Skip to main content
Erschienen in: Der Ophthalmologe 4/2017

22.12.2016 | Leitthema

Neue Ansätze zur Rekonstruktion der Augenoberfläche jenseits der Hornhaut

verfasst von: K. Spaniol, C. Holtmann, G. Geerling, Univ.-Prof. Dr. Dr. S. Schrader

Erschienen in: Die Ophthalmologie | Ausgabe 4/2017

Einloggen, um Zugang zu erhalten

Zusammenfassung

Hintergrund

Die Wiederherstellung der Bindehaut ist ein essenzieller Bestandteil der Augenoberflächenrekonstruktion. Aktuell in der klinischen Anwendung befindliche sowie neue aussichtsreiche gewebe- und stammzellbasierte Ansätze zur Regeneration und Rekonstruktion der Bindehaut werden vorgestellt und im Hinblick auf ihre Anwendbarkeit diskutiert.

Material und Methoden

Aktuelle Literatur und eigene Ergebnisse werden vorgestellt.

Ergebnisse

Als Ersatzgewebe zur Wiederherstellung der Bindehaut werden zurzeit autologe Bindehaut, Mund- und Nasenschleimhaut sowie Amnionmembran klinisch angewendet. Nachteile sind limitierte Verfügbarkeit, Mitbeteiligung bei Autoimmunerkrankungen, Spenderheterogenität und zum Teil schneller Abbau im entzündeten Milieu. Experimentell getestete Ersatzgewebe bestehen aus Extrazellulärmatrixproteinen, synthetischen Polymeren, temperatursensiblen Kultursystemen und dezellularisierten Geweben, die in vitro und zum Teil in vivo getestet wurden. Als möglicher Bindehautzellersatz wurden Binde-, Mund- und Nasenschleimhautepithelzellen evaluiert, die nach In-vitro-Expansion Eigenschaften von Progenitorzellen sowie zum Teil sekretorische Eigenschaften im Sinne einer Becherzelldifferenzierung zeigten.

Diskussion

Aufgrund der Limitationen der vorhandenen Gewebe zur Bindehautrekonstruktion besteht klinisch Bedarf für die Entwicklung neuer Bindehautersatzgewebe. Laborexperimentell hergestellte Matrices sind zum Teil bereits in vivo evaluiert und daher möglicherweise bald klinisch einsetzbar. Adulte Schleimhautepithelzellen zeigen nach In-vitro-Expansion viele Eigenschaften des Bindehautepithels und sind daher eine vielversprechende Zellquelle für das Tissue-Engineering der Bindehaut, andere Stammzellquellen bedürfen weiterer Evaluation.
Literatur
3.
Zurück zum Zitat Yao Q et al (2015) Reconstruction of conjunctival epithelium-like tissue using a temperature-responsive culture dish. Mol Vis 21:1113–1121 PubMedPubMedCentral Yao Q et al (2015) Reconstruction of conjunctival epithelium-like tissue using a temperature-responsive culture dish. Mol Vis 21:1113–1121 PubMedPubMedCentral
4.
Zurück zum Zitat Mason SL et al (2011) Ocular epithelial transplantation: current uses and future potential. Regen Med 6:767–782 CrossRefPubMed Mason SL et al (2011) Ocular epithelial transplantation: current uses and future potential. Regen Med 6:767–782 CrossRefPubMed
5.
Zurück zum Zitat Zhao D et al (2015) Sealing of the gap between the conjunctiva and tenon capsule to improve symblepharon surgery. Am J Ophthalmol 160:438–446.e1 CrossRefPubMed Zhao D et al (2015) Sealing of the gap between the conjunctiva and tenon capsule to improve symblepharon surgery. Am J Ophthalmol 160:438–446.e1 CrossRefPubMed
6.
Zurück zum Zitat Fostad IG et al (2012) Biopsy harvesting site and distance from the explant affect conjunctival epithelial phenotype ex vivo. Exp Eye Res 104:15–25 CrossRefPubMedPubMedCentral Fostad IG et al (2012) Biopsy harvesting site and distance from the explant affect conjunctival epithelial phenotype ex vivo. Exp Eye Res 104:15–25 CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Efron N, Al-Dossari M, Pritchard N (2009) In vivo confocal microscopy of the bulbar conjunctiva. Clin Experiment Ophthalmol 37:335–344 CrossRefPubMed Efron N, Al-Dossari M, Pritchard N (2009) In vivo confocal microscopy of the bulbar conjunctiva. Clin Experiment Ophthalmol 37:335–344 CrossRefPubMed
10.
Zurück zum Zitat Badylak SF (2002) The extracellular matrix as a scaffold for tissue reconstruction. Semin Cell Dev Biol 13:377–383 CrossRefPubMed Badylak SF (2002) The extracellular matrix as a scaffold for tissue reconstruction. Semin Cell Dev Biol 13:377–383 CrossRefPubMed
11.
Zurück zum Zitat Ang LP et al (2005) Autologous cultivated conjunctival transplantation for pterygium surgery. Am J Ophthalmol 139:611–619 CrossRefPubMed Ang LP et al (2005) Autologous cultivated conjunctival transplantation for pterygium surgery. Am J Ophthalmol 139:611–619 CrossRefPubMed
12.
Zurück zum Zitat Kheirkhah A et al (2008) Surgical strategies for fornix reconstruction based on symblepharon severity. Am J Ophthalmol 146:266–275 CrossRefPubMed Kheirkhah A et al (2008) Surgical strategies for fornix reconstruction based on symblepharon severity. Am J Ophthalmol 146:266–275 CrossRefPubMed
13.
14.
Zurück zum Zitat Kohanim S et al (2016) Acute and chronic ophthalmic involvement in Stevens-Johnson syndrome/toxic epidermal necrolysis – A comprehensive review and guide to therapy. II. ophthalmic disease. Ocul Surf 14:168–188 CrossRefPubMed Kohanim S et al (2016) Acute and chronic ophthalmic involvement in Stevens-Johnson syndrome/toxic epidermal necrolysis – A comprehensive review and guide to therapy. II. ophthalmic disease. Ocul Surf 14:168–188 CrossRefPubMed
15.
Zurück zum Zitat Schrader S et al (2009) Tissue engineering for conjunctival reconstruction: established methods and future outlooks. Curr Eye Res 34:913–924 CrossRefPubMed Schrader S et al (2009) Tissue engineering for conjunctival reconstruction: established methods and future outlooks. Curr Eye Res 34:913–924 CrossRefPubMed
16.
Zurück zum Zitat Wenkel H, Rummelt V, Naumann GO (2000) Long term results after autologous nasal mucosal transplantation in severe mucus deficiency syndromes. Br J Ophthalmol 84:279–284 CrossRefPubMedPubMedCentral Wenkel H, Rummelt V, Naumann GO (2000) Long term results after autologous nasal mucosal transplantation in severe mucus deficiency syndromes. Br J Ophthalmol 84:279–284 CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Kim JH et al (2010) Ocular surface reconstruction with autologous nasal mucosa in cicatricial ocular surface disease. Am J Ophthalmol 149:45–53 CrossRefPubMed Kim JH et al (2010) Ocular surface reconstruction with autologous nasal mucosa in cicatricial ocular surface disease. Am J Ophthalmol 149:45–53 CrossRefPubMed
18.
Zurück zum Zitat Riau AK et al (2010) Preservation, sterilization and de-epithelialization of human amniotic membrane for use in ocular surface reconstruction. Biomaterials 31:216–225 CrossRefPubMed Riau AK et al (2010) Preservation, sterilization and de-epithelialization of human amniotic membrane for use in ocular surface reconstruction. Biomaterials 31:216–225 CrossRefPubMed
20.
Zurück zum Zitat Eidet JR, Dartt DA, Utheim TP (2015) Concise review: comparison of culture membranes used for tissue engineered conjunctival epithelial equivalents. J Funct Biomater 6:1064–1084 CrossRefPubMedPubMedCentral Eidet JR, Dartt DA, Utheim TP (2015) Concise review: comparison of culture membranes used for tissue engineered conjunctival epithelial equivalents. J Funct Biomater 6:1064–1084 CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Martínez-Osorio H et al (2009) Characterization and short-term culture of cells recovered from human conjunctival epithelium by minimally invasive means. Mol Vis 15:2185–2195 PubMedPubMedCentral Martínez-Osorio H et al (2009) Characterization and short-term culture of cells recovered from human conjunctival epithelium by minimally invasive means. Mol Vis 15:2185–2195 PubMedPubMedCentral
23.
Zurück zum Zitat Inatomi T et al (2006) Ocular surface reconstruction with combination of cultivated autologous oral mucosal epithelial transplantation and penetrating keratoplasty. Am J Ophthalmol 142:757–764 CrossRefPubMed Inatomi T et al (2006) Ocular surface reconstruction with combination of cultivated autologous oral mucosal epithelial transplantation and penetrating keratoplasty. Am J Ophthalmol 142:757–764 CrossRefPubMed
24.
Zurück zum Zitat Satake Y et al (2014) Ocular surface reconstruction by cultivated epithelial sheet transplantation. Cornea 33(Suppl 11):S42–S46 CrossRefPubMed Satake Y et al (2014) Ocular surface reconstruction by cultivated epithelial sheet transplantation. Cornea 33(Suppl 11):S42–S46 CrossRefPubMed
26.
Zurück zum Zitat Barrandon Y (2007) Crossing boundaries: stem cells, holoclones, and the fundamentals of squamous epithelial renewal. Cornea 26:S10–S12 CrossRefPubMed Barrandon Y (2007) Crossing boundaries: stem cells, holoclones, and the fundamentals of squamous epithelial renewal. Cornea 26:S10–S12 CrossRefPubMed
28.
Zurück zum Zitat Pellegrini G et al (1999) Location and clonal analysis of stem cells and their differentiated progeny in the human ocular surface. J Cell Biol 145:769–782 CrossRefPubMedPubMedCentral Pellegrini G et al (1999) Location and clonal analysis of stem cells and their differentiated progeny in the human ocular surface. J Cell Biol 145:769–782 CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Pauklin M et al (2011) Expression of pluripotency and multipotency factors in human ocular surface tissues. Curr Eye Res 36:1086–1097 CrossRefPubMed Pauklin M et al (2011) Expression of pluripotency and multipotency factors in human ocular surface tissues. Curr Eye Res 36:1086–1097 CrossRefPubMed
30.
Zurück zum Zitat Akinci MA et al (2009) Molecular profiling of conjunctival epithelial side-population stem cells: atypical cell surface markers and sources of a slow-cycling phenotype. Invest Ophthalmol Vis Sci 50:4162–4172 CrossRefPubMedPubMedCentral Akinci MA et al (2009) Molecular profiling of conjunctival epithelial side-population stem cells: atypical cell surface markers and sources of a slow-cycling phenotype. Invest Ophthalmol Vis Sci 50:4162–4172 CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Schrader S et al (2009) Conjunctival epithelial cells maintain stem cell properties after long-term culture and cryopreservation. Regen Med 4:677–687 CrossRefPubMed Schrader S et al (2009) Conjunctival epithelial cells maintain stem cell properties after long-term culture and cryopreservation. Regen Med 4:677–687 CrossRefPubMed
32.
Zurück zum Zitat Schrader S et al (2010) Simulation of an in vitro niche environment that preserves conjunctival progenitor cells. Regen Med 5:877–889 CrossRefPubMed Schrader S et al (2010) Simulation of an in vitro niche environment that preserves conjunctival progenitor cells. Regen Med 5:877–889 CrossRefPubMed
33.
Zurück zum Zitat Eidet JR et al (2012) Effects of serum-free storage on morphology, phenotype, and viability of ex vivo cultured human conjunctival epithelium. Exp Eye Res 94:109–116 CrossRefPubMed Eidet JR et al (2012) Effects of serum-free storage on morphology, phenotype, and viability of ex vivo cultured human conjunctival epithelium. Exp Eye Res 94:109–116 CrossRefPubMed
34.
Zurück zum Zitat Ang LP et al (2004) The in vitro and in vivo proliferative capacity of serum-free cultivated human conjunctival epithelial cells. Curr Eye Res 28:307–317 CrossRefPubMed Ang LP et al (2004) The in vitro and in vivo proliferative capacity of serum-free cultivated human conjunctival epithelial cells. Curr Eye Res 28:307–317 CrossRefPubMed
35.
Zurück zum Zitat Shatos MA et al (2001) Isolation, characterization, and propagation of rat conjunctival goblet cells in vitro. Invest Ophthalmol Vis Sci 42:1455–1464 PubMed Shatos MA et al (2001) Isolation, characterization, and propagation of rat conjunctival goblet cells in vitro. Invest Ophthalmol Vis Sci 42:1455–1464 PubMed
36.
Zurück zum Zitat Meller D, Dabul V, Tseng SC (2002) Expansion of conjunctival epithelial progenitor cells on amniotic membrane. Exp Eye Res 74:537–545 CrossRefPubMed Meller D, Dabul V, Tseng SC (2002) Expansion of conjunctival epithelial progenitor cells on amniotic membrane. Exp Eye Res 74:537–545 CrossRefPubMed
37.
Zurück zum Zitat Tsai RJ, Tseng SC (1988) Substrate modulation of cultured rabbit conjunctival epithelial cell differentiation and morphology. Invest Ophthalmol Vis Sci 29:1565–1576 PubMed Tsai RJ, Tseng SC (1988) Substrate modulation of cultured rabbit conjunctival epithelial cell differentiation and morphology. Invest Ophthalmol Vis Sci 29:1565–1576 PubMed
38.
39.
Zurück zum Zitat Yang SP, Yang XZ, Cao GP (2015) Conjunctiva reconstruction by induced differentiation of human amniotic epithelial cells. Genet Mol Res 14:13823–13834 CrossRefPubMed Yang SP, Yang XZ, Cao GP (2015) Conjunctiva reconstruction by induced differentiation of human amniotic epithelial cells. Genet Mol Res 14:13823–13834 CrossRefPubMed
40.
Zurück zum Zitat Kobayashi M et al (2015) Ocular surface reconstruction with a tissue-engineered nasal mucosal epithelial cell sheet for the treatment of severe ocular surface diseases. Stem Cells Transl Med 4:99–109 CrossRefPubMed Kobayashi M et al (2015) Ocular surface reconstruction with a tissue-engineered nasal mucosal epithelial cell sheet for the treatment of severe ocular surface diseases. Stem Cells Transl Med 4:99–109 CrossRefPubMed
41.
Zurück zum Zitat Takahashi K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872 CrossRefPubMed Takahashi K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872 CrossRefPubMed
42.
Zurück zum Zitat Poon MW et al (2015) Human ocular epithelial cells endogenously expressing SOX2 and OCT4 yield high efficiency of pluripotency reprogramming. PLOS ONE 10:e0131288 CrossRefPubMedPubMedCentral Poon MW et al (2015) Human ocular epithelial cells endogenously expressing SOX2 and OCT4 yield high efficiency of pluripotency reprogramming. PLOS ONE 10:e0131288 CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Massumi M et al (2014) Efficient programming of human eye conjunctiva-derived induced pluripotent stem (ECiPS) cells into definitive endoderm-like cells. Exp Cell Res 322:51–61 CrossRefPubMed Massumi M et al (2014) Efficient programming of human eye conjunctiva-derived induced pluripotent stem (ECiPS) cells into definitive endoderm-like cells. Exp Cell Res 322:51–61 CrossRefPubMed
45.
Zurück zum Zitat Sareen D et al (2014) Differentiation of human limbal-derived induced pluripotent stem cells into limbal-like epithelium. Stem Cells Transl Med 3:1002–1012 CrossRefPubMedPubMedCentral Sareen D et al (2014) Differentiation of human limbal-derived induced pluripotent stem cells into limbal-like epithelium. Stem Cells Transl Med 3:1002–1012 CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Badylak SF, Taylor D, Uygun K (2011) Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng 13:27–53 CrossRefPubMed Badylak SF, Taylor D, Uygun K (2011) Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng 13:27–53 CrossRefPubMed
47.
Zurück zum Zitat Schlotzer-Schrehardt U et al (2007) Characterization of extracellular matrix components in the limbal epithelial stem cell compartment. Exp Eye Res 85:845–860 CrossRefPubMed Schlotzer-Schrehardt U et al (2007) Characterization of extracellular matrix components in the limbal epithelial stem cell compartment. Exp Eye Res 85:845–860 CrossRefPubMed
48.
Zurück zum Zitat Brown RA et al (2005) Ultrarapid engineering of biomimetic materials and tissues: Fabrication of nano- and microstructures by plastic compression. Adv Funct Mater 15(11):1762–1770 CrossRef Brown RA et al (2005) Ultrarapid engineering of biomimetic materials and tissues: Fabrication of nano- and microstructures by plastic compression. Adv Funct Mater 15(11):1762–1770 CrossRef
49.
Zurück zum Zitat Mi S et al (2011) Photochemical cross-linking of plastically compressed collagen gel produces an optimal scaffold for corneal tissue engineering. J Biomed Mater Res A 99:1–8 CrossRefPubMed Mi S et al (2011) Photochemical cross-linking of plastically compressed collagen gel produces an optimal scaffold for corneal tissue engineering. J Biomed Mater Res A 99:1–8 CrossRefPubMed
50.
Zurück zum Zitat Haagdorens M et al (2016) Limbal stem cell deficiency: current treatment options and emerging therapies. Stem Cells Int 2016:9798374 CrossRefPubMed Haagdorens M et al (2016) Limbal stem cell deficiency: current treatment options and emerging therapies. Stem Cells Int 2016:9798374 CrossRefPubMed
51.
Zurück zum Zitat Shahzad S et al (2016) A new synthetic methodology for the preparation of biocompatible and organo-soluble barbituric- and thiobarbituric acid based chitosan derivatives for biomedical applications. Mater Sci Eng C Mater Biol Appl 66:156–163 CrossRefPubMed Shahzad S et al (2016) A new synthetic methodology for the preparation of biocompatible and organo-soluble barbituric- and thiobarbituric acid based chitosan derivatives for biomedical applications. Mater Sci Eng C Mater Biol Appl 66:156–163 CrossRefPubMed
52.
Zurück zum Zitat Ang LP et al (2006) The development of a serum-free derived bioengineered conjunctival epithelial equivalent using an ultrathin poly(epsilon-caprolactone) membrane substrate. Invest Ophthalmol Vis Sci 47:105–112 CrossRefPubMed Ang LP et al (2006) The development of a serum-free derived bioengineered conjunctival epithelial equivalent using an ultrathin poly(epsilon-caprolactone) membrane substrate. Invest Ophthalmol Vis Sci 47:105–112 CrossRefPubMed
53.
Zurück zum Zitat Yamato M et al (2002) Thermally responsive polymer-grafted surfaces facilitate patterned cell seeding and co-culture. Biomaterials 23:561–567 CrossRefPubMed Yamato M et al (2002) Thermally responsive polymer-grafted surfaces facilitate patterned cell seeding and co-culture. Biomaterials 23:561–567 CrossRefPubMed
54.
Zurück zum Zitat Hayashida Y et al (2005) Ocular surface reconstruction using autologous rabbit oral mucosal epithelial sheets fabricated ex vivo on a temperature-responsive culture surface. Invest Ophthalmol Vis Sci 46:1632–1639 CrossRefPubMed Hayashida Y et al (2005) Ocular surface reconstruction using autologous rabbit oral mucosal epithelial sheets fabricated ex vivo on a temperature-responsive culture surface. Invest Ophthalmol Vis Sci 46:1632–1639 CrossRefPubMed
56.
Zurück zum Zitat Srimurugan B et al (2016) Use of indigenous decellularized valved xenograft conduit for double-barrel right ventricular outflow tract reconstruction: nine-year follow-up. World J Pediatr Congenit Heart Surg. doi: 10.​1177/​2150135115613745​ PubMed Srimurugan B et al (2016) Use of indigenous decellularized valved xenograft conduit for double-barrel right ventricular outflow tract reconstruction: nine-year follow-up. World J Pediatr Congenit Heart Surg. doi: 10.​1177/​2150135115613745​ PubMed
57.
Zurück zum Zitat Raya-Rivera A et al (2011) Tissue-engineered autologous urethras for patients who need reconstruction: an observational study. Lancet 377:1175–1182 CrossRefPubMedPubMedCentral Raya-Rivera A et al (2011) Tissue-engineered autologous urethras for patients who need reconstruction: an observational study. Lancet 377:1175–1182 CrossRefPubMedPubMedCentral
58.
Zurück zum Zitat Mai C, Bertelmann E (2013) Oral mucosal grafts: old technique in new light. Ophthalmic Res 50:91–98 CrossRefPubMed Mai C, Bertelmann E (2013) Oral mucosal grafts: old technique in new light. Ophthalmic Res 50:91–98 CrossRefPubMed
Metadaten
Titel
Neue Ansätze zur Rekonstruktion der Augenoberfläche jenseits der Hornhaut
verfasst von
K. Spaniol
C. Holtmann
G. Geerling
Univ.-Prof. Dr. Dr. S. Schrader
Publikationsdatum
22.12.2016
Verlag
Springer Medizin
Erschienen in
Die Ophthalmologie / Ausgabe 4/2017
Print ISSN: 2731-720X
Elektronische ISSN: 2731-7218
DOI
https://doi.org/10.1007/s00347-016-0419-1

Weitere Artikel der Ausgabe 4/2017

Der Ophthalmologe 4/2017 Zur Ausgabe

Neu im Fachgebiet Augenheilkunde