Skip to main content
Erschienen in: Molecular Cancer 1/2010

Open Access 01.12.2010 | Research

Nerve growth factor promotes breast cancer angiogenesis by activating multiple pathways

verfasst von: Rodrigue Romon, Eric Adriaenssens, Chann Lagadec, Emmanuelle Germain, Hubert Hondermarck, Xuefen Le Bourhis

Erschienen in: Molecular Cancer | Ausgabe 1/2010

Abstract

Background

Although several anti-angiogenic therapies have been approved in the treatment of cancer, the survival benefits of such therapies are relatively modest. Discovering new molecules and/or better understating signaling pathways of angiogenesis is therefore essential for therapeutic improvements. The objective of the present study was to determine the involvement of nerve growth factor (NGF) in breast cancer angiogenesis and the underlying molecular mechanisms.

Results

We showed that both recombinant NGF and NGF produced by breast cancer cells stimulated angiogenesis in Matrigel plugs in immunodeficient mice. NGF strongly increased invasion, cord formation and the monolayer permeability of endothelial cells. Moreover, NGF-stimulated invasion was under the control of its tyrosine kinase receptor (TrkA) and downstream signaling pathways such as PI3K and ERK, leading to the activation of matrix metalloprotease 2 and nitric oxide synthase. Interestingly, NGF increased the secretion of VEGF in both endothelial and breast cancer cells. Inhibition of VEGF, with a neutralizing antibody, reduced about half of NGF-induced endothelial cell invasion and angiogenesis in vivo.

Conclusions

Our findings provided direct evidence that NGF could be an important stimulator for breast cancer angiogenesis. Thus, NGF, as well as the activated signaling pathways, should be regarded as potential new targets for anti-angiogenic therapy against breast cancer.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1476-4598-9-157) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

RR carried out the cell biology studies, performed the statistical analysis and participated in the draft of the manuscript; EA performed the in vivo studies and participated in the design of the study; CL participated in the cell biology studies and critically read the manuscript; EG participated in the in vivo studies and critically read the manuscript; HH participated in the design of the study and revised the manuscript; XLB conceived of the study, participated in its coordination and drafted the manuscript.
All authors read and approved the final manuscript.

Background

It is well established that tumor growth beyond the size of 1-2 mm is dependent upon angiogenesis [1]. This process is regulated by numerous proangiogenic factors which are secreted by tumor or surrounding stromal cells. Among these proangiogenic factors, vascular endothelial growth factor (VEGF) plays a pivotal role in tumor angiogenesis. VEGF promotes angiogenesis via its ability to stimulate permeability, growth, migration and invasion of endothelial cells, and to mobilize endothelial precursor cells from bone marrow [24]. Inhibition of VEGF reduces angiogenesis and tumor growth in vivo [5]. Conversely, VEGF overexpression is associated with increased microvessel density, tumor metastasis, and poor prognosis [68]. Among several VEGF isoforms, VEGF-A is the most predominant angiogenic factor, as its level is strongly associated with tumor progression and poor clinical outcome in many types of cancers including breast cancer [911].
NGF has been studied most extensively for its role in regulating growth, development, survival and regeneration of the nervous system. NGF exerts its effects through two membrane receptors: the tyrosine kinase receptor TrkA and the neurotrophin receptor p75NTR, a common receptor for all neurotrophins and pro-neurotrophins. NGF binding to TrkA induces TrkA receptor dimerisation and autophosphorylation of cytoplasmic tyrosines, leading to the activation of various signaling pathways, including Ras/MAPK, PLCγ, and PI3K/Akt [12, 13]. NGF has also been reported to promote angiogenesis and/or induces the expression of proangiogenic molecules in several tissues, such as muscle and cornea [1416]. On the other hand, NGF has been increasingly described to regulate tumor growth and progression of non-neuronal cancers including medullar thyroid carcinoma [17], lung [18], pancreatic [19], prostatic [20] and breast carcinomas [2123]. In breast cancers, we have previously shown that NGF and its tyrosine kinase receptor TrkA are overexpressed compared to normal breast tissues [24, 25]. Inhibition of NGF with neutralizing antibodies, or small interfering RNA, strongly reduces angiogenesis and tumor development in immunodeficient mice [24]. Conversely, TrkA overexpression in breast cancer cells leads to a constitutive activation of its tyrosine kinase, resulting in increased tumorigenicity as well as enhanced angiogenesis [25]. Similar link between NGF and angiogenesis has also been suggested in ovarian carcinomas [26].
The objective of the present study was to better determine the possible involvement of NGF in breast cancer angiogenesis, as well as the underlying molecular mechanisms. We showed that NGF secreted by breast cancer cells could stimulate tumor angiogenesis in vivo. NGF increased growth, migration, invasion, tubular formation and permeability of endothelial cells. We also demonstrated the involvement of multiple pathways such as PI3K-Akt, ERK, MMP2, and NO synthase as well as the role of VEGF in the angiogenic effect of NGF.

Materials and Methods

Reagents

Human recombinant NGF and VEGF, neutralizing antibodies against NGF, VEGF and the corresponding isotype control antibodies were purchased from R&D Systems. Growth factor-reduced Matrigel was from BD Biosciences. Cleavage resistant proNGF was from Alomone (Israël).

Cell Culture

Human umbilical vein endothelial cells (HUVEC) from Lonza were a pool derived from 3 donors. Cells were maintained at 37°C with humidified 95% air/5% CO2 in endothelial growth medium (EGM) containing 2% fetal bovine serum (FBS) and other compounds of the EGM singlequots provided with the medium (Lonza). For different experiments, HUVEC were cultured in starved medium composed of endothelial basal medium (EBM) containing 0.5% FBS and GA-1000 (provided in the EGM singlequots). MDA-MB-231 human breast cancer cells from American Type Culture Collection were maintained in Minimal Essential Medium (MEM) supplemented with 20 mM HEPES, 2 g/l sodium bicarbonate, 2 mM L-glutamine, 1% of non-essential amino acids, 10% fetal calf serum (FCS).

In vivo Angiogenesis

Six-week-old female severe combined immunodeficient (SCID) mice were from Institut Pasteur de Lille, France. Mice were maintained in accordance with the Institutional Animal Care and Use Committee procedures and guidelines. Angiogenesis was analyzed by Matrigel plug assay, as described below.

Matrigel plug assay

To determine the influence of endogenously produced NGF in breast cancer angiogenesis, cold Matrigel was mixed with MDA-MB-231 breast cancer cells in the presence of isotype control, or anti-NGF neutralizing antibodies (75 μg/ml). To determine the influence of recombinant NGF in angiogenesis, cold Matrigel was mixed with PBS (as control), 3.75 μg/ml NGF, 7.5 μg/ml proNGF, or 0.375 μg/ml VEGF. In some experiments, cold Matrigel was also mixed with 3.75 μg/ml NGF and isotype control or anti-VEGF (37.5 μg/ml) neutralizing antibodies. A total of 500 μl of the mixed Matrigel was subcutaneously injected into SCID mice in the middle lateral dorsal region. Seven days later, the animals were sacrificed and the Matrigel plugs were harvested. Pictures of Matrigel plug were taken with a Sony DSC-W5 numerical camera.

Hemoglobin quantification

Hemoglobin quantification was performed as previously described [27]. Briefly, the Matrigel plugs were homogenized in 500 μl water on ice and cleared by centrifugation at 200 g for 6 min at 4°C. The supernatant was collected and used in triplicate to measure hemoglobin content with Drabkin's reagent (Sigma-Aldrich) according to manufacturer instruction. The absorbance was measured at 540 nm.

Microvessel density analysis

Matrigel plugs were fixed in 4% paraformaldehyde, embedded in paraffin and sections cut at 3-4 μm intervals. Detection of the specific marker of endothelial cell CD31 by immunohistochemistry was performed with the Renaissance TSA Biotin System kit (PerkinElmer). The antibody used for immunohistochemistry against CD31 was from Novus Biologicals and the corresponding biotinylated anti rat secondary antibody was from BD Pharmingen. The reaction was developed with DAB substrate (Sigma-Aldrich) and sections were counterstained with Mayer's hematoxylin (Sigma-Aldrich). The microvessel density was quantified in 10 vascular hot-spot fields, by determining the area covered by CD31-positive staining, using image analysis, as previously described [28].

Endothelial cell behaviour assays in culture

Endothelial cell growth Assay

HUVEC (105 cells/well) were seeded in six well plates in 2 ml EBM/0.5% FBS and cultured for 24 h. Cells were then treated with 100 ng/ml NGF or 10 ng/ml VEGF for 48 h. They were harvested by trypsinization and counted using a hemocytometer (Coulter Z2, Beckman-Coulter).

Endothelial cell migration and invasion

BD Falcon inserts with a polyethylene terephthalate (PET) membrane/8 μm pores (BD Biosciences) were used for migration and invasion assays. The inserts were pre-coated with diluted Matrigel (1:100 for migration and 1:10 for invasion). HUVEC (5.104 cells/insert) were seeded into the inserts in EBM/0.5% FBS. Six hours (for migration) or 24 h (for invasion) later, the inserts were washed with PBS, and cells on the top surface of the insert were removed by wiping with a cotton swab. Cells that migrated to the bottom surface of the insert were fixed with methanol and stained by Hoechst 33258 and then subjected to fluorescent microscopic inspection. Cells were counted in 10 random fields at 200× magnification under Nikon Eclipse Ti-U fluorescent microscope.

Endothelial cell cord formation assay

Matrigel (250 μl) was added into wells of 24-well plates, and polymerized for 30 min at 37°C. HUVEC were then seeded on the surface of polymerized Matrigel (5.104 cells/well) and cultured in the presence of NGF (100 ng/ml) or VEGF (10 ng/ml) for 18 h. Tubular networks in each well were photographed using Nikon Eclipse Ti-U inverted microscope before measurement of tubular lengths using NIS element Basic Research (Nikon).

Endothelial cell monolayer permeability assay

HUVEC (2.105 cells/well) were seeded on BD Falcon inserts with a PET membrane/0.4 μm pores (BD Biosciences) in EGM. When cells reached confluence, they were treated with NGF (100 ng/ml) or VEGF (10 ng/ml) in EBM/0.5% FBS for 6 h. The medium was then replaced with EBM/0.5% FBS containing FITC-labeled dextran (70 kDa, 250 μg/ml, Sigma-aldrich). To determine the fluorescence intensity of FITC-Labeled dextran that passed through the insert, 100 μl medium was collected from each well every 15 min during 1 h, and the fluorescence was measured using a fluorescence multi-well plate reader FLx800 (Bio-Tek Instrument) at 483 nm as excitation, and 517 nm as emission, wavelengths.

Pharmacological inhibition

Inhibition was performed with 10 nM K252a (tyrosine inhibitor of TrkA receptor), 10 μM LY294002 (inhibitor of PI3K), 10 μM PD98059 (inhibitor of MEK 1/2), 10 μM GM6001 (broad spectrum inhibitor of matrix metaloprotease), 5 μM MMP 2 inhibitor I (inhibitor of Matrix Metaloprotease 2) or 0.1 mM L-NAME (inhibitor of nitric oxide synthase). Control cells were treated with DMSO. The concentrations used were based upon the absence of toxicity in HUVEC, as determined by bleu Trypan assay in EBM/0.5% FBS for 24 h. All the inhibitors were from Calbiochem, except L-NAME (Sigma-Aldrich).

Western blot

Cells were lysed in RIPA buffer (50 mM Tris HCl, 150 mM NaCl, 1 mM EDTA, 1% NP40, 0.25% sodium desoxycholate, 1:100 protease inhibitor cocktail and 1 mM sodium orthovanadate, all chemicals from Sigma-Aldrich) and proteins were separated by SDS-PAGE and then transferred to nitrocellulose membrane (Protran 0.45 μm, Whatman) or polyvinylidene fluoride membrane (Immobulon-P 0.45 μm, Millipore) by liquid transfer.
Blots were blocked in 5% BSA, or 3% non fat skimmed milk, in Tris-Buffer Saline Tween-20 (TBST, 20 mM Tris Base, 150 mM NaCl, 0.1% Tween 20) for 1 h at room temperature, and then followed by incubation overnight at 4°C with the primary antibodies against phospho TrkA (Tyr490), TrkA (Clone 763), phospho NOS (ser1177), NOS, phospho ERK (Thr202/Tyr204), ERK, phospho Akt (Ser473) and Akt. All the antibodies were from Cell Signaling and used at 1:1 000 dilution, except anti TrkA (1:500 dilution, Santa Cruz Biotechnology). After several washes with TBST, membranes were incubated with the horseradish peroxidase-linked anti-rabbit or anti-mouse secondary antibodies (1:10 000 dilution, Jackson Immunoresearch) in 5% BSA in TBST for 1 h at room temperature. Immunoblots were visualized by enhanced chemiluminescence (Supersignal West Pico, Perbio) using chemiluminescence film (Amersham) or Fuji LAS-4000 Mini, according to manufacturers' protocol.

Nitric oxide (NO) quantification with DAF-2DA

NO quantification was performed as previously described [29]. Briefly, HUVEC were seeded in 96 well-plates (3.104 cells/well) and cultured for 24 h. Cells were then pretreated in EBM/0.5% FBS, with or without the nitric oxide synthase (NOS) inhibitor L-NAME, for 30 min at 37°C. Cells were then loaded with Diaminofluorescein -2 Diacetate (DAF-2DA )(5 μM final concentration, Sigma-Aldrich) for 20 min. After 2 washes, HUVEC were treated with NGF (100 ng/ml) or VEGF (10 ng/ml) in presence or absence of L-NAME (Sigma) for 2 h. The fluorescence intensity was measured with a multiwell plate reader FLx80 (Bio-tek instrument) using 490 nm as excitation and 520 nm as emission wavelengths. For the fluorescence imagery, cells were seeded on 8 well-Labtek chamber slides (5.104 cells/well). Following experiment, cells were fixed and mounted and pictures were taken with Nikon Eclipse Ti-U fluorescent microscope.

Gelatin zymography analysis

The presence and activity of MMP-2 in conditioned medium from HUVEC were analyzed by zymography in 10% SDS-polyacrylamide gel/0.1% gelatin (Sigma-aldrich), according to manufacturer's protocol.

ELISA detection of secreted VEGF

HUVEC or MDA-MB-231 cells were seeded on 60 mm dishes in complete media. The following day, HUVEC were cultured in 2 ml EBM/0.5% FBS and MDA-MB-231 in 2 ml serum-free MEM in the presence of NGF (100 ng/ml) for 6 h or 24 h. The conditioned media were collected and concentrated with Amicon Ultra-4 10 K (Millipore) according to the manufacturer's instruction. Protein content was then measured with BCA method before ELISA quantification of VEGF according to manufacturer's instructions (Human VEGF Duoset kit from R&D Systems).

Statistical analysis

The data are presented as the mean ± standard deviation (S.D.) of at least three separate experiments in triplicate. Comparisons between two groups were analyzed using the two-tailed Student's t-test or two-way non-parametric ANOVA test, and significance was established at a p value <0.05.

Results

NGF contributes to stimulate breast cancer angiogenesis in vivo

To determine the potential effect of NGF in breast cancer angiogenesis, we first performed Matrigel plug assay in SCID mice (Fig. 1A and 1B). Seven days after the experiment, MDA-MB-231 breast cancer cells strongly induced capillary vessel formation in Matrigel plugs, as revealed by hemoglobin content (Fig. 1A) and microvessel density in Matrigel plugs (Fig. 1B). The presence of a neutralizing antibody anti-NGF in the Matrigel plugs decreased about two third the quantity of hemoglobin and microvessel density, suggesting that NGF is strongly involved in breast cancer angiogenesis (Fig. 1A and 1B). Moreover, recombinant NGF induced angiogenesis as efficiently as recombinant VEGF, while proNGF did not induce angiogenesis compared to control (Fig. 1C)

NGF exerts pleiotropic effects on human umbilical endothelial cells (HUVEC)

The strong involvement of NGF in breast cancer angiogenesis prompted us to determine the effects of NGF on endothelial cells in terms of proliferation, migration, invasion, cord formation and permeability, as all these processes are known to be involved in tumor angiogenesis. We used the well known prototypic angiogenic factor VEGF as positive control. For this, different concentrations of NGF and VEGF were tested; the maximal effects were obtained with 100 ng/ml NGF or 10 ng/ml VEGF, higher concentrations exerted similar effects (data not shown). To simplify the presentation, we show only results obtained with 100 ng/ml NGF or 10 ng/ml VEGF. As shown in Fig. 2A and 2B, NGF stimulated proliferation and migration of HUVEC, but not as strongly as VEGF. It is to be noted that upon 24 h of treatment with NGF, no modification of cell proliferation was observed (data not shown). In contrast, NGF stimulated HUVEC invasion (Fig. 2C) and cord formation as strongly as VEGF (Fig. 2D). Similar to VEGF, NGF increased also the permeability of HUVEC monolayer (Fig. 2E).

NGF-stimulated invasion of HUVEC involves the activation of TrkA and multiple downstream pathways

As invasion of endothelial cells is an important step in angiogenesis, and as NGF stimulated HUVEC invasion, we decided to determine different signaling pathways involved in NGF-stimulated invasion. As shown in Fig. 3A, upon NGF treatment, TrkA phosphorylation was increased within 10 minutes. Concomitantly, the levels of phospho Akt (pAkt) and phospho ERK (pERK) were increased within 10 minutes and remained high even after 2 h of treatment with NGF. Furthermore, pharmacological inhibition of TrkA (K252a), PI3K (LY294002) and MEK 1/2 (PD98059) (Fig. 3B) totally abolished NGF-stimulated invasion (Fig. 3C). This suggested that NGF-stimulated invasion of HUVEC was mediated by its tyrosine kinase TrkA and the downstream pathways including PI3K and ERK.
Matrix metalloproteases (MMPs) are essential in matrix degradation during cell invasion. We therefore used the MMP broad spectrum inhibitor (GM6001) and the specific inhibitor of MMP2 (MMP2 inhibitor I) to determine the involvement of MMPs in NGF-stimulated invasion of HUVEC. As shown in Fig. 4A, the two inhibitors totally abolished NGF-stimulated invasion. Concomitantly, gelatin zymography analysis (Fig. 4B and 4C) showed that NGF did increase the levels of MMP2 active form in conditioned medium from HUVEC; treatment of HUVEC with GM6001 or MMP2 inhibitor I totally abolished NGF-induced activation of MMP2 (Fig. 4B). In addition, inhibitors of TrkA (K252a), PI3K (LY294002) and MEK 1/2 (PD98059) abolished the NGF-induced active form of MMP2 (Fig. 4C). Together, these findings suggested that NGF-stimulated invasion of HUVEC involved MMPs, particularly MMP2, which was under the control of PI3K and ERK pathways.
PI3K/Akt pathway has been reported to phosphorylate NO synthase (NOS), thus increasing NO production which is responsible for VEGF-induced endothelial cell migration [30, 31]. Here, we showed that NGF also increased the levels of both phospho NOS (pNOS) (Fig. 5A) and NO in HUVEC (Fig. 5B and 5C). Moreover, NOS inhibition with L-NAME drastically decreased NGF-induced NO production (Fig. 5B and 5C) as well as NGF-stimulated invasion of HUVEC (Fig. 5D). These data suggested that NGF-stimulated invasion of HUVEC involved the activation of NOS.

NGF-stimulated breast cancer angiogenesis partially involves VEGF

It has been described that NGF can stimulate the expression of VEGF in several types of cells including endothelial cells [14], as well as epithelial ovarian cancer cells [32]. We decided to determine the potential implication of VEGF in NGF-stimulated angiogenesis. As revealed by ELISA assay (Fig. 6A), NGF strongly increased the levels of secreted VEGF in both HUVEC and MDA-MB-231 breast cancer cells. Upon 24 h of treatment with NGF, an increase of 63% and 43% of secreted VEGF was observed in HUVEC and MDA-MB-231 cells, respectively. We then determined the involvement of VEGF in NGF-stimulated angiogenesis both in vitro and in vivo by using an anti-VEGF neutralizing antibody. Although anti-VEGF was able to totally abolish VEGF-induced invasion, neutralization of VEGF led to 50% decrease of NGF-induced invasion of HUVEC (Fig. 6B). Interestingly, similar result was obtained when angiogenesis was determined using Matrigel plugs in SCID mice (Fig. 6C). Collectively, these results demonstrated that NGF-induced angiogenesis was partially mediated by VEGF.

Discussion

Here, we present in vivo and in vitro data that give new insights into mechanisms of the involvement of NGF in breast cancer angiogenesis. Using an in vivo matrigel model, we showed that strong angiogenesis was set up as early as 7 days after subcutaneous injection of MDA-MB-231 breast cancer cells in SCID mice. Importantly, neutralization of NGF with antibody against NGF reduced more than half of breast cancer cells-induced angiogenesis. These results reinforce our previous findings that treatment of established xenografted mammary tumors with a neutralizing antibody against NGF could reduce the number of endothelial cells in the tumors [24]. Moreover, we found that the in vivo angiogenic effect of NGF was similar to that elicited by VEGF; this is consistent with data reported by Cantarella et al. [14] who used chicken embryo chorioallantoic membrane (CAM) as an in vivo angiogenesis assay. As VEGF is considered as one of the most efficient proangiogenic factors in breast cancer angiogenesis [6, 10], and as NGF is found to be overexpressed in breast cancer [24], our present findings highlight the importance of NGF as a proangiogenic factor in breast cancer.
Tumor angiogenesis involves several processes, including endothelial activation, proliferation, migration and tissue infiltration from preexisting blood vessels that are triggered by specific proangiogenic growth factors produced by tumor cells and the surrounding stroma [33]. These include VEGF [34] and bFGF [35] which have been shown to activate their specific receptor tyrosine kinases, thereby initiating intracellular signaling to drive the angiogenic process. The effects of NGF on endothelial cells have been found to vary according to tissue origin. NGF stimulates proliferation and migration of human umbilical vein endothelial cells, human dermal microvascular endothelial cells and choroidal endothelial cells [14, 27, 36, 37]. In contrast, NGF has no effect on either proliferation or migration of retinal endothelial cells [37]. Here, we showed that NGF strongly enhanced invasion and cord formation of HUVEC with moderate effects on proliferation and migration. Of importance, we showed for the first time that NGF increased the permeability of endothelial cell monolayer in vitro. The increased permeability of intratumoral blood vessels is thought to favor tumor cell extravasation during metastasis and to play a crucial role in tumor stroma formation due to leak of plasma fibrinogen [38, 39].
As invasion of endothelial cells is one of the important processes during angiogenesis, we decided to determine the signaling pathways involved in NGF-stimulated invasion of HUVEC. We demonstrated that NGF-stimulated invasion was regulated via its tyrosine kinase receptor TrkA; this was reinforced by the observation that ProNGF, which acts via other receptors (p75NTR and sortilin) than TrkA, had no effect on angiogenesis. Moreover, NGF-stimulated invasion was regulated by TrkA downstream signaling pathways including PI3K and ERK, leading to the activation of MMP2. These findings are partially in agreement with data reported by Park et al [27] in that they observed only the involvement of PI3K, but not ERK, in NGF-induced HUVEC invasion and MMP2 activation. The reason for such a discrepancy is not known, as the same pharmacological inhibitor (PD98059, 10 μM) was used in the two studies; one hypothesis might be the difference of culture medium. Alternatively, as HUVEC are derived from different donors, we cannot exclude some differences due to their origin, despite of the standardized protocol of cell isolation and characterization.
Another interesting finding of our work was the involvement of NO synthase (NOS) in NGF-induced invasion. NOS is responsible for the production of nitric oxide (NO), a highly diffusible signaling molecule, known to mediate a number of functions such as angiogenesis, immune responses and nervous system development [40]. Endothelial NOS (eNOS), is particularly expressed by vascular endothelial cells or surrounding stromal cells and therefore has been a focus of attention in angiogenesis. Thus, using eNOS-/-mice, it has been found that NO mediates branching and longitudinal extension of blood vessels in B16 melanomas and that this process is predominantly mediated by eNOS [41]. In cell culture models, eNOS has been described to be involved in migration of endothelial cells [30, 31]. eNOS is also involved in the proangiogenic effect of VEGF and prostaglandin E2 [42, 43]. VEGF has been reported to stimulate endothelial cell migration by activating Akt which in turn phosphorylates Ser1177 residue of eNOS [30, 44]. Here, we found that NGF induced a rapid and persistent increase of phosphorylation of NOS at Ser1177, accompanied by an increase of NO production, suggesting that NGF-induced phosphorylation of eNOS could also involve PI3K/Akt pathway as previously described for VEGF [30, 44].
NGF has been described to increase the expression of VEGF in various tissues and cells such as ischemic hindlimb [15, 45], nervous system [46, 47], epithelial ovarian cancer cells [32] and endothelial cells [47]. Therefore, NGF may exert its proangiogenic effect via VEGF. Indeed, we showed NGF can increase the secretion of VEGF in both HUVEC and MDA-MB-231 breast cancer cells. Moreover, NGF-promoted angiogenesis is partially mediated by VEGF, as neutralizing antibody anti-VEGF inhibited about half of NGF-induced HUVEC invasion, as well as angiogenesis, in vivo. These data, together with our previous findings of NGF overexpression in breast cancer, suggest that NGF could favour breast cancer angiogenesis in concert with VEGF.
Since anti-angiogenesis strategy using anti-VEGF antibodies such as bevacizumab has been integrated into the treatment of cancers, including breast cancer, the development of bevacizumab-resistant tumors has become more common. Recent studies show that targeting other angiogenesis signaling pathways such as those induced by angiopoietin/Tie-2 may lead to enhanced response in anti-VEGF resistant tumors [48]. In this study, we provided direct evidence that NGF could be an important stimulator for breast cancer angiogenesis. NGF not only stimulates proliferation, migration, invasion and tubule formation of endothelial cells, but also increases the permeability of endothelial cell monolayer. Furthermore, our study allows for the identification of new pathways, such as NO synthase and ERK, in NGF-induced invasion of endothelial cells. Thus, NGF, as well as the activated signaling pathways, should be taken into account for the design of future anti-angiogenic therapeutic approaches against breast cancer.

Acknowledgements

This work was funded by INSERM, la Ligue Nationale Contre le Cancer (Equipe Labellisée 2009), Comité du Septentrion de la Ligue Nationale Contre le Cancer, le Ministère de l'Education Nationale and la Région Nord-Pas-de-Calais.
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

RR carried out the cell biology studies, performed the statistical analysis and participated in the draft of the manuscript; EA performed the in vivo studies and participated in the design of the study; CL participated in the cell biology studies and critically read the manuscript; EG participated in the in vivo studies and critically read the manuscript; HH participated in the design of the study and revised the manuscript; XLB conceived of the study, participated in its coordination and drafted the manuscript.
All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Folkman J, Watson K, Ingber D, Hanahan D: Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature. 1989, 339: 58-61.CrossRefPubMed Folkman J, Watson K, Ingber D, Hanahan D: Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature. 1989, 339: 58-61.CrossRefPubMed
2.
Zurück zum Zitat Furstenberger G, von Moos R, Lucas R, Thurlimann B, Senn HJ, Hamacher J, Boneberg EM: Circulating endothelial cells and angiogenic serum factors during neoadjuvant chemotherapy of primary breast cancer. Br J Cancer. 2006, 94: 524-531.PubMedCentralCrossRefPubMed Furstenberger G, von Moos R, Lucas R, Thurlimann B, Senn HJ, Hamacher J, Boneberg EM: Circulating endothelial cells and angiogenic serum factors during neoadjuvant chemotherapy of primary breast cancer. Br J Cancer. 2006, 94: 524-531.PubMedCentralCrossRefPubMed
3.
Zurück zum Zitat Hicklin DJ, Ellis LM: Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol. 2005, 23: 1011-1027.CrossRefPubMed Hicklin DJ, Ellis LM: Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol. 2005, 23: 1011-1027.CrossRefPubMed
4.
Zurück zum Zitat Le Bourhis X, Romon R, Hondermarck H: Role of endothelial progenitor cells in breast cancer angiogenesis: from fundamental research to clinical ramifications. Breast Cancer Res Treat. 2010, 120: 17-24.CrossRefPubMed Le Bourhis X, Romon R, Hondermarck H: Role of endothelial progenitor cells in breast cancer angiogenesis: from fundamental research to clinical ramifications. Breast Cancer Res Treat. 2010, 120: 17-24.CrossRefPubMed
5.
Zurück zum Zitat Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N: Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. 1993, 362: 841-844.CrossRefPubMed Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N: Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. 1993, 362: 841-844.CrossRefPubMed
6.
Zurück zum Zitat Gasparini G: Prognostic value of vascular endothelial growth factor in breast cancer. Oncologist. 2000, 5 (Suppl 1): 37-44.CrossRefPubMed Gasparini G: Prognostic value of vascular endothelial growth factor in breast cancer. Oncologist. 2000, 5 (Suppl 1): 37-44.CrossRefPubMed
7.
Zurück zum Zitat George DJ, Halabi S, Shepard TF, Vogelzang NJ, Hayes DF, Small EJ, Kantoff PW: Prognostic significance of plasma vascular endothelial growth factor levels in patients with hormone-refractory prostate cancer treated on Cancer and Leukemia Group B 9480. Clin Cancer Res. 2001, 7: 1932-1936.PubMed George DJ, Halabi S, Shepard TF, Vogelzang NJ, Hayes DF, Small EJ, Kantoff PW: Prognostic significance of plasma vascular endothelial growth factor levels in patients with hormone-refractory prostate cancer treated on Cancer and Leukemia Group B 9480. Clin Cancer Res. 2001, 7: 1932-1936.PubMed
8.
Zurück zum Zitat Lee JC, Chow NH, Wang ST, Huang SM: Prognostic value of vascular endothelial growth factor expression in colorectal cancer patients. Eur J Cancer. 2000, 36: 748-753.CrossRefPubMed Lee JC, Chow NH, Wang ST, Huang SM: Prognostic value of vascular endothelial growth factor expression in colorectal cancer patients. Eur J Cancer. 2000, 36: 748-753.CrossRefPubMed
9.
Zurück zum Zitat Cheung N, Wong MP, Yuen ST, Leung SY, Chung LP: Tissue-specific expression pattern of vascular endothelial growth factor isoforms in the malignant transformation of lung and colon. Hum Pathol. 1998, 29: 910-914.CrossRefPubMed Cheung N, Wong MP, Yuen ST, Leung SY, Chung LP: Tissue-specific expression pattern of vascular endothelial growth factor isoforms in the malignant transformation of lung and colon. Hum Pathol. 1998, 29: 910-914.CrossRefPubMed
10.
Zurück zum Zitat Linderholm B, Tavelin B, Grankvist K, Henriksson R: Vascular endothelial growth factor is of high prognostic value in node-negative breast carcinoma. J Clin Oncol. 1998, 16: 3121-3128.PubMed Linderholm B, Tavelin B, Grankvist K, Henriksson R: Vascular endothelial growth factor is of high prognostic value in node-negative breast carcinoma. J Clin Oncol. 1998, 16: 3121-3128.PubMed
11.
Zurück zum Zitat Stimpfl M, Tong D, Fasching B, Schuster E, Obermair A, Leodolter S, Zeillinger R: Vascular endothelial growth factor splice variants and their prognostic value in breast and ovarian cancer. Clin Cancer Res. 2002, 8: 2253-2259.PubMed Stimpfl M, Tong D, Fasching B, Schuster E, Obermair A, Leodolter S, Zeillinger R: Vascular endothelial growth factor splice variants and their prognostic value in breast and ovarian cancer. Clin Cancer Res. 2002, 8: 2253-2259.PubMed
14.
Zurück zum Zitat Cantarella G, Lempereur L, Presta M, Ribatti D, Lombardo G, Lazarovici P, Zappala G, Pafumi C, Bernardini R: Nerve growth factor-endothelial cell interaction leads to angiogenesis in vitro and in vivo. FASEB J. 2002, 16: 1307-1309.PubMed Cantarella G, Lempereur L, Presta M, Ribatti D, Lombardo G, Lazarovici P, Zappala G, Pafumi C, Bernardini R: Nerve growth factor-endothelial cell interaction leads to angiogenesis in vitro and in vivo. FASEB J. 2002, 16: 1307-1309.PubMed
15.
Zurück zum Zitat Emanueli C, Salis MB, Pinna A, Graiani G, Manni L, Madeddu P: Nerve growth factor promotes angiogenesis and arteriogenesis in ischemic hindlimbs. Circulation. 2002, 106: 2257-2262.CrossRefPubMed Emanueli C, Salis MB, Pinna A, Graiani G, Manni L, Madeddu P: Nerve growth factor promotes angiogenesis and arteriogenesis in ischemic hindlimbs. Circulation. 2002, 106: 2257-2262.CrossRefPubMed
16.
Zurück zum Zitat Seo K, Choi J, Park M, Rhee C: Angiogenesis effects of nerve growth factor (NGF) on rat corneas. J Vet Sci. 2001, 2: 125-130.PubMed Seo K, Choi J, Park M, Rhee C: Angiogenesis effects of nerve growth factor (NGF) on rat corneas. J Vet Sci. 2001, 2: 125-130.PubMed
17.
Zurück zum Zitat McGregor LM, McCune BK, Graff JR, McDowell PR, Romans KE, Yancopoulos GD, Ball DW, Baylin SB, Nelkin BD: Roles of trk family neurotrophin receptors in medullary thyroid carcinoma development and progression. Proc Natl Acad Sci USA. 1999, 96: 4540-4545.PubMedCentralCrossRefPubMed McGregor LM, McCune BK, Graff JR, McDowell PR, Romans KE, Yancopoulos GD, Ball DW, Baylin SB, Nelkin BD: Roles of trk family neurotrophin receptors in medullary thyroid carcinoma development and progression. Proc Natl Acad Sci USA. 1999, 96: 4540-4545.PubMedCentralCrossRefPubMed
18.
Zurück zum Zitat Ricci A, Greco S, Mariotta S, Felici L, Bronzetti E, Cavazzana A, Cardillo G, Amenta F, Bisetti A, Barbolini G: Neurotrophins and neurotrophin receptors in human lung cancer. Am J Respir Cell Mol Biol. 2001, 25: 439-446.CrossRefPubMed Ricci A, Greco S, Mariotta S, Felici L, Bronzetti E, Cavazzana A, Cardillo G, Amenta F, Bisetti A, Barbolini G: Neurotrophins and neurotrophin receptors in human lung cancer. Am J Respir Cell Mol Biol. 2001, 25: 439-446.CrossRefPubMed
19.
Zurück zum Zitat Zhu Z, Friess H, diMola FF, Zimmermann A, Graber HU, Korc M, Buchler MW: Nerve growth factor expression correlates with perineural invasion and pain in human pancreatic cancer. J Clin Oncol. 1999, 17: 2419-2428.PubMed Zhu Z, Friess H, diMola FF, Zimmermann A, Graber HU, Korc M, Buchler MW: Nerve growth factor expression correlates with perineural invasion and pain in human pancreatic cancer. J Clin Oncol. 1999, 17: 2419-2428.PubMed
20.
Zurück zum Zitat Weeraratna AT, Arnold JT, George DJ, DeMarzo A, Isaacs JT: Rational basis for Trk inhibition therapy for prostate cancer. Prostate. 2000, 45: 140-148.CrossRefPubMed Weeraratna AT, Arnold JT, George DJ, DeMarzo A, Isaacs JT: Rational basis for Trk inhibition therapy for prostate cancer. Prostate. 2000, 45: 140-148.CrossRefPubMed
21.
Zurück zum Zitat Descamps S, Pawlowski V, Revillion F, Hornez L, Hebbar M, Boilly B, Hondermarck H, Peyrat JP: Expression of nerve growth factor receptors and their prognostic value in human breast cancer. Cancer Res. 2001, 61: 4337-4340.PubMed Descamps S, Pawlowski V, Revillion F, Hornez L, Hebbar M, Boilly B, Hondermarck H, Peyrat JP: Expression of nerve growth factor receptors and their prognostic value in human breast cancer. Cancer Res. 2001, 61: 4337-4340.PubMed
22.
Zurück zum Zitat Dolle L, El Yazidi-Belkoura I, Adriaenssens E, Nurcombe V, Hondermarck H: Nerve growth factor overexpression and autocrine loop in breast cancer cells. Oncogene. 2003, 22: 5592-5601.CrossRefPubMed Dolle L, El Yazidi-Belkoura I, Adriaenssens E, Nurcombe V, Hondermarck H: Nerve growth factor overexpression and autocrine loop in breast cancer cells. Oncogene. 2003, 22: 5592-5601.CrossRefPubMed
23.
Zurück zum Zitat Dolle L, Adriaenssens E, El Yazidi-Belkoura I, Le Bourhis X, Nurcombe V, Hondermarck H: Nerve growth factor receptors and signaling in breast cancer. Curr Cancer Drug Targets. 2004, 4: 463-470.CrossRefPubMed Dolle L, Adriaenssens E, El Yazidi-Belkoura I, Le Bourhis X, Nurcombe V, Hondermarck H: Nerve growth factor receptors and signaling in breast cancer. Curr Cancer Drug Targets. 2004, 4: 463-470.CrossRefPubMed
24.
Zurück zum Zitat Adriaenssens E, Vanhecke E, Saule P, Mougel A, Page A, Romon R, Nurcombe V, Le Bourhis X, Hondermarck H: Nerve growth factor is a potential therapeutic target in breast cancer. Cancer Res. 2008, 68: 346-351.CrossRefPubMed Adriaenssens E, Vanhecke E, Saule P, Mougel A, Page A, Romon R, Nurcombe V, Le Bourhis X, Hondermarck H: Nerve growth factor is a potential therapeutic target in breast cancer. Cancer Res. 2008, 68: 346-351.CrossRefPubMed
25.
Zurück zum Zitat Lagadec C, Meignan S, Adriaenssens E, Foveau B, Vanhecke E, Romon R, Toillon RA, Oxombre B, Hondermarck H, Le Bourhis X: TrkA overexpression enhances growth and metastasis of breast cancer cells. Oncogene. 2009, 28: 1960-1970.CrossRefPubMed Lagadec C, Meignan S, Adriaenssens E, Foveau B, Vanhecke E, Romon R, Toillon RA, Oxombre B, Hondermarck H, Le Bourhis X: TrkA overexpression enhances growth and metastasis of breast cancer cells. Oncogene. 2009, 28: 1960-1970.CrossRefPubMed
26.
Zurück zum Zitat Davidson B, Reich R, Lazarovici P, Nesland JM, Skrede M, Risberg B, Trope CG, Florenes VA: Expression and activation of the nerve growth factor receptor TrkA in serous ovarian carcinoma. Clin Cancer Res. 2003, 9: 2248-2259.PubMed Davidson B, Reich R, Lazarovici P, Nesland JM, Skrede M, Risberg B, Trope CG, Florenes VA: Expression and activation of the nerve growth factor receptor TrkA in serous ovarian carcinoma. Clin Cancer Res. 2003, 9: 2248-2259.PubMed
27.
Zurück zum Zitat Park MJ, Kwak HJ, Lee HC, Yoo DH, Park IC, Kim MS, Lee SH, Rhee CH, Hong SI: Nerve growth factor induces endothelial cell invasion and cord formation by promoting matrix metalloproteinase-2 expression through the phosphatidylinositol 3-kinase/Akt signaling pathway and AP-2 transcription factor. J Biol Chem. 2007, 282: 30485-30496.CrossRefPubMed Park MJ, Kwak HJ, Lee HC, Yoo DH, Park IC, Kim MS, Lee SH, Rhee CH, Hong SI: Nerve growth factor induces endothelial cell invasion and cord formation by promoting matrix metalloproteinase-2 expression through the phosphatidylinositol 3-kinase/Akt signaling pathway and AP-2 transcription factor. J Biol Chem. 2007, 282: 30485-30496.CrossRefPubMed
28.
Zurück zum Zitat Liu Z, Kobayashi K, van Dinther M, van Heiningen SH, Valdimarsdottir G, van Laar T, Scharpfenecker M, Lowik CW, Goumans MJ, Ten Dijke P, Pardali E: VEGF and inhibitors of TGFbeta type-I receptor kinase synergistically promote blood-vessel formation by inducing alpha5-integrin expression. J Cell Sci. 2009, 122: 3294-3302.CrossRefPubMed Liu Z, Kobayashi K, van Dinther M, van Heiningen SH, Valdimarsdottir G, van Laar T, Scharpfenecker M, Lowik CW, Goumans MJ, Ten Dijke P, Pardali E: VEGF and inhibitors of TGFbeta type-I receptor kinase synergistically promote blood-vessel formation by inducing alpha5-integrin expression. J Cell Sci. 2009, 122: 3294-3302.CrossRefPubMed
29.
Zurück zum Zitat Sugimoto K, Fujii S, Takemasa T, Yamashita K: Detection of intracellular nitric oxide using a combination of aldehyde fixatives with 4, 5-diaminofluorescein diacetate. Histochem Cell Biol. 2000, 113: 341-347.PubMed Sugimoto K, Fujii S, Takemasa T, Yamashita K: Detection of intracellular nitric oxide using a combination of aldehyde fixatives with 4, 5-diaminofluorescein diacetate. Histochem Cell Biol. 2000, 113: 341-347.PubMed
30.
Zurück zum Zitat Dimmeler S, Dernbach E, Zeiher AM: Phosphorylation of the endothelial nitric oxide synthase at ser-1177 is required for VEGF-induced endothelial cell migration. FEBS Lett. 2000, 477: 258-262.CrossRefPubMed Dimmeler S, Dernbach E, Zeiher AM: Phosphorylation of the endothelial nitric oxide synthase at ser-1177 is required for VEGF-induced endothelial cell migration. FEBS Lett. 2000, 477: 258-262.CrossRefPubMed
31.
Zurück zum Zitat Murohara T, Witzenbichler B, Spyridopoulos I, Asahara T, Ding B, Sullivan A, Losordo DW, Isner JM: Role of endothelial nitric oxide synthase in endothelial cell migration. Arterioscler Thromb Vasc Biol. 1999, 19: 1156-1161.CrossRefPubMed Murohara T, Witzenbichler B, Spyridopoulos I, Asahara T, Ding B, Sullivan A, Losordo DW, Isner JM: Role of endothelial nitric oxide synthase in endothelial cell migration. Arterioscler Thromb Vasc Biol. 1999, 19: 1156-1161.CrossRefPubMed
32.
Zurück zum Zitat Campos X, Munoz Y, Selman A, Yazigi R, Moyano L, Weinstein-Oppenheimer C, Lara HE, Romero C: Nerve growth factor and its high-affinity receptor trkA participate in the control of vascular endothelial growth factor expression in epithelial ovarian cancer. Gynecol Oncol. 2007, 104: 168-175.CrossRefPubMed Campos X, Munoz Y, Selman A, Yazigi R, Moyano L, Weinstein-Oppenheimer C, Lara HE, Romero C: Nerve growth factor and its high-affinity receptor trkA participate in the control of vascular endothelial growth factor expression in epithelial ovarian cancer. Gynecol Oncol. 2007, 104: 168-175.CrossRefPubMed
33.
34.
Zurück zum Zitat Ferrara N, Gerber HP, LeCouter J: The biology of VEGF and its receptors. Nat Med. 2003, 9: 669-676.CrossRefPubMed Ferrara N, Gerber HP, LeCouter J: The biology of VEGF and its receptors. Nat Med. 2003, 9: 669-676.CrossRefPubMed
35.
Zurück zum Zitat Javerzat S, Auguste P, Bikfalvi A: The role of fibroblast growth factors in vascular development. Trends Mol Med. 2002, 8: 483-489.CrossRefPubMed Javerzat S, Auguste P, Bikfalvi A: The role of fibroblast growth factors in vascular development. Trends Mol Med. 2002, 8: 483-489.CrossRefPubMed
36.
Zurück zum Zitat Rahbek UL, Dissing S, Thomassen C, Hansen AJ, Tritsaris K: Nerve growth factor activates aorta endothelial cells causing PI3K/Akt- and ERK-dependent migration. Pflugers Arch. 2005, 450: 355-361.CrossRefPubMed Rahbek UL, Dissing S, Thomassen C, Hansen AJ, Tritsaris K: Nerve growth factor activates aorta endothelial cells causing PI3K/Akt- and ERK-dependent migration. Pflugers Arch. 2005, 450: 355-361.CrossRefPubMed
37.
Zurück zum Zitat Steinle JJ, Granger HJ: Nerve growth factor regulates human choroidal, but not retinal, endothelial cell migration and proliferation. Auton Neurosci. 2003, 108: 57-62.CrossRefPubMed Steinle JJ, Granger HJ: Nerve growth factor regulates human choroidal, but not retinal, endothelial cell migration and proliferation. Auton Neurosci. 2003, 108: 57-62.CrossRefPubMed
38.
Zurück zum Zitat Dvorak HF, Nagy JA, Feng D, Brown LF, Dvorak AM: Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Curr Top Microbiol Immunol. 1999, 237: 97-132.PubMed Dvorak HF, Nagy JA, Feng D, Brown LF, Dvorak AM: Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Curr Top Microbiol Immunol. 1999, 237: 97-132.PubMed
39.
Zurück zum Zitat Nagy JA, Feng D, Vasile E, Wong WH, Shih SC, Dvorak AM, Dvorak HF: Permeability properties of tumor surrogate blood vessels induced by VEGF-A. Lab Invest. 2006, 86: 767-780.PubMed Nagy JA, Feng D, Vasile E, Wong WH, Shih SC, Dvorak AM, Dvorak HF: Permeability properties of tumor surrogate blood vessels induced by VEGF-A. Lab Invest. 2006, 86: 767-780.PubMed
40.
Zurück zum Zitat Fukumura D, Jain RK: Role of nitric oxide in angiogenesis and microcirculation in tumors. Cancer Metastasis Rev. 1998, 17: 77-89.CrossRefPubMed Fukumura D, Jain RK: Role of nitric oxide in angiogenesis and microcirculation in tumors. Cancer Metastasis Rev. 1998, 17: 77-89.CrossRefPubMed
41.
Zurück zum Zitat Kashiwagi S, Izumi Y, Gohongi T, Demou ZN, Xu L, Huang PL, Buerk DG, Munn LL, Jain RK, Fukumura D: NO mediates mural cell recruitment and vessel morphogenesis in murine melanomas and tissue-engineered blood vessels. J Clin Invest. 2005, 115: 1816-1827.PubMedCentralCrossRefPubMed Kashiwagi S, Izumi Y, Gohongi T, Demou ZN, Xu L, Huang PL, Buerk DG, Munn LL, Jain RK, Fukumura D: NO mediates mural cell recruitment and vessel morphogenesis in murine melanomas and tissue-engineered blood vessels. J Clin Invest. 2005, 115: 1816-1827.PubMedCentralCrossRefPubMed
42.
Zurück zum Zitat Cianchi F, Cortesini C, Fantappie O, Messerini L, Sardi I, Lasagna N, Perna F, Fabbroni V, Di Felice A, Perigli G: Cyclooxygenase-2 activation mediates the proangiogenic effect of nitric oxide in colorectal cancer. Clin Cancer Res. 2004, 10: 2694-2704.CrossRefPubMed Cianchi F, Cortesini C, Fantappie O, Messerini L, Sardi I, Lasagna N, Perna F, Fabbroni V, Di Felice A, Perigli G: Cyclooxygenase-2 activation mediates the proangiogenic effect of nitric oxide in colorectal cancer. Clin Cancer Res. 2004, 10: 2694-2704.CrossRefPubMed
43.
Zurück zum Zitat Namkoong S, Lee SJ, Kim CK, Kim YM, Chung HT, Lee H, Han JA, Ha KS, Kwon YG: Prostaglandin E2 stimulates angiogenesis by activating the nitric oxide/cGMP pathway in human umbilical vein endothelial cells. Exp Mol Med. 2005, 37: 588-600.CrossRefPubMed Namkoong S, Lee SJ, Kim CK, Kim YM, Chung HT, Lee H, Han JA, Ha KS, Kwon YG: Prostaglandin E2 stimulates angiogenesis by activating the nitric oxide/cGMP pathway in human umbilical vein endothelial cells. Exp Mol Med. 2005, 37: 588-600.CrossRefPubMed
44.
Zurück zum Zitat Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM: Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature. 1999, 399: 601-605.CrossRefPubMed Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM: Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature. 1999, 399: 601-605.CrossRefPubMed
45.
Zurück zum Zitat Salis MB, Graiani G, Desortes E, Caldwell RB, Madeddu P, Emanueli C: Nerve growth factor supplementation reverses the impairment, induced by Type 1 diabetes, of hindlimb post-ischaemic recovery in mice. Diabetologia. 2004, 47: 1055-1063.CrossRefPubMed Salis MB, Graiani G, Desortes E, Caldwell RB, Madeddu P, Emanueli C: Nerve growth factor supplementation reverses the impairment, induced by Type 1 diabetes, of hindlimb post-ischaemic recovery in mice. Diabetologia. 2004, 47: 1055-1063.CrossRefPubMed
46.
Zurück zum Zitat Calza L, Giardino L, Giuliani A, Aloe L, Levi-Montalcini R: Nerve growth factor control of neuronal expression of angiogenetic and vasoactive factors. Proc Natl Acad Sci USA. 2001, 98: 4160-4165.PubMedCentralCrossRefPubMed Calza L, Giardino L, Giuliani A, Aloe L, Levi-Montalcini R: Nerve growth factor control of neuronal expression of angiogenetic and vasoactive factors. Proc Natl Acad Sci USA. 2001, 98: 4160-4165.PubMedCentralCrossRefPubMed
47.
Zurück zum Zitat Hansen-Algenstaedt N, Algenstaedt P, Schaefer C, Hamann A, Wolfram L, Cingoz G, Kilic N, Schwarzloh B, Schroeder M, Joscheck C: Neural driven angiogenesis by overexpression of nerve growth factor. Histochem Cell Biol. 2006, 125: 637-649.CrossRefPubMed Hansen-Algenstaedt N, Algenstaedt P, Schaefer C, Hamann A, Wolfram L, Cingoz G, Kilic N, Schwarzloh B, Schroeder M, Joscheck C: Neural driven angiogenesis by overexpression of nerve growth factor. Histochem Cell Biol. 2006, 125: 637-649.CrossRefPubMed
48.
Zurück zum Zitat Gaur P, Bose D, Samuel S, Ellis LM: Targeting tumor angiogenesis. Semin Oncol. 2009, 36: S12-19.CrossRefPubMed Gaur P, Bose D, Samuel S, Ellis LM: Targeting tumor angiogenesis. Semin Oncol. 2009, 36: S12-19.CrossRefPubMed
Metadaten
Titel
Nerve growth factor promotes breast cancer angiogenesis by activating multiple pathways
verfasst von
Rodrigue Romon
Eric Adriaenssens
Chann Lagadec
Emmanuelle Germain
Hubert Hondermarck
Xuefen Le Bourhis
Publikationsdatum
01.12.2010
Verlag
BioMed Central
Erschienen in
Molecular Cancer / Ausgabe 1/2010
Elektronische ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-9-157

Weitere Artikel der Ausgabe 1/2010

Molecular Cancer 1/2010 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.