Skip to main content
main-content

29.10.2019 | Original Article Open Access

Neural cell responses to wear debris from metal-on-metal total disc replacements

Zeitschrift:
European Spine Journal
Autoren:
H. Lee, J. B. Phillips, R. M. Hall, Joanne L. Tipper
Wichtige Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s00586-019-06177-w) contains supplementary material, which is available to authorized users.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Purpose

Abstract

Total disc replacements, comprising all-metal articulations, are compromised by wear and particle production. Metallic wear debris and ions trigger a range of biological responses including inflammation, genotoxicity, cytotoxicity, hypersensitivity and pseudotumour formation, therefore we hypothesise that, due to proximity to the spinal cord, glial cells may be adversely affected.

Methods

Clinically relevant cobalt chrome (CoCr) and stainless steel (SS) wear particles were generated using a six-station pin-on-plate wear simulator. The effects of metallic particles (0.5–50 μm3 debris per cell) and metal ions on glial cell viability, cellular activity (glial fibrillary acidic protein (GFAP) expression) and DNA integrity were investigated in 2D and 3D culture using live/dead, immunocytochemistry and a comet assay, respectively.

Results

CoCr wear particles and ions caused significant reductions in glial cell viability in both 2D and 3D culture systems. Stainless steel particles did not affect glial cell viability or astrocyte activation. In contrast, ions released from SS caused significant reductions in glial cell viability, an effect that was especially noticeable when astrocytes were cultured in isolation without microglia. DNA damage was observed in both cell types and with both biomaterials tested. CoCr wear particles had a dose-dependent effect on astrocyte activation, measured through expression of GFAP.

Conclusions

The results from this study suggest that microglia influence the effects that metal particles have on astrocytes, that SS ions and particles play a role in the adverse effects observed and that SS is a less toxic biomaterial than CoCr alloy for use in spinal devices.

Graphic abstract

These slides can be retrieved under Electronic Supplementary Material.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de. Zusätzlich können Sie eine Zeitschrift Ihrer Wahl in gedruckter Form beziehen – ohne Aufpreis.

e.Med Orthopädie & Unfallchirurgie

Kombi-Abonnement

Mit e.Med Orthopädie & Unfallchirurgie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

Zusatzmaterial
Online Resources 1. High-resolution scanning electron micrograph and corresponding trace produced by energy-dispersive X-ray analysis (EDX) of cobalt chromium particles (PPTX 717 kb)
586_2019_6177_MOESM1_ESM.pptx
Supplementary material 2 (PPTX 716 kb)
586_2019_6177_MOESM2_ESM.pptx
Online Resources 2. High-resolution scanning electron micrograph and corresponding trace produced by energy-dispersive X-ray analysis (EDX) of stainless steel particles (PPTX 64 kb)
586_2019_6177_MOESM3_ESM.pptx
Supplementary material 4 (PPTX 58 kb)
586_2019_6177_MOESM4_ESM.pptx
Supplementary material 5 (PPTX 9687 kb)
586_2019_6177_MOESM5_ESM.pptx
Literatur
Über diesen Artikel

Neu im Fachgebiet Orthopädie und Unfallchirurgie

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Orthopädie und Unfallchirurgie und bleiben Sie gut informiert – ganz bequem per eMail.

Bildnachweise