Skip to main content
Erschienen in: Journal of Natural Medicines 2/2017

03.12.2016 | Note

Naringenin interferes with the anti-diabetic actions of pioglitazone via pharmacodynamic interactions

verfasst von: Hiroki Yoshida, Rika Tsuhako, Toshiyuki Atsumi, Keiko Narumi, Wataru Watanabe, Chihiro Sugita, Masahiko Kurokawa

Erschienen in: Journal of Natural Medicines | Ausgabe 2/2017

Einloggen, um Zugang zu erhalten

Abstract

Pioglitazone is a peroxisome proliferator-activated receptor gamma (PPARγ) full agonist and useful for the treatment of type 2 diabetes mellitus. Naringenin is a citrus flavonoid with anti-inflammatory actions, which has been shown to prevent obesity-related diseases and to activate PPARγ. The aim of this study was to investigate whether dietary naringenin affects the actions of pioglitazone. We administered naringenin (100 mg/kg) and pioglitazone (10 mg/kg) to Tsumura Suzuki Obese Diabetes (TSOD) mice for 4 weeks and then conducted an oral glucose tolerance test. We found that oral administration of naringenin attenuated the hypoglycemic action of pioglitazone in TSOD mice. However, pioglitazone and naringenin did not affect fasting blood glucose levels, epididymal fat pad weight and body weight changes in this administration period. Pioglitazone suppressed expression of obesity-related adipokines such as tissue inhibitor of metalloproteinases-1 in adipose tissue of TSOD mice, but this effect was attenuated by naringenin. However, naringenin did not affect the pharmacokinetics of pioglitazone after single or repeated administration. Naringenin exhibited weak partial agonist activity in time-resolved fluorescence resonance energy transfer assay, but naringenin interfered with pioglitazone agonism, consistent with partial agonism. Our results suggest that it is advisable to avoid administering a combination of naringenin and pioglitazone.
Literatur
1.
2.
Zurück zum Zitat Tontonoz P, Hu E, Graves RA, Budavari AI, Spiegelman BM (1994) mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev 8:1224–1234CrossRefPubMed Tontonoz P, Hu E, Graves RA, Budavari AI, Spiegelman BM (1994) mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev 8:1224–1234CrossRefPubMed
5.
Zurück zum Zitat Wang L, Waltenberger B, Pferschy-Wenzig EM, Blunder M, Liu X, Malainer C, Blazevic T, Schwaiger S, Rollinger JM, Heiss EH, Schuster D, Kopp B, Bauer R, Stuppner H, Dirsch VM, Atanasov AG (2014) Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARgamma): a review. Biochem Pharmacol 92:73–89CrossRefPubMedPubMedCentral Wang L, Waltenberger B, Pferschy-Wenzig EM, Blunder M, Liu X, Malainer C, Blazevic T, Schwaiger S, Rollinger JM, Heiss EH, Schuster D, Kopp B, Bauer R, Stuppner H, Dirsch VM, Atanasov AG (2014) Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARgamma): a review. Biochem Pharmacol 92:73–89CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Higgins LS, Depaoli AM (2010) Selective peroxisome proliferator-activated receptor gamma (PPARgamma) modulation as a strategy for safer therapeutic PPARgamma activation. Am J Clin Nutr 91:267S–272SCrossRefPubMed Higgins LS, Depaoli AM (2010) Selective peroxisome proliferator-activated receptor gamma (PPARgamma) modulation as a strategy for safer therapeutic PPARgamma activation. Am J Clin Nutr 91:267S–272SCrossRefPubMed
7.
Zurück zum Zitat van Acker FA, Schouten O, Haenen GR, van der Vijgh WJ, Bast A (2000) Flavonoids can replace alpha-tocopherol as an antioxidant. FEBS Lett 473:145–148CrossRefPubMed van Acker FA, Schouten O, Haenen GR, van der Vijgh WJ, Bast A (2000) Flavonoids can replace alpha-tocopherol as an antioxidant. FEBS Lett 473:145–148CrossRefPubMed
8.
Zurück zum Zitat Lin HY, Shen SC, Chen YC (2005) Anti-inflammatory effect of heme oxygenase 1: glycosylation and nitric oxide inhibition in macrophages. J Cell Physiol 202:579–590CrossRefPubMed Lin HY, Shen SC, Chen YC (2005) Anti-inflammatory effect of heme oxygenase 1: glycosylation and nitric oxide inhibition in macrophages. J Cell Physiol 202:579–590CrossRefPubMed
9.
Zurück zum Zitat So FV, Guthrie N, Chambers AF, Moussa M, Carroll KK (1996) Inhibition of human breast cancer cell proliferation and delay of mammary tumorigenesis by flavonoids and citrus juices. Nutr Cancer 26:167–181CrossRefPubMed So FV, Guthrie N, Chambers AF, Moussa M, Carroll KK (1996) Inhibition of human breast cancer cell proliferation and delay of mammary tumorigenesis by flavonoids and citrus juices. Nutr Cancer 26:167–181CrossRefPubMed
10.
Zurück zum Zitat Knekt P, Kumpulainen J, Jarvinen R, Rissanen H, Heliovaara M, Reunanen A, Hakulinen T, Aromaa A (2002) Flavonoid intake and risk of chronic diseases. Am J Clin Nutr 76:560–568PubMed Knekt P, Kumpulainen J, Jarvinen R, Rissanen H, Heliovaara M, Reunanen A, Hakulinen T, Aromaa A (2002) Flavonoid intake and risk of chronic diseases. Am J Clin Nutr 76:560–568PubMed
11.
Zurück zum Zitat Mulvihill EE, Allister EM, Sutherland BG, Telford DE, Sawyez CG, Edwards JY, Markle JM, Hegele RA, Huff MW (2009) Naringenin prevents dyslipidemia, apolipoprotein B overproduction, and hyperinsulinemia in LDL receptor-null mice with diet-induced insulin resistance. Diabetes 58:2198–2210CrossRefPubMedPubMedCentral Mulvihill EE, Allister EM, Sutherland BG, Telford DE, Sawyez CG, Edwards JY, Markle JM, Hegele RA, Huff MW (2009) Naringenin prevents dyslipidemia, apolipoprotein B overproduction, and hyperinsulinemia in LDL receptor-null mice with diet-induced insulin resistance. Diabetes 58:2198–2210CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Kannappan S, Anuradha CV (2010) Naringenin enhances insulin-stimulated tyrosine phosphorylation and improves the cellular actions of insulin in a dietary model of metabolic syndrome. Eur J Nutr 49:101–109CrossRefPubMed Kannappan S, Anuradha CV (2010) Naringenin enhances insulin-stimulated tyrosine phosphorylation and improves the cellular actions of insulin in a dietary model of metabolic syndrome. Eur J Nutr 49:101–109CrossRefPubMed
13.
Zurück zum Zitat Yoshida H, Takamura N, Shuto T, Ogata K, Tokunaga J, Kawai K, Kai H (2010) The citrus flavonoids hesperetin and naringenin block the lipolytic actions of TNF-alpha in mouse adipocytes. Biochem Biophys Res Commun 394:728–732CrossRefPubMed Yoshida H, Takamura N, Shuto T, Ogata K, Tokunaga J, Kawai K, Kai H (2010) The citrus flavonoids hesperetin and naringenin block the lipolytic actions of TNF-alpha in mouse adipocytes. Biochem Biophys Res Commun 394:728–732CrossRefPubMed
14.
Zurück zum Zitat Yoshida H, Watanabe W, Oomagari H, Tsuruta E, Shida M, Kurokawa M (2013) Citrus flavonoid naringenin inhibits TLR2 expression in adipocytes. J Nutr Biochem 24:1276–1284CrossRefPubMed Yoshida H, Watanabe W, Oomagari H, Tsuruta E, Shida M, Kurokawa M (2013) Citrus flavonoid naringenin inhibits TLR2 expression in adipocytes. J Nutr Biochem 24:1276–1284CrossRefPubMed
15.
Zurück zum Zitat Yoshida H, Watanabe H, Ishida A, Watanabe W, Narumi K, Atsumi T, Sugita C, Kurokawa M (2014) Naringenin suppresses macrophage infiltration into adipose tissue in an early phase of high-fat diet-induced obesity. Biochem Biophys Res Commun 454:95–101CrossRefPubMed Yoshida H, Watanabe H, Ishida A, Watanabe W, Narumi K, Atsumi T, Sugita C, Kurokawa M (2014) Naringenin suppresses macrophage infiltration into adipose tissue in an early phase of high-fat diet-induced obesity. Biochem Biophys Res Commun 454:95–101CrossRefPubMed
16.
Zurück zum Zitat Goldwasser J, Cohen PY, Yang E, Balaguer P, Yarmush ML, Nahmias Y (2010) Transcriptional regulation of human and rat hepatic lipid metabolism by the grapefruit flavonoid naringenin: role of PPARalpha. PPARgamma and LXRalpha. PLoS One 5:e12399CrossRefPubMedPubMedCentral Goldwasser J, Cohen PY, Yang E, Balaguer P, Yarmush ML, Nahmias Y (2010) Transcriptional regulation of human and rat hepatic lipid metabolism by the grapefruit flavonoid naringenin: role of PPARalpha. PPARgamma and LXRalpha. PLoS One 5:e12399CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Liu L, Shan S, Zhang K, Ning ZQ, Lu XP, Cheng YY (2008) Naringenin and hesperetin, two flavonoids derived from Citrus aurantium up-regulate transcription of adiponectin. Phytother Res 22:1400–1403CrossRefPubMed Liu L, Shan S, Zhang K, Ning ZQ, Lu XP, Cheng YY (2008) Naringenin and hesperetin, two flavonoids derived from Citrus aurantium up-regulate transcription of adiponectin. Phytother Res 22:1400–1403CrossRefPubMed
18.
Zurück zum Zitat Yamashita K, Murakami H, Okuda T, Motohashi M (1996) High-performance liquid chromatographic determination of pioglitazone and its metabolites in human serum and urine. J Chromatogr B Biomed Appl 677:141–146CrossRefPubMed Yamashita K, Murakami H, Okuda T, Motohashi M (1996) High-performance liquid chromatographic determination of pioglitazone and its metabolites in human serum and urine. J Chromatogr B Biomed Appl 677:141–146CrossRefPubMed
19.
Zurück zum Zitat Suzuki A, Yasuno T, Kojo H, Hirosumi J, Mutoh S, Notsu Y (2000) Alteration in expression profiles of a series of diabetes-related genes in db/db mice following treatment with thiazolidinediones. Jpn J Pharmacol 84:113–123CrossRefPubMed Suzuki A, Yasuno T, Kojo H, Hirosumi J, Mutoh S, Notsu Y (2000) Alteration in expression profiles of a series of diabetes-related genes in db/db mice following treatment with thiazolidinediones. Jpn J Pharmacol 84:113–123CrossRefPubMed
20.
Zurück zum Zitat Ishida H, Takizawa M, Ozawa S, Nakamichi Y, Yamaguchi S, Katsuta H, Tanaka T, Maruyama M, Katahira H, Yoshimoto K, Itagaki E, Nagamatsu S (2004) Pioglitazone improves insulin secretory capacity and prevents the loss of beta-cell mass in obese diabetic db/db mice: possible protection of beta cells from oxidative stress. Metab Clin Exp 53:488–494CrossRefPubMed Ishida H, Takizawa M, Ozawa S, Nakamichi Y, Yamaguchi S, Katsuta H, Tanaka T, Maruyama M, Katahira H, Yoshimoto K, Itagaki E, Nagamatsu S (2004) Pioglitazone improves insulin secretory capacity and prevents the loss of beta-cell mass in obese diabetic db/db mice: possible protection of beta cells from oxidative stress. Metab Clin Exp 53:488–494CrossRefPubMed
21.
Zurück zum Zitat Kimura T, Kaneto H, Shimoda M, Hirukawa H, Okauchi S, Kohara K, Hamamoto S, Tawaramoto K, Hashiramoto M, Kaku K (2015) Protective effects of pioglitazone and/or liraglutide on pancreatic beta-cells in db/db mice: comparison of their effects between in an early and advanced stage of diabetes. Mol Cell Endocrinol 400:78–89CrossRefPubMed Kimura T, Kaneto H, Shimoda M, Hirukawa H, Okauchi S, Kohara K, Hamamoto S, Tawaramoto K, Hashiramoto M, Kaku K (2015) Protective effects of pioglitazone and/or liraglutide on pancreatic beta-cells in db/db mice: comparison of their effects between in an early and advanced stage of diabetes. Mol Cell Endocrinol 400:78–89CrossRefPubMed
22.
Zurück zum Zitat Endo Y, Suzuki M, Yamada H, Horita S, Kunimi M, Yamazaki O, Shirai A, Nakamura M, Iso ON, Li Y, Hara M, Tsukamoto K, Moriyama N, Kudo A, Kawakami H, Yamauchi T, Kubota N, Kadowaki T, Kume H, Enomoto Y, Homma Y, Seki G, Fujita T (2011) Thiazolidinediones enhance sodium-coupled bicarbonate absorption from renal proximal tubules via PPARgamma-dependent nongenomic signaling. Cell Metab 13:550–561CrossRefPubMed Endo Y, Suzuki M, Yamada H, Horita S, Kunimi M, Yamazaki O, Shirai A, Nakamura M, Iso ON, Li Y, Hara M, Tsukamoto K, Moriyama N, Kudo A, Kawakami H, Yamauchi T, Kubota N, Kadowaki T, Kume H, Enomoto Y, Homma Y, Seki G, Fujita T (2011) Thiazolidinediones enhance sodium-coupled bicarbonate absorption from renal proximal tubules via PPARgamma-dependent nongenomic signaling. Cell Metab 13:550–561CrossRefPubMed
23.
Zurück zum Zitat Karuppagounder V, Arumugam S, Thandavarayan RA, Pitchaimani V, Sreedhar R, Afrin R, Harima M, Suzuki H, Suzuki K, Nakamura M, Ueno K, Watanabe K (2015) Naringenin ameliorates daunorubicin induced nephrotoxicity by mitigating AT1R, ERK1/2-NFkappaB p65 mediated inflammation. Int Immunopharmacol 28:154–159CrossRefPubMed Karuppagounder V, Arumugam S, Thandavarayan RA, Pitchaimani V, Sreedhar R, Afrin R, Harima M, Suzuki H, Suzuki K, Nakamura M, Ueno K, Watanabe K (2015) Naringenin ameliorates daunorubicin induced nephrotoxicity by mitigating AT1R, ERK1/2-NFkappaB p65 mediated inflammation. Int Immunopharmacol 28:154–159CrossRefPubMed
24.
Zurück zum Zitat Maquoi E, Munaut C, Colige A, Collen D, Lijnen HR (2002) Modulation of adipose tissue expression of murine matrix metalloproteinases and their tissue inhibitors with obesity. Diabetes 51:1093–1101CrossRefPubMed Maquoi E, Munaut C, Colige A, Collen D, Lijnen HR (2002) Modulation of adipose tissue expression of murine matrix metalloproteinases and their tissue inhibitors with obesity. Diabetes 51:1093–1101CrossRefPubMed
25.
Zurück zum Zitat Chavey C, Mari B, Monthouel MN, Bonnafous S, Anglard P, Van Obberghen E, Tartare-Deckert S (2003) Matrix metalloproteinases are differentially expressed in adipose tissue during obesity and modulate adipocyte differentiation. J Biol Chem 278:11888–11896CrossRefPubMed Chavey C, Mari B, Monthouel MN, Bonnafous S, Anglard P, Van Obberghen E, Tartare-Deckert S (2003) Matrix metalloproteinases are differentially expressed in adipose tissue during obesity and modulate adipocyte differentiation. J Biol Chem 278:11888–11896CrossRefPubMed
26.
Zurück zum Zitat Maury E, Ehala-Aleksejev K, Guiot Y, Detry R, Vandenhooft A, Brichard SM (2007) Adipokines oversecreted by omental adipose tissue in human obesity. Am J Physiol Endocrinol Metab 293:E656–E665CrossRefPubMed Maury E, Ehala-Aleksejev K, Guiot Y, Detry R, Vandenhooft A, Brichard SM (2007) Adipokines oversecreted by omental adipose tissue in human obesity. Am J Physiol Endocrinol Metab 293:E656–E665CrossRefPubMed
27.
Zurück zum Zitat Saglam F, Cavdar Z, Sarioglu S, Kolatan E, Oktay G, Yilmaz O, Camsari T (2012) Pioglitazone reduces peritoneal fibrosis via inhibition of TGF-beta, MMP-2, and MMP-9 in a model of encapsulating peritoneal sclerosis. Ren Fail 34:95–102CrossRefPubMed Saglam F, Cavdar Z, Sarioglu S, Kolatan E, Oktay G, Yilmaz O, Camsari T (2012) Pioglitazone reduces peritoneal fibrosis via inhibition of TGF-beta, MMP-2, and MMP-9 in a model of encapsulating peritoneal sclerosis. Ren Fail 34:95–102CrossRefPubMed
28.
Zurück zum Zitat Makino N, Sugano M, Satoh S, Oyama J, Maeda T (2006) Peroxisome proliferator-activated receptor-gamma ligands attenuate brain natriuretic peptide production and affect remodeling in cardiac fibroblasts in reoxygenation after hypoxia. Cell Biochem Biophys 44:65–71CrossRefPubMed Makino N, Sugano M, Satoh S, Oyama J, Maeda T (2006) Peroxisome proliferator-activated receptor-gamma ligands attenuate brain natriuretic peptide production and affect remodeling in cardiac fibroblasts in reoxygenation after hypoxia. Cell Biochem Biophys 44:65–71CrossRefPubMed
29.
Zurück zum Zitat Zafiriou S, Stanners SR, Saad S, Polhill TS, Poronnik P, Pollock CA (2005) Pioglitazone inhibits cell growth and reduces matrix production in human kidney fibroblasts. J Am Soc Nephrol 16:638–645CrossRefPubMed Zafiriou S, Stanners SR, Saad S, Polhill TS, Poronnik P, Pollock CA (2005) Pioglitazone inhibits cell growth and reduces matrix production in human kidney fibroblasts. J Am Soc Nephrol 16:638–645CrossRefPubMed
30.
Zurück zum Zitat Kawaguchi K, Sakaida I, Tsuchiya M, Omori K, Takami T, Okita K (2004) Pioglitazone prevents hepatic steatosis, fibrosis, and enzyme-altered lesions in rat liver cirrhosis induced by a choline-deficient L-amino acid-defined diet. Biochem Biophys Res Commun 315:187–195CrossRefPubMed Kawaguchi K, Sakaida I, Tsuchiya M, Omori K, Takami T, Okita K (2004) Pioglitazone prevents hepatic steatosis, fibrosis, and enzyme-altered lesions in rat liver cirrhosis induced by a choline-deficient L-amino acid-defined diet. Biochem Biophys Res Commun 315:187–195CrossRefPubMed
31.
Zurück zum Zitat Meissburger B, Stachorski L, Roder E, Rudofsky G, Wolfrum C (2011) Tissue inhibitor of matrix metalloproteinase 1 (TIMP1) controls adipogenesis in obesity in mice and in humans. Diabetologia 54:1468–1479CrossRefPubMed Meissburger B, Stachorski L, Roder E, Rudofsky G, Wolfrum C (2011) Tissue inhibitor of matrix metalloproteinase 1 (TIMP1) controls adipogenesis in obesity in mice and in humans. Diabetologia 54:1468–1479CrossRefPubMed
32.
Zurück zum Zitat Kanaze FI, Bounartzi MI, Georgarakis M, Niopas I (2007) Pharmacokinetics of the citrus flavanone aglycones hesperetin and naringenin after single oral administration in human subjects. Eur J Clin Nutr 61:472–477PubMed Kanaze FI, Bounartzi MI, Georgarakis M, Niopas I (2007) Pharmacokinetics of the citrus flavanone aglycones hesperetin and naringenin after single oral administration in human subjects. Eur J Clin Nutr 61:472–477PubMed
33.
Zurück zum Zitat Kulkarni AA, Woeller CF, Thatcher TH, Ramon S, Phipps RP, Sime PJ (2012) Emerging PPARgamma-independent role of PPARgamma ligands in lung diseases. PPAR Res 2012:705352CrossRefPubMedPubMedCentral Kulkarni AA, Woeller CF, Thatcher TH, Ramon S, Phipps RP, Sime PJ (2012) Emerging PPARgamma-independent role of PPARgamma ligands in lung diseases. PPAR Res 2012:705352CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Alam MA, Subhan N, Rahman MM, Uddin SJ, Reza HM, Sarker SD (2014) Effect of citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action. Adv Nutr 5:404–417CrossRefPubMedPubMedCentral Alam MA, Subhan N, Rahman MM, Uddin SJ, Reza HM, Sarker SD (2014) Effect of citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action. Adv Nutr 5:404–417CrossRefPubMedPubMedCentral
Metadaten
Titel
Naringenin interferes with the anti-diabetic actions of pioglitazone via pharmacodynamic interactions
verfasst von
Hiroki Yoshida
Rika Tsuhako
Toshiyuki Atsumi
Keiko Narumi
Wataru Watanabe
Chihiro Sugita
Masahiko Kurokawa
Publikationsdatum
03.12.2016
Verlag
Springer Japan
Erschienen in
Journal of Natural Medicines / Ausgabe 2/2017
Print ISSN: 1340-3443
Elektronische ISSN: 1861-0293
DOI
https://doi.org/10.1007/s11418-016-1063-4

Weitere Artikel der Ausgabe 2/2017

Journal of Natural Medicines 2/2017 Zur Ausgabe