Skip to main content
Erschienen in: Japanese Journal of Ophthalmology 5/2018

02.08.2018 | Laboratory Investigation

Near-infrared and short-wave autofluorescence in ocular specimens

verfasst von: Yasuharu Oguchi, Tetsuju Sekiryu, Mika Takasumi, Yuko Hashimoto, Minoru Furuta

Erschienen in: Japanese Journal of Ophthalmology | Ausgabe 5/2018

Einloggen, um Zugang zu erhalten

Abstract

Purpose

To determine histopathologic characteristics of near-infrared autofluorescence (NIR-AF) and short-wave autofluorescence (SW-AF) in ocular tissue.

Study design

Retrospective study.

Methods

Unstained specimens from four enucleated eyes with uveal melanoma were prepared for evaluation by fluorescence microscopy. The filter settings for SW-AF were 450-490 nm for excitation, 500-550 nm for emission and for NIR-AF 672.5-747.5 nm and 765-855 nm respectively.

Results

Hyper-SW-AF was detected in the cornea, crystalline lens, anterior border layer of the iris, basement membrane of the iris posterior epithelium, retinal pigment epithelium (RPE), Bruch’s membrane, and sclera. Hyper-NIR-AF was detected in pigmented tissues, i.e., iris anterior border layer, iris posterior epithelium, ciliary pigmented epithelium, RPE, pigmented cells in the choroid and pigmented cells in the melanoma tumoral masses. The iris anterior border layer had hyper-SW-AF and hyper-NIR-AF with low magnification. The cells on the iris surface were with hyper-SW-AF; under the iris surface cells with hyper-NIR-AF were detected with high magnification. Both hyper-SW-AF and hyper-NIR-AF were in RPE cells. Pigmented cells with hyper-NIR-AF in other uveal tissues did not have hyper-SW-AF. The pigmented cells in the melanoma tumoral masses had very weak NIR-AF.

Conclusions

NIR-AF was seen in the ocular pigmented tissues. The only pigmented tissue with both hyper-SW-AF and hyper-NIR-AF was RPE, the combination of which might help interpret the cellular components of fundus lesions.
Literatur
1.
Zurück zum Zitat Sparrow JR, Gregory-Roberts E, Yamamoto K, Blonska A, Ghosh SK, Ueda K, et al. The bisretinoids of retinal pigment epithelium. Prog Retin Eye Res. 2012;31:121–35.CrossRefPubMed Sparrow JR, Gregory-Roberts E, Yamamoto K, Blonska A, Ghosh SK, Ueda K, et al. The bisretinoids of retinal pigment epithelium. Prog Retin Eye Res. 2012;31:121–35.CrossRefPubMed
2.
Zurück zum Zitat Lois N, Halfyard AS, Bird AC, Holder GE, Fitzke FW. Fundus autofluorescence in Stargardt macular dystrophy-fundus flavimaculatus. Am J Ophthalmol. 2004;138:55–63.CrossRefPubMed Lois N, Halfyard AS, Bird AC, Holder GE, Fitzke FW. Fundus autofluorescence in Stargardt macular dystrophy-fundus flavimaculatus. Am J Ophthalmol. 2004;138:55–63.CrossRefPubMed
3.
Zurück zum Zitat Robson AG, El-Amir A, Bailey C, Egan CA, Fitzke FW, Webster AR, et al. Pattern ERG correlates of abnormal fundus autofluorescence in patients with retinitis pigmentosa and normal visual acuity. Invest Ophthalmol Vis Sci. 2003;44:3544–50.CrossRefPubMed Robson AG, El-Amir A, Bailey C, Egan CA, Fitzke FW, Webster AR, et al. Pattern ERG correlates of abnormal fundus autofluorescence in patients with retinitis pigmentosa and normal visual acuity. Invest Ophthalmol Vis Sci. 2003;44:3544–50.CrossRefPubMed
4.
Zurück zum Zitat von Ruckmann A, Schmidt KG, Fitzke FW, Bird AC, Jacobi KW. Serous central chorioretinopathy. Acute autofluorescence of the pigment epithelium of the eye. Ophthalmologe: Zeitschrift der Deutschen Ophthalmologischen Gesellschaft. 1999;96:6–10 (in German).CrossRef von Ruckmann A, Schmidt KG, Fitzke FW, Bird AC, Jacobi KW. Serous central chorioretinopathy. Acute autofluorescence of the pigment epithelium of the eye. Ophthalmologe: Zeitschrift der Deutschen Ophthalmologischen Gesellschaft. 1999;96:6–10 (in German).CrossRef
5.
Zurück zum Zitat Eandi CM, Ober M, Iranmanesh R, Peiretti E, Yannuzzi LA. Acute central serous chorioretinopathy and fundus autofluorescence. Retina. 2005;25:989–93.CrossRefPubMed Eandi CM, Ober M, Iranmanesh R, Peiretti E, Yannuzzi LA. Acute central serous chorioretinopathy and fundus autofluorescence. Retina. 2005;25:989–93.CrossRefPubMed
6.
Zurück zum Zitat Framme C, Walter A, Gabler B, Roider J, Sachs HG, Gabel VP. Fundus autofluorescence in acute and chronic-recurrent central serous chorioretinopathy. Acta Ophthalmol Scand. 2005;83:161–7.CrossRefPubMed Framme C, Walter A, Gabler B, Roider J, Sachs HG, Gabel VP. Fundus autofluorescence in acute and chronic-recurrent central serous chorioretinopathy. Acta Ophthalmol Scand. 2005;83:161–7.CrossRefPubMed
7.
Zurück zum Zitat Solbach U, Keilhauer C, Knabben H, Wolf S. Imaging of retinal autofluorescence in patients with age-related macular degeneration. Retina. 1997;17:385–9.CrossRefPubMed Solbach U, Keilhauer C, Knabben H, Wolf S. Imaging of retinal autofluorescence in patients with age-related macular degeneration. Retina. 1997;17:385–9.CrossRefPubMed
8.
Zurück zum Zitat Holz FG, Bellmann C, Margaritidis M, Schutt F, Otto TP, Volcker HE. Patterns of increased in vivo fundus autofluorescence in the junctional zone of geographic atrophy of the retinal pigment epithelium associated with age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 1999;237:145–52.CrossRefPubMed Holz FG, Bellmann C, Margaritidis M, Schutt F, Otto TP, Volcker HE. Patterns of increased in vivo fundus autofluorescence in the junctional zone of geographic atrophy of the retinal pigment epithelium associated with age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 1999;237:145–52.CrossRefPubMed
9.
Zurück zum Zitat Delori FC, Fleckner MR, Goger DG, Weiter JJ, Dorey CK. Autofluorescence distribution associated with drusen in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2000;41:496–504.PubMed Delori FC, Fleckner MR, Goger DG, Weiter JJ, Dorey CK. Autofluorescence distribution associated with drusen in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2000;41:496–504.PubMed
10.
Zurück zum Zitat Keilhauer CN, Delori FC. Near-infrared autofluorescence imaging of the fundus: visualization of ocular melanin. Invest Ophthalmol Vis Sci. 2006;47:3556–64.CrossRefPubMed Keilhauer CN, Delori FC. Near-infrared autofluorescence imaging of the fundus: visualization of ocular melanin. Invest Ophthalmol Vis Sci. 2006;47:3556–64.CrossRefPubMed
11.
Zurück zum Zitat Vallabh NA, Sahni JN, Parkes CK, Czanner G, Heimann H, Damato B. Near-infrared reflectance and autofluorescence imaging characteristics of choroidal nevi. Eye (London, England). 2016;30:1593–7.CrossRef Vallabh NA, Sahni JN, Parkes CK, Czanner G, Heimann H, Damato B. Near-infrared reflectance and autofluorescence imaging characteristics of choroidal nevi. Eye (London, England). 2016;30:1593–7.CrossRef
12.
Zurück zum Zitat Sekiryu T, Iida T, Maruko I, Saito K, Kondo T. Infrared fundus autofluorescence and central serous chorioretinopathy. Invest Ophthalmol Vis Sci. 2010;51:4956–62.CrossRefPubMed Sekiryu T, Iida T, Maruko I, Saito K, Kondo T. Infrared fundus autofluorescence and central serous chorioretinopathy. Invest Ophthalmol Vis Sci. 2010;51:4956–62.CrossRefPubMed
13.
Zurück zum Zitat Eldred GE, Katz ML. Fluorophores of the human retinal pigment epithelium: separation and spectral characterization. Exp Eye Res. 1988;47:71–86.CrossRefPubMed Eldred GE, Katz ML. Fluorophores of the human retinal pigment epithelium: separation and spectral characterization. Exp Eye Res. 1988;47:71–86.CrossRefPubMed
14.
Zurück zum Zitat Helve J, Nieminen H. Autofluorescence of the human diabetic lens in vivo. Am J Ophthalmol. 1976;81:493–4.CrossRefPubMed Helve J, Nieminen H. Autofluorescence of the human diabetic lens in vivo. Am J Ophthalmol. 1976;81:493–4.CrossRefPubMed
15.
Zurück zum Zitat Janiec S, Rzendkowski M, Bolek S. The relation between corneal autofluorescence, endothelial cell count and severity of the diabetic retinopathy. Int Ophthalmol. 1994;18:205–9.CrossRefPubMed Janiec S, Rzendkowski M, Bolek S. The relation between corneal autofluorescence, endothelial cell count and severity of the diabetic retinopathy. Int Ophthalmol. 1994;18:205–9.CrossRefPubMed
17.
Zurück zum Zitat Shields CL, Bianciotto C, Pirondini C, Materin MA, Harmon SA, Shields JA. Autofluorescence of choroidal melanoma in 51 cases. Br J Ophthalmol. 2008;92:617–22.CrossRefPubMed Shields CL, Bianciotto C, Pirondini C, Materin MA, Harmon SA, Shields JA. Autofluorescence of choroidal melanoma in 51 cases. Br J Ophthalmol. 2008;92:617–22.CrossRefPubMed
18.
Zurück zum Zitat Ito S, Wakamatsu K. Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: a comparative review. Pigment Cell Res. 2003;16:523–31.CrossRefPubMed Ito S, Wakamatsu K. Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: a comparative review. Pigment Cell Res. 2003;16:523–31.CrossRefPubMed
19.
Zurück zum Zitat Hu DN, Wakamatsu K, Ito S, McCormick SA. Comparison of eumelanin and pheomelanin content between cultured uveal melanoma cells and normal uveal melanocytes. Melanoma Res. 2009;19:75–9.CrossRefPubMed Hu DN, Wakamatsu K, Ito S, McCormick SA. Comparison of eumelanin and pheomelanin content between cultured uveal melanoma cells and normal uveal melanocytes. Melanoma Res. 2009;19:75–9.CrossRefPubMed
20.
Zurück zum Zitat Krasieva TB, Stringari C, Liu F, Sun CH, Kong Y, Balu M, et al. Two-photon excited fluorescence lifetime imaging and spectroscopy of melanins in vitro and in vivo. J Biomed Opt. 2013;18:31107.CrossRefPubMed Krasieva TB, Stringari C, Liu F, Sun CH, Kong Y, Balu M, et al. Two-photon excited fluorescence lifetime imaging and spectroscopy of melanins in vitro and in vivo. J Biomed Opt. 2013;18:31107.CrossRefPubMed
21.
Zurück zum Zitat Kayatz P, Thumann G, Luther TT, Jordan JF, Bartz-Schmidt KU, Esser PJ, et al. Oxidation causes melanin fluorescence. Invest Ophthalmol Vis Sci. 2001;42:241–6.PubMed Kayatz P, Thumann G, Luther TT, Jordan JF, Bartz-Schmidt KU, Esser PJ, et al. Oxidation causes melanin fluorescence. Invest Ophthalmol Vis Sci. 2001;42:241–6.PubMed
22.
Zurück zum Zitat Hogan MJ, Alvarado JA, Waddell JE. Histology of the human eye. Philadelphia: W.B. Saunders Company; 1971. p. 320–98. Hogan MJ, Alvarado JA, Waddell JE. Histology of the human eye. Philadelphia: W.B. Saunders Company; 1971. p. 320–98.
23.
Zurück zum Zitat Banerjee B, Miedema BE, Chandrasekhar HR. Role of basement membrane collagen and elastin in the autofluorescence spectra of the colon. J Investig Med. 1999;47:326–32.PubMed Banerjee B, Miedema BE, Chandrasekhar HR. Role of basement membrane collagen and elastin in the autofluorescence spectra of the colon. J Investig Med. 1999;47:326–32.PubMed
24.
Zurück zum Zitat Davis AS, Richter A, Becker S, Moyer JE, Sandouk A, Skinner J, et al. Characterizing and diminishing autofluorescence in formalin-fixed paraffin-embedded human respiratory tissue. J Histochem Cytochem. 2014;62:405–23.CrossRefPubMedPubMedCentral Davis AS, Richter A, Becker S, Moyer JE, Sandouk A, Skinner J, et al. Characterizing and diminishing autofluorescence in formalin-fixed paraffin-embedded human respiratory tissue. J Histochem Cytochem. 2014;62:405–23.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Wagnieres GA, Star WM, Wilson BC. In vivo fluorescence spectroscopy and imaging for oncological applications. Photochem Photobiol. 1998;68:603–32.CrossRefPubMed Wagnieres GA, Star WM, Wilson BC. In vivo fluorescence spectroscopy and imaging for oncological applications. Photochem Photobiol. 1998;68:603–32.CrossRefPubMed
26.
Zurück zum Zitat Khandelwal S, Saxena RK. Age-dependent increase in green autofluorescence of blood erythrocytes. J Biosci. 2007;32:1139–45.CrossRefPubMed Khandelwal S, Saxena RK. Age-dependent increase in green autofluorescence of blood erythrocytes. J Biosci. 2007;32:1139–45.CrossRefPubMed
27.
Zurück zum Zitat Uttamlal M, Sheila Holmes-Smith A. The excitation wavelength dependent fluorescence of porphyrins. Chem Phys Lett. 2008;454:223–8.CrossRef Uttamlal M, Sheila Holmes-Smith A. The excitation wavelength dependent fluorescence of porphyrins. Chem Phys Lett. 2008;454:223–8.CrossRef
28.
Zurück zum Zitat Sparrow JR, Marsiglia M, Allikmets R, Tsang S, Lee W, Duncker T, et al. Flecks in recessive Stargardt disease: short-wavelength autofluorescence, near-infrared autofluorescence, and optical coherence tomography. Invest Ophthalmol Vis Sci. 2015;56:5029–39.CrossRefPubMedPubMedCentral Sparrow JR, Marsiglia M, Allikmets R, Tsang S, Lee W, Duncker T, et al. Flecks in recessive Stargardt disease: short-wavelength autofluorescence, near-infrared autofluorescence, and optical coherence tomography. Invest Ophthalmol Vis Sci. 2015;56:5029–39.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Battaglia Parodi M, Iacono P, Falcomata B, Bolognesi G, Bandello F. Near-infrared fundus autofluorescence in multiple evanescent white-dot syndrome. Eur J Ophthalmol. 2015;25:43–6.CrossRefPubMed Battaglia Parodi M, Iacono P, Falcomata B, Bolognesi G, Bandello F. Near-infrared fundus autofluorescence in multiple evanescent white-dot syndrome. Eur J Ophthalmol. 2015;25:43–6.CrossRefPubMed
30.
Zurück zum Zitat Vielkind U, Eberhard P. Normal and malignant melanin-containing pigment cells of xiphophorine fish as studied with formaldehyde-induced fluorescence. J Invest Dermatol. 1978;70:80–3.CrossRefPubMed Vielkind U, Eberhard P. Normal and malignant melanin-containing pigment cells of xiphophorine fish as studied with formaldehyde-induced fluorescence. J Invest Dermatol. 1978;70:80–3.CrossRefPubMed
Metadaten
Titel
Near-infrared and short-wave autofluorescence in ocular specimens
verfasst von
Yasuharu Oguchi
Tetsuju Sekiryu
Mika Takasumi
Yuko Hashimoto
Minoru Furuta
Publikationsdatum
02.08.2018
Verlag
Springer Japan
Erschienen in
Japanese Journal of Ophthalmology / Ausgabe 5/2018
Print ISSN: 0021-5155
Elektronische ISSN: 1613-2246
DOI
https://doi.org/10.1007/s10384-018-0614-5

Weitere Artikel der Ausgabe 5/2018

Japanese Journal of Ophthalmology 5/2018 Zur Ausgabe

Neu im Fachgebiet Augenheilkunde

Update Augenheilkunde

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.