Skip to main content
Erschienen in: Inflammation 6/2017

27.07.2017 | ORIGINAL ARTICLE

Necrostatin-1 Protects Against d-Galactosamine and Lipopolysaccharide-Induced Hepatic Injury by Preventing TLR4 and RAGE Signaling

verfasst von: Seok-Joo Kim, Sun-Mee Lee

Erschienen in: Inflammation | Ausgabe 6/2017

Einloggen, um Zugang zu erhalten

Abstract

Fulminant hepatic failure (FHF) is a life-threatening clinical syndrome results in massive inflammation and hepatocyte death. Necroptosis is a regulated form of necrotic cell death that is emerging as a crucial control point for inflammatory diseases. The kinases receptor interacting protein (RIP) 1 and RIP3 are known as key modulators of necroptosis. In this study, we investigated the impact of necroptosis in the pathogenesis of FHF and molecular mechanisms, particularly its linkage to damage-associated molecular pattern (DAMP)-mediated pattern recognition receptor (PRR) signaling pathways. Male C57BL/6 mice were given an intraperitoneal injection of necrostatin-1 (Nec-1, RIP1 inhibitor; 1.8 mg/kg; dissolved in 2% dimethyl sulfoxide in phosphate-buffered saline) 1 h before receiving d-galactosamine (GalN; 800 mg/kg)/lipopolysaccharide (LPS; 40 μg/kg). Hepatic RIP1, RIP3 protein expression, their phosphorylation, and RIP1/RIP3 complex formation upregulated in the GalN/LPS group were attenuated by Nec-1. Nec-1 markedly reduced the increases in mortality and serum alanine aminotransferase activity induced by GalN/LPS. Increased serum high mobility group box 1 (HMGB1) and interleukin (IL)-33 release, HMGB1-toll-like receptor 4 and HMGB1-receptor for advanced glycation end products (RAGE) interaction, and nuclear protein expressions of NF-κB and early growth response protein-1 (egr-1) were attenuated by Nec-1. Our finding suggests that necroptosis is responsible for GalN/LPS-induced liver injury through DAMP-activated PRR signaling.
Literatur
1.
Zurück zum Zitat Micheau, O., and J. Tschopp. 2003. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114 (2): 181–190.CrossRefPubMed Micheau, O., and J. Tschopp. 2003. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114 (2): 181–190.CrossRefPubMed
3.
Zurück zum Zitat Vandenabeele, P., L. Galluzzi, T. Vanden Berghe, and G. Kroemer. 2010. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nature Reviews. Molecular Cell Biology 11 (10): 700–714. doi:10.1038/nrm2970.CrossRefPubMed Vandenabeele, P., L. Galluzzi, T. Vanden Berghe, and G. Kroemer. 2010. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nature Reviews. Molecular Cell Biology 11 (10): 700–714. doi:10.​1038/​nrm2970.CrossRefPubMed
4.
Zurück zum Zitat Degterev, A., Z. Huang, M. Boyce, Y. Li, P. Jagtap, N. Mizushima, G.D. Cuny, T.J. Mitchison, M.A. Moskowitz, and J. Yuan. 2005. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nature Chemical Biology 1 (2): 112–119. doi:10.1038/nchembio711.CrossRefPubMed Degterev, A., Z. Huang, M. Boyce, Y. Li, P. Jagtap, N. Mizushima, G.D. Cuny, T.J. Mitchison, M.A. Moskowitz, and J. Yuan. 2005. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nature Chemical Biology 1 (2): 112–119. doi:10.​1038/​nchembio711.CrossRefPubMed
6.
Zurück zum Zitat Oerlemans, M.I., J. Liu, F. Arslan, K. den Ouden, B.J. van Middelaar, P.A. Doevendans, and J.P. Sluijter. 2012. Inhibition of RIP1-dependent necrosis prevents adverse cardiac remodeling after myocardial ischemia-reperfusion in vivo. Basic Research in Cardiology 107 (4): 270–278. doi:10.1007/s00395-012-0270-8.CrossRefPubMed Oerlemans, M.I., J. Liu, F. Arslan, K. den Ouden, B.J. van Middelaar, P.A. Doevendans, and J.P. Sluijter. 2012. Inhibition of RIP1-dependent necrosis prevents adverse cardiac remodeling after myocardial ischemia-reperfusion in vivo. Basic Research in Cardiology 107 (4): 270–278. doi:10.​1007/​s00395-012-0270-8.CrossRefPubMed
7.
Zurück zum Zitat Xu, X., C.C. Chua, J. Kong, R.M. Kostrzewa, U. Kumaraguru, R.C. Hamdy, and B.H. Chua. 2007. Necrostatin-1 protects against glutamate-induced glutathione depletion and caspase-independent cell death in HT-22 cells. Journal of Neurochemistry 103 (5): 2004–2014. doi:10.1111/j.1471- 4159.2007.04884.x.CrossRefPubMed Xu, X., C.C. Chua, J. Kong, R.M. Kostrzewa, U. Kumaraguru, R.C. Hamdy, and B.H. Chua. 2007. Necrostatin-1 protects against glutamate-induced glutathione depletion and caspase-independent cell death in HT-22 cells. Journal of Neurochemistry 103 (5): 2004–2014. doi:10.​1111/​j.​1471- 4159.​2007.​04884.​x.CrossRefPubMed
8.
Zurück zum Zitat Jouan-Lanhouet, S., M.I. Arshad, C. Piquet-Pellorce, C. Martin-Chouly, G. Le Moigne-Muller, F. Van Herreweghe, N. Takahashi, et al. 2012. TRAIL induces necroptosis involving RIPK1/RIPK3-dependent PARP-1 activation. Cell Death and Differentiation 19: 2003–2014. doi:10.1038/cdd.2012.90.CrossRefPubMedPubMedCentral Jouan-Lanhouet, S., M.I. Arshad, C. Piquet-Pellorce, C. Martin-Chouly, G. Le Moigne-Muller, F. Van Herreweghe, N. Takahashi, et al. 2012. TRAIL induces necroptosis involving RIPK1/RIPK3-dependent PARP-1 activation. Cell Death and Differentiation 19: 2003–2014. doi:10.​1038/​cdd.​2012.​90.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Zhou, Y., W. Dai, C. Lin, F. Wang, L. He, M. Shen, P. Chen, et al. 2013. Protective effects of necrostatin-1 against concanavalin A-induced acute hepatic injury in mice. Mediators of Inflammation 2013: 706156. doi:10.1155/2013/706156.PubMedPubMedCentral Zhou, Y., W. Dai, C. Lin, F. Wang, L. He, M. Shen, P. Chen, et al. 2013. Protective effects of necrostatin-1 against concanavalin A-induced acute hepatic injury in mice. Mediators of Inflammation 2013: 706156. doi:10.​1155/​2013/​706156.PubMedPubMedCentral
10.
Zurück zum Zitat Zhang, Y.F., W. He, C. Zhang, X.J. Liu, Y. Lu, H. Wang, Z.H. Zhang, X. Chen, and D.X. Xu. 2014. Role of receptor interacting protein (RIP)1 on apoptosis-inducing factor-mediated necroptosis during acetaminophen-evoked acute liver failure in mice. Toxicology Letters 225 (3): 445–453. doi:10.1016/j.toxlet.2014.01.005.CrossRefPubMed Zhang, Y.F., W. He, C. Zhang, X.J. Liu, Y. Lu, H. Wang, Z.H. Zhang, X. Chen, and D.X. Xu. 2014. Role of receptor interacting protein (RIP)1 on apoptosis-inducing factor-mediated necroptosis during acetaminophen-evoked acute liver failure in mice. Toxicology Letters 225 (3): 445–453. doi:10.​1016/​j.​toxlet.​2014.​01.​005.CrossRefPubMed
12.
Zurück zum Zitat Ramachandran, A., M.R. McGill, Y. Xie, H.M. Ni, W.X. Ding, and H. Jaeschke. 2013. Receptor interacting protein kinase 3 is a critical early mediator of acetaminophen-induced hepatocyte necrosis in mice. Hepatology 58 (6): 2099–2108. doi:10.1002/hep.26547.CrossRefPubMed Ramachandran, A., M.R. McGill, Y. Xie, H.M. Ni, W.X. Ding, and H. Jaeschke. 2013. Receptor interacting protein kinase 3 is a critical early mediator of acetaminophen-induced hepatocyte necrosis in mice. Hepatology 58 (6): 2099–2108. doi:10.​1002/​hep.​26547.CrossRefPubMed
14.
Zurück zum Zitat Lau, A., S. Wang, J. Jiang, A. Haig, A. Pavlosky, A. Linkermann, Z.X. Zhang, and A.M. Jevnikar. 2013. RIPK3-mediated necroptosis promotes donor kidney inflammatory injury and reduces allograft survival. American Journal of Transplantation 13 (11): 2805–2818. doi:10.1111/ajt.12447.CrossRefPubMed Lau, A., S. Wang, J. Jiang, A. Haig, A. Pavlosky, A. Linkermann, Z.X. Zhang, and A.M. Jevnikar. 2013. RIPK3-mediated necroptosis promotes donor kidney inflammatory injury and reduces allograft survival. American Journal of Transplantation 13 (11): 2805–2818. doi:10.​1111/​ajt.​12447.CrossRefPubMed
15.
Zurück zum Zitat Murakami, Y., H. Matsumoto, M. Roh, A. Giani, K. Kataoka, Y. Morizane, M. Kayama, et al. 2014. Programmed necrosis, not apoptosis, is a key mediator of cell loss and DAMP-mediated inflammation in dsRNA-induced retinal degeneration. Cell Death and Differentiation 21 (2): 270–277. doi:10.1038/cdd.2013.109.CrossRefPubMed Murakami, Y., H. Matsumoto, M. Roh, A. Giani, K. Kataoka, Y. Morizane, M. Kayama, et al. 2014. Programmed necrosis, not apoptosis, is a key mediator of cell loss and DAMP-mediated inflammation in dsRNA-induced retinal degeneration. Cell Death and Differentiation 21 (2): 270–277. doi:10.​1038/​cdd.​2013.​109.CrossRefPubMed
16.
Zurück zum Zitat He, S., Y. Liang, F. Shao, and X. Wang. 2011. Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway. Proceedings of the National Academy of Sciences of the United States of America 108 (50): 20054–20059. doi:10.1073/pnas.1116302108.CrossRefPubMedPubMedCentral He, S., Y. Liang, F. Shao, and X. Wang. 2011. Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway. Proceedings of the National Academy of Sciences of the United States of America 108 (50): 20054–20059. doi:10.​1073/​pnas.​1116302108.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Zeng, S., H. Dun, N. Ippagunta, R. Rosario, Q.Y. Zhang, J. Lefkowitch, S.F. Yan, A.M. Schmidt, and J.C. Emond. 2009. Receptor for advanced glycation end product (RAGE)-dependent modulation of early growth response-1 in hepatic ischemia/reperfusion injury. Journal of Hepatology 50 (5): 929–936. doi:10.1016/j.jhep.2008.11.022.CrossRefPubMed Zeng, S., H. Dun, N. Ippagunta, R. Rosario, Q.Y. Zhang, J. Lefkowitch, S.F. Yan, A.M. Schmidt, and J.C. Emond. 2009. Receptor for advanced glycation end product (RAGE)-dependent modulation of early growth response-1 in hepatic ischemia/reperfusion injury. Journal of Hepatology 50 (5): 929–936. doi:10.​1016/​j.​jhep.​2008.​11.​022.CrossRefPubMed
23.
Zurück zum Zitat Remijsen, Q., V. Goossens, S. Grootjans, C. Van den Haute, N. Vanlangenakker, Y. Dondelinger, R. Roelandt, et al. 2014. Depletion of RIPK3 or MLKL blocks TNF-driven necroptosis and switches towards a delayed RIPK1 kinase-dependent apoptosis. Cell Death and Disease 5: e1004. doi:10.1038/cddis.2013.531.CrossRefPubMedPubMedCentral Remijsen, Q., V. Goossens, S. Grootjans, C. Van den Haute, N. Vanlangenakker, Y. Dondelinger, R. Roelandt, et al. 2014. Depletion of RIPK3 or MLKL blocks TNF-driven necroptosis and switches towards a delayed RIPK1 kinase-dependent apoptosis. Cell Death and Disease 5: e1004. doi:10.​1038/​cddis.​2013.​531.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Murphy, J.M., P.E. Czabotar, J.M. Hildebrand, I.S. Lucet, J.G. Zhang, S. Alvarez-Diaz, R. Lewis, et al. 2016. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 39 (3): 443–453. doi:10.1016/j.immuni.2013.06.018.CrossRef Murphy, J.M., P.E. Czabotar, J.M. Hildebrand, I.S. Lucet, J.G. Zhang, S. Alvarez-Diaz, R. Lewis, et al. 2016. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 39 (3): 443–453. doi:10.​1016/​j.​immuni.​2013.​06.​018.CrossRef
25.
Zurück zum Zitat Afonso, M.B., P.M. Rodrigues, T. Carvalho, M. Caridade, P. Borralho, H. Cortez-Pinto, R.E. Castro, and C.M.P. Rodrigues. 2015. Necroptosis is a key pathogenic event in human and experimental murine models of non-alcoholic steatohepatitis. Clinical Science 129 (8): 721–739. doi:10.1042/CS20140732.CrossRefPubMed Afonso, M.B., P.M. Rodrigues, T. Carvalho, M. Caridade, P. Borralho, H. Cortez-Pinto, R.E. Castro, and C.M.P. Rodrigues. 2015. Necroptosis is a key pathogenic event in human and experimental murine models of non-alcoholic steatohepatitis. Clinical Science 129 (8): 721–739. doi:10.​1042/​CS20140732.CrossRefPubMed
26.
Zurück zum Zitat Morikawa, A., T. Sugiyama, Y. Kato, N. Koide, G.Z. Jiang, K. Takahashi, Y. Tamada, and T. Yokochi. 1996. Apoptotic cell death in the response of D-galactosamine-sensitized mice to lipopolysaccharide as an experimental endotoxic shock model. Infection and Immunity 64 (3): 734–738.PubMedPubMedCentral Morikawa, A., T. Sugiyama, Y. Kato, N. Koide, G.Z. Jiang, K. Takahashi, Y. Tamada, and T. Yokochi. 1996. Apoptotic cell death in the response of D-galactosamine-sensitized mice to lipopolysaccharide as an experimental endotoxic shock model. Infection and Immunity 64 (3): 734–738.PubMedPubMedCentral
27.
Zurück zum Zitat Bahjat, F.R., V.R. Dharnidharka, K. Fukuzuka, L. Morel, J.M. Crawford, M.J. Clare-Salzler, and L.L. Moldawer. 2000. Reduced susceptibility of nonobese diabetic mice to TNF-alpha and D-galactosamine-mediated hepatocellular apoptosis and lethality. Journal of Immunology 165 (11): 6559–6567.CrossRef Bahjat, F.R., V.R. Dharnidharka, K. Fukuzuka, L. Morel, J.M. Crawford, M.J. Clare-Salzler, and L.L. Moldawer. 2000. Reduced susceptibility of nonobese diabetic mice to TNF-alpha and D-galactosamine-mediated hepatocellular apoptosis and lethality. Journal of Immunology 165 (11): 6559–6567.CrossRef
28.
Zurück zum Zitat Nowak, M., G.C. Gaines, J. Rosenberg, R. Minter, F.R. Bahjat, J. Rectenwald, S.L. MacKay, C.K. Edwards, and L.L. Moldawer. 2000. LPS-induced liver injury in D-galactosamine-sensitized mice requires secreted TNF-alpha and the TNF-p55 receptor. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 278 (5): 1202–1209. Nowak, M., G.C. Gaines, J. Rosenberg, R. Minter, F.R. Bahjat, J. Rectenwald, S.L. MacKay, C.K. Edwards, and L.L. Moldawer. 2000. LPS-induced liver injury in D-galactosamine-sensitized mice requires secreted TNF-alpha and the TNF-p55 receptor. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 278 (5): 1202–1209.
29.
Zurück zum Zitat Takahashi, N., L. Vereecke, M.J. Bertrand, L. Duprez, S.B. Berger, T. Divert, A. Gonçalves, et al. 2014. RIPK1 ensures intestinal homeostasis by protecting the epithelium against apoptosis. Nature 513 (7516): 95–99. doi:10.1038/nature13706.CrossRefPubMed Takahashi, N., L. Vereecke, M.J. Bertrand, L. Duprez, S.B. Berger, T. Divert, A. Gonçalves, et al. 2014. RIPK1 ensures intestinal homeostasis by protecting the epithelium against apoptosis. Nature 513 (7516): 95–99. doi:10.​1038/​nature13706.CrossRefPubMed
30.
Zurück zum Zitat Suda, J., L. Dara, L. Yang, M. Aghajan, Y. Song, N. Kaplowitz, and Z.X. Liu. 2016. Knockdown of RIPK1 markedly exacerbates murine immune-mediated liver injury through massive apoptosis of hepatocytes, independent of necroptosis and inhibition of NF-κB. Journal of Immunology 197 (8): 3120–3129. doi:10.4049/jimmunol.1600690.CrossRef Suda, J., L. Dara, L. Yang, M. Aghajan, Y. Song, N. Kaplowitz, and Z.X. Liu. 2016. Knockdown of RIPK1 markedly exacerbates murine immune-mediated liver injury through massive apoptosis of hepatocytes, independent of necroptosis and inhibition of NF-κB. Journal of Immunology 197 (8): 3120–3129. doi:10.​4049/​jimmunol.​1600690.CrossRef
31.
Zurück zum Zitat Filliol, A., C. Piquet-Pellorce, C. Raguénès-Nicol, S. Dion, M. Farooq, C. Lucas-Clerc, P. Vandenabeele, M.J.M. Bertrand, J. Le Seyec, and M. Samson. 2017. RIPK1 protects hepatocytes from Kupffer cells-mediated TNF-induced apoptosis in mouse models of PAMP-induced hepatitis. Journal of Hepatology 66 (6): 1205–1213. doi:10.1016/j.jhep.2017.01.005.CrossRefPubMed Filliol, A., C. Piquet-Pellorce, C. Raguénès-Nicol, S. Dion, M. Farooq, C. Lucas-Clerc, P. Vandenabeele, M.J.M. Bertrand, J. Le Seyec, and M. Samson. 2017. RIPK1 protects hepatocytes from Kupffer cells-mediated TNF-induced apoptosis in mouse models of PAMP-induced hepatitis. Journal of Hepatology 66 (6): 1205–1213. doi:10.​1016/​j.​jhep.​2017.​01.​005.CrossRefPubMed
34.
Zurück zum Zitat Chen, G., J. Li, M. Ochani, B. Rendon-Mitchell, X. Qiang, S. Susarla, L. Ulloa, et al. 2004. Bacterial endotoxin stimulates macrophages to release HMGB1 partly through CD14- and TNF-dependent mechanisms. Journal of Leukocyte Biology 76 (5): 994–1001. doi:10.1189/jlb.0404242.CrossRefPubMed Chen, G., J. Li, M. Ochani, B. Rendon-Mitchell, X. Qiang, S. Susarla, L. Ulloa, et al. 2004. Bacterial endotoxin stimulates macrophages to release HMGB1 partly through CD14- and TNF-dependent mechanisms. Journal of Leukocyte Biology 76 (5): 994–1001. doi:10.​1189/​jlb.​0404242.CrossRefPubMed
36.
Zurück zum Zitat Pavlosky, A., A. Lau, Y. Su, D. Lian, X. Huang, Z. Yin, A. Haig, A.M. Jevnikar, and Z.X. Zhang. 2014. RIPK3-mediated necroptosis regulates cardiac allograft rejection. American Journal of Transplantation 14 (8): 1778–1790. doi:10.1111/ajt.12779.CrossRefPubMed Pavlosky, A., A. Lau, Y. Su, D. Lian, X. Huang, Z. Yin, A. Haig, A.M. Jevnikar, and Z.X. Zhang. 2014. RIPK3-mediated necroptosis regulates cardiac allograft rejection. American Journal of Transplantation 14 (8): 1778–1790. doi:10.​1111/​ajt.​12779.CrossRefPubMed
37.
Zurück zum Zitat Qing, D.Y., D. Conegliano, M.G. Shashaty, J. Seo, J.P. Reilly, G.S. Worthen, D. Huh, N.J. Meyer, and N.S. Mangalmurti. 2014. Red blood cells induce necroptosis of lung endothelial cells and increase susceptibility to lung inflammation. American Journal of Respiratory and Critical Care Medicine 190 (11): 1243–1254. doi:10.1164/rccm.201406-1095OC.CrossRefPubMedPubMedCentral Qing, D.Y., D. Conegliano, M.G. Shashaty, J. Seo, J.P. Reilly, G.S. Worthen, D. Huh, N.J. Meyer, and N.S. Mangalmurti. 2014. Red blood cells induce necroptosis of lung endothelial cells and increase susceptibility to lung inflammation. American Journal of Respiratory and Critical Care Medicine 190 (11): 1243–1254. doi:10.​1164/​rccm.​201406-1095OC.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Lefrancais, E., and C. Cayrol. 2012. Mechanisms of IL-33 processing and secretion: differences and similarities between IL-1 family members. European Cytokine Network 23 (4): 120–127. doi:10.1684/ecn.2012.0320.PubMed Lefrancais, E., and C. Cayrol. 2012. Mechanisms of IL-33 processing and secretion: differences and similarities between IL-1 family members. European Cytokine Network 23 (4): 120–127. doi:10.​1684/​ecn.​2012.​0320.PubMed
41.
Zurück zum Zitat Arshad, M.I., C. Piquet-Pellorce, A. Filliol, A. L’Helgoualc’h, C. Lucas-Clerc, S. Jouan-Lanhouet, M.T. Dimanche-Boitrel, and M. Samson. 2015. The chemical inhibitors of cellular death, PJ34 and necrostatin-1, down-regulate IL-33 expression in liver. Journal of Molecular Medicine 93 (8): 867–878. doi:10.1007/s00109-015-1270-6.CrossRefPubMed Arshad, M.I., C. Piquet-Pellorce, A. Filliol, A. L’Helgoualc’h, C. Lucas-Clerc, S. Jouan-Lanhouet, M.T. Dimanche-Boitrel, and M. Samson. 2015. The chemical inhibitors of cellular death, PJ34 and necrostatin-1, down-regulate IL-33 expression in liver. Journal of Molecular Medicine 93 (8): 867–878. doi:10.​1007/​s00109-015-1270-6.CrossRefPubMed
42.
Zurück zum Zitat Liu, Z.Y., B. Wu, Y.S. Guo, Y.H. Zhou, Z.G. Fu, B.Q. Xu, J.H. Li, et al. 2015. Necrostatin-1 reduces intestinal inflammation and colitis-associated tumorigenesis in mice. American Journal of Cancer Research 5 (10): 3174–3185.PubMedPubMedCentral Liu, Z.Y., B. Wu, Y.S. Guo, Y.H. Zhou, Z.G. Fu, B.Q. Xu, J.H. Li, et al. 2015. Necrostatin-1 reduces intestinal inflammation and colitis-associated tumorigenesis in mice. American Journal of Cancer Research 5 (10): 3174–3185.PubMedPubMedCentral
46.
Zurück zum Zitat Duprez, L., N. Takahashi, F. Van Hauwermeiren, B. Vandendriessche, V. Goossens, T. Vanden Berghe, W. Declercq, C. Libert, A. Cauwels, and P. Vandenabeele. 2011. RIP kinase-dependent necrosis drives lethal systemic inflammatory response syndrome. Immunity 35 (6): 908–918. doi:10.1016/j.immuni.2011.09.020.CrossRefPubMed Duprez, L., N. Takahashi, F. Van Hauwermeiren, B. Vandendriessche, V. Goossens, T. Vanden Berghe, W. Declercq, C. Libert, A. Cauwels, and P. Vandenabeele. 2011. RIP kinase-dependent necrosis drives lethal systemic inflammatory response syndrome. Immunity 35 (6): 908–918. doi:10.​1016/​j.​immuni.​2011.​09.​020.CrossRefPubMed
52.
Zurück zum Zitat Huebener, P., J.P. Pradere, C. Hernandez, G.Y. Gwak, J.M. Caviglia, X. Mu, J.D. Loike, R.E. Jenkins, D.J. Antoine, and R.F. Schwabe. 2015. The HMGB1/RAGE axis triggers neutrophil-mediated injury amplification following necrosis. Journal of Clinical Investigation 125 (2): 539–550. doi:10.1172/JCI76887.CrossRefPubMed Huebener, P., J.P. Pradere, C. Hernandez, G.Y. Gwak, J.M. Caviglia, X. Mu, J.D. Loike, R.E. Jenkins, D.J. Antoine, and R.F. Schwabe. 2015. The HMGB1/RAGE axis triggers neutrophil-mediated injury amplification following necrosis. Journal of Clinical Investigation 125 (2): 539–550. doi:10.​1172/​JCI76887.CrossRefPubMed
53.
Zurück zum Zitat Kuhla, A., J. Norden, K. Abshagen, M.D. Menger, and B. Vollmar. 2013. RAGE blockade and hepatic microcirculation in experimental endotoxaemic liver failure. British Journal of Surgery 100 (9): 1229–1239. doi:10.1002/bjs.9188.CrossRefPubMed Kuhla, A., J. Norden, K. Abshagen, M.D. Menger, and B. Vollmar. 2013. RAGE blockade and hepatic microcirculation in experimental endotoxaemic liver failure. British Journal of Surgery 100 (9): 1229–1239. doi:10.​1002/​bjs.​9188.CrossRefPubMed
54.
Zurück zum Zitat Matsumura, T., A. Ito, T. Takii, H. Hayashi, and K. Onozaki. 2000. Endotoxin and cytokine regulation of toll-like receptor (TLR) 2 and TLR4 gene expression in murine liver and hepatocytes. Journal of Interferon & Cytokine Research 20 (10): 915–921. doi:10.1089/10799900050163299.CrossRef Matsumura, T., A. Ito, T. Takii, H. Hayashi, and K. Onozaki. 2000. Endotoxin and cytokine regulation of toll-like receptor (TLR) 2 and TLR4 gene expression in murine liver and hepatocytes. Journal of Interferon & Cytokine Research 20 (10): 915–921. doi:10.​1089/​1079990005016329​9.CrossRef
55.
Zurück zum Zitat Cho, H.I., J.M. Hong, J.W. Choi, H.S. Choi, J.H. Kwak, D.W. Lee, S.K. Lee, and S.M. Lee. 2015. β-Caryophyllene alleviates D-galactosamine and lipopolysaccharide-induced hepatic injury through suppression of the TLR4 and RAGE signaling pathways. European Journal of Pharmacology 764: 613–621. doi:10.1016/j.ejphar.2015.08.001.CrossRefPubMed Cho, H.I., J.M. Hong, J.W. Choi, H.S. Choi, J.H. Kwak, D.W. Lee, S.K. Lee, and S.M. Lee. 2015. β-Caryophyllene alleviates D-galactosamine and lipopolysaccharide-induced hepatic injury through suppression of the TLR4 and RAGE signaling pathways. European Journal of Pharmacology 764: 613–621. doi:10.​1016/​j.​ejphar.​2015.​08.​001.CrossRefPubMed
56.
Zurück zum Zitat Kitazawa, T., T. Tsujimoto, H. Kawaratani, and H. Fukui. 2010. Salvage effect of E5564, Toll-like receptor 4 antagonist on D-galactosamine and lipopolysaccharide-induced acute liver failure in rats. Journal of Gastroenterology and Hepatology 25 (5): 1009–1012. doi:10.1111/j.1440-1746.2009.06145.x.CrossRefPubMed Kitazawa, T., T. Tsujimoto, H. Kawaratani, and H. Fukui. 2010. Salvage effect of E5564, Toll-like receptor 4 antagonist on D-galactosamine and lipopolysaccharide-induced acute liver failure in rats. Journal of Gastroenterology and Hepatology 25 (5): 1009–1012. doi:10.​1111/​j.​1440-1746.​2009.​06145.​x.CrossRefPubMed
57.
Zurück zum Zitat Ben Ari, Z., O. Avlas, O. Pappo, V. Zilbermints, Y. Cheporko, L. Bachmetov, R. Zemel, et al. 2012. Reduced hepatic injury in Toll-like receptor 4-deficient mice following D-galactosamine/lipopolysaccharide-induced fulminant hepatic failure. Cellular Physiology and Biochemistry 29 (1–2): 41–50. doi:10.1159/000337585.CrossRefPubMed Ben Ari, Z., O. Avlas, O. Pappo, V. Zilbermints, Y. Cheporko, L. Bachmetov, R. Zemel, et al. 2012. Reduced hepatic injury in Toll-like receptor 4-deficient mice following D-galactosamine/lipopolysaccharide-induced fulminant hepatic failure. Cellular Physiology and Biochemistry 29 (1–2): 41–50. doi:10.​1159/​000337585.CrossRefPubMed
Metadaten
Titel
Necrostatin-1 Protects Against d-Galactosamine and Lipopolysaccharide-Induced Hepatic Injury by Preventing TLR4 and RAGE Signaling
verfasst von
Seok-Joo Kim
Sun-Mee Lee
Publikationsdatum
27.07.2017
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 6/2017
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-017-0632-3

Weitere Artikel der Ausgabe 6/2017

Inflammation 6/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.