(7), 1614–1623. https://​doi.​org/​10.​1002/​ijc.​25491.CrossRefPubMed
85.
90.
Zurück zum Zitat Becker, H. M., Klier, M., & Deitmer, J. W. (2014). Carbonic anhydrases and their interplay with acid/base-coupled membrane transporters. In S. C. Frost & R. McKenna (Eds.), Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications (pp. 105–134). Dordrecht: Springer Netherlands.CrossRef Becker, H. M., Klier, M., & Deitmer, J. W. (2014). Carbonic anhydrases and their interplay with acid/base-coupled membrane transporters. In S. C. Frost & R. McKenna (Eds.), Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications (pp. 105–134). Dordrecht: Springer Netherlands.CrossRef
103.
Zurück zum Zitat Ibrahim-Hashim, A., Robertson-Tessi, M., Enriquez-Navas, P. M., Damaghi, M., Balagurunathan, Y., Wojtkowiak, J. W., Russell, S., Yoonseok, K., Lloyd, M. C., Bui, M. M., Brown, J. S., Anderson, A. R. A., Gillies, R. J., & Gatenby, R. A. (2017). Defining cancer subpopulations by adaptive strategies rather than molecular properties provides novel insights into intratumoral evolution. Cancer Research, 77(9), 2242–2254. https://doi.org/10.1158/0008-5472.can-16-2844.CrossRefPubMedPubMedCentral Ibrahim-Hashim, A., Robertson-Tessi, M., Enriquez-Navas, P. M., Damaghi, M., Balagurunathan, Y., Wojtkowiak, J. W., Russell, S., Yoonseok, K., Lloyd, M. C., Bui, M. M., Brown, J. S., Anderson, A. R. A., Gillies, R. J., & Gatenby, R. A. (2017). Defining cancer subpopulations by adaptive strategies rather than molecular properties provides novel insights into intratumoral evolution. Cancer Research, 77(9), 2242–2254. https://​doi.​org/​10.​1158/​0008-5472.​can-16-2844.CrossRefPubMedPubMedCentral
105.
Zurück zum Zitat Senthebane, D. A., Rowe, A., Thomford, N. E., Shipanga, H., Munro, D., Mazeedi, M. A. M. A., Almazyadi, H. A. M., Kallmeyer, K., Dandara, C., Pepper, M. S., Parker, M. I., & Dzobo, K. (2017). The role of tumor microenvironment in chemoresistance: to survive, keep your enemies closer. International Journal of Molecular Sciences, 18(7), 1586. https://doi.org/10.3390/ijms18071586.CrossRefPubMedCentral Senthebane, D. A., Rowe, A., Thomford, N. E., Shipanga, H., Munro, D., Mazeedi, M. A. M. A., Almazyadi, H. A. M., Kallmeyer, K., Dandara, C., Pepper, M. S., Parker, M. I., & Dzobo, K. (2017). The role of tumor microenvironment in chemoresistance: to survive, keep your enemies closer. International Journal of Molecular Sciences, 18(7), 1586. https://​doi.​org/​10.​3390/​ijms18071586.CrossRefPubMedCentral
107.
Zurück zum Zitat Ferrero, E., Labalde, M., Fernández, N., Monge, L., Salcedo, A., Narvaez-Sanchez, R., Hidalgo, M., Dieguez, G., & García-Villalon, A. L. (2008). Response to endothelin-1 in arteries from human colorectal tumours: role of endothelin receptors. Experimental Biology and Medicine (Maywood, N.J.), 233(12), 1602–1607. https://doi.org/10.3181/0802-rm-69.CrossRef Ferrero, E., Labalde, M., Fernández, N., Monge, L., Salcedo, A., Narvaez-Sanchez, R., Hidalgo, M., Dieguez, G., & García-Villalon, A. L. (2008). Response to endothelin-1 in arteries from human colorectal tumours: role of endothelin receptors. Experimental Biology and Medicine (Maywood, N.J.), 233(12), 1602–1607. https://​doi.​org/​10.​3181/​0802-rm-69.CrossRef
110.
Zurück zum Zitat Eigenbrodt, E., Kallinowski, F., Ott, M., Mazurek, S., & Vaupel, P. (1998). Pyruvate kinase and the interaction of amino acid and carbohydrate metabolism in solid tumors. Anticancer Research, 18(5A), 3267–3274.PubMed Eigenbrodt, E., Kallinowski, F., Ott, M., Mazurek, S., & Vaupel, P. (1998). Pyruvate kinase and the interaction of amino acid and carbohydrate metabolism in solid tumors. Anticancer Research, 18(5A), 3267–3274.PubMed
120.
121.
Zurück zum Zitat Grinstein, S., Woodside, M., Waddell, T. K., Downey, G. P., Orlowski, J., Pouyssegur, J., Wong, D. C., & Foskett, J. K. (1993). Focal localization of the NHE-1 isoform of the Na+/H+ antiport: assessment of effects on intracellular pH. The EMBO Journal, 12(13), 5209–5218.CrossRef Grinstein, S., Woodside, M., Waddell, T. K., Downey, G. P., Orlowski, J., Pouyssegur, J., Wong, D. C., & Foskett, J. K. (1993). Focal localization of the NHE-1 isoform of the Na+/H+ antiport: assessment of effects on intracellular pH. The EMBO Journal, 12(13), 5209–5218.CrossRef
125.
Zurück zum Zitat Lauritzen, G., Stock, C. M., Lemaire, J., Lund, S. F., Jensen, M. F., Damsgaard, B., Petersen, K. S., Wiwel, M., Rønnov-Jessen, L., Schwab, A., & Pedersen, S. F. (2012). The Na+/H+ exchanger NHE1, but not the Na+,HCO3 − cotransporter NBCn1, regulates motility of MCF7 breast cancer cells expressing constitutively active ErbB2. Cancer Letters, 317(2), 172–183. https://doi.org/10.1016/j.canlet.2011.11.023.CrossRefPubMed Lauritzen, G., Stock, C. M., Lemaire, J., Lund, S. F., Jensen, M. F., Damsgaard, B., Petersen, K. S., Wiwel, M., Rønnov-Jessen, L., Schwab, A., & Pedersen, S. F. (2012). The Na+/H+ exchanger NHE1, but not the Na+,HCO3 cotransporter NBCn1, regulates motility of MCF7 breast cancer cells expressing constitutively active ErbB2. Cancer Letters, 317(2), 172–183. https://​doi.​org/​10.​1016/​j.​canlet.​2011.​11.​023.CrossRefPubMed
126.
Zurück zum Zitat Svastova, E., Witarski, W., Csaderova, L., Kosik, I., Skvarkova, L., Hulikova, A., Zatovicova, M., Barathova, M., Kopacek, J., Pastorek, J., & Pastorekova, S. (2012). Carbonic anhydrase IX interacts with bicarbonate transporters in lamellipodia and increases cell migration via its catalytic domain. The Journal of Biological Chemistry, 287(5), 3392–3402. https://doi.org/10.1074/jbc.M111.286062.CrossRefPubMed Svastova, E., Witarski, W., Csaderova, L., Kosik, I., Skvarkova, L., Hulikova, A., Zatovicova, M., Barathova, M., Kopacek, J., Pastorek, J., & Pastorekova, S. (2012). Carbonic anhydrase IX interacts with bicarbonate transporters in lamellipodia and increases cell migration via its catalytic domain. The Journal of Biological Chemistry, 287(5), 3392–3402. https://​doi.​org/​10.​1074/​jbc.​M111.​286062.CrossRefPubMed
128.
Zurück zum Zitat McIntyre, A., Hulikova, A., Ledaki, I., Snell, C., Singleton, D., Steers, G., Seden, P., Jones, D., Bridges, E., Wigfield, S., Li, J. L., Russell, A., Swietach, P., & Harris, A. L. (2016). Disrupting hypoxia-induced bicarbonate transport acidifies tumor cells and suppresses tumor growth. Cancer Research, 76(13), 3744–3755. https://doi.org/10.1158/0008-5472.can-15-1862.CrossRefPubMed McIntyre, A., Hulikova, A., Ledaki, I., Snell, C., Singleton, D., Steers, G., Seden, P., Jones, D., Bridges, E., Wigfield, S., Li, J. L., Russell, A., Swietach, P., & Harris, A. L. (2016). Disrupting hypoxia-induced bicarbonate transport acidifies tumor cells and suppresses tumor growth. Cancer Research, 76(13), 3744–3755. https://​doi.​org/​10.​1158/​0008-5472.​can-15-1862.CrossRefPubMed
130.
131.
Zurück zum Zitat Mrowiec, A. (2007). Localization and regulation of expression of the Na + ,HCO 3 − -cotransporter NBCn1. PhD dissertation, Aarhus University, Denmark. Mrowiec, A. (2007). Localization and regulation of expression of the Na + ,HCO 3 -cotransporter NBCn1. PhD dissertation, Aarhus University, Denmark.
132.
133.
Zurück zum Zitat Orlowski, J., & Grinstein, S. (2011). Na+/H+ exchangers. Compr Physiol, 1(4), 2083–2100.PubMed Orlowski, J., & Grinstein, S. (2011). Na+/H+ exchangers. Compr Physiol, 1(4), 2083–2100.PubMed
Metadaten
Titel
Na+,HCO3− cotransporter NBCn1 accelerates breast carcinogenesis
verfasst von
Ebbe Boedtkjer
Publikationsdatum
04.02.2019
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 1-2/2019
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-019-09784-7

Weitere Artikel der Ausgabe 1-2/2019

Cancer and Metastasis Reviews 1-2/2019 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.