Skip to main content
Erschienen in: HNO 3/2018

12.12.2017 | Leitthema

Neural plasticity and its initiating conditions in tinnitus

verfasst von: L. E. Roberts

Erschienen in: HNO | Ausgabe 3/2018

Einloggen, um Zugang zu erhalten

Abstract

Background and objective

Deafferentation caused by cochlear pathology (which can be hidden from the audiogram) activates forms of neural plasticity in auditory pathways, generating tinnitus and its associated conditions including hyperacusis. This article discusses tinnitus mechanisms and suggests how these mechanisms may relate to those involved in normal auditory information processing.

Materials and methods

Research findings from animal models of tinnitus and from electromagnetic imaging of tinnitus patients are reviewed which pertain to the role of deafferentation and neural plasticity in tinnitus and hyperacusis.

Results

Auditory neurons compensate for deafferentation by increasing their input/output functions (gain) at multiple levels of the auditory system. Forms of homeostatic plasticity are believed to be responsible for this neural change, which increases the spontaneous and driven activity of neurons in central auditory structures in animals expressing behavioral evidence of tinnitus. Another tinnitus correlate, increased neural synchrony among the affected neurons, is forged by spike-timing-dependent neural plasticity in auditory pathways. Slow oscillations generated by bursting thalamic neurons verified in tinnitus animals appear to modulate neural plasticity in the cortex, integrating tinnitus neural activity with information in brain regions supporting memory, emotion, and consciousness which exhibit increased metabolic activity in tinnitus patients.

Discussion and conclusion

The latter process may be induced by transient auditory events in normal processing but it persists in tinnitus, driven by phantom signals from the auditory pathway. Several tinnitus therapies attempt to suppress tinnitus through plasticity, but repeated sessions will likely be needed to prevent tinnitus activity from returning owing to deafferentation as its initiating condition.
Literatur
2.
Zurück zum Zitat Carracedo LM, Kjeldsen H, Cunnington L, Jenkins A, Schofield I, Whittington MA et al (2013) A neocortical delta rhythm facilitates reciprocal interlaminar interactions via nested theta rhythms. J Neurosci 33:10750–10761CrossRefPubMedPubMedCentral Carracedo LM, Kjeldsen H, Cunnington L, Jenkins A, Schofield I, Whittington MA et al (2013) A neocortical delta rhythm facilitates reciprocal interlaminar interactions via nested theta rhythms. J Neurosci 33:10750–10761CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Dehmel S, Pradhan S, Koehler S, Bledsoe S, Shore S (2012) Noise overexposure alters long-term somatosensory-auditory processing in the dorsal cochlear nucleus—possible basis for tinnitus-related hyperactivity? J Neurosci 32:1660–1671CrossRefPubMedPubMedCentral Dehmel S, Pradhan S, Koehler S, Bledsoe S, Shore S (2012) Noise overexposure alters long-term somatosensory-auditory processing in the dorsal cochlear nucleus—possible basis for tinnitus-related hyperactivity? J Neurosci 32:1660–1671CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Eggermont JJ, Roberts LE (2015) Tinnitus: animal models and findings in humans. Cell Tissue Res 361:311–336CrossRefPubMed Eggermont JJ, Roberts LE (2015) Tinnitus: animal models and findings in humans. Cell Tissue Res 361:311–336CrossRefPubMed
5.
Zurück zum Zitat Gu JW, Herrmann BS, Levine RA, Melcher JR (2012) Brainstem auditory evoked potentials suggest a role for the ventral cochlear nucleus in tinnitus. J Assoc Res Otolaryngol 13:819–833CrossRefPubMedPubMedCentral Gu JW, Herrmann BS, Levine RA, Melcher JR (2012) Brainstem auditory evoked potentials suggest a role for the ventral cochlear nucleus in tinnitus. J Assoc Res Otolaryngol 13:819–833CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Hébert S, Fournier P, Noreña A (2013) The auditory sensitivity is increased in tinnitus ears. J Neurosci 33:2356–2364CrossRefPubMed Hébert S, Fournier P, Noreña A (2013) The auditory sensitivity is increased in tinnitus ears. J Neurosci 33:2356–2364CrossRefPubMed
7.
Zurück zum Zitat Husain FT, Schmidt SA (2014) Using resting state functional connectivity to unravel networks of tinnitus. Hear Res 307:153–162CrossRefPubMed Husain FT, Schmidt SA (2014) Using resting state functional connectivity to unravel networks of tinnitus. Hear Res 307:153–162CrossRefPubMed
8.
Zurück zum Zitat Koehler SD, Shore SE (2013) Stimulus timing-dependent plasticity in dorsal cochlear nucleus is altered in tinnitus. J Neurosci 33:19647–19656CrossRefPubMedPubMedCentral Koehler SD, Shore SE (2013) Stimulus timing-dependent plasticity in dorsal cochlear nucleus is altered in tinnitus. J Neurosci 33:19647–19656CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci 29:14077–14085CrossRefPubMedPubMedCentral Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci 29:14077–14085CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Noreña AJ, Chery-Croze S (2007) Enriched acoustic environment rescales auditory sensitivity. Neuroreport 18:1251–1255CrossRefPubMed Noreña AJ, Chery-Croze S (2007) Enriched acoustic environment rescales auditory sensitivity. Neuroreport 18:1251–1255CrossRefPubMed
12.
Zurück zum Zitat Paul BT, Bruce IC, Roberts LE (2017) Evidence that hidden hearing loss underlies amplitude modulation encoding deficits in individuals with and without tinnitus. Hear Res 344:170–182CrossRefPubMed Paul BT, Bruce IC, Roberts LE (2017) Evidence that hidden hearing loss underlies amplitude modulation encoding deficits in individuals with and without tinnitus. Hear Res 344:170–182CrossRefPubMed
14.
Zurück zum Zitat Qiu C, Salvi R, Ding D, Burkard R (2000) Inner hair cell loss leads to enhanced response amplitudes in auditory cortex of unanesthetized chinchillas: Evidence for increased system gain. Hear Res 139:153–171CrossRefPubMed Qiu C, Salvi R, Ding D, Burkard R (2000) Inner hair cell loss leads to enhanced response amplitudes in auditory cortex of unanesthetized chinchillas: Evidence for increased system gain. Hear Res 139:153–171CrossRefPubMed
15.
Zurück zum Zitat Reed GF (1960) An audiological study of two hundred cases of subjective tinnitus. Arch Otolaryngol 71:94–104CrossRef Reed GF (1960) An audiological study of two hundred cases of subjective tinnitus. Arch Otolaryngol 71:94–104CrossRef
16.
Zurück zum Zitat Roberts LE, Bosnyak DJ, Bruce IC, Gander PE, Paul BT (2015) Evidence for differential modulation of primary and nonprimary auditory cortex by forward masking in tinnitus. Hear Res 327:9–27CrossRefPubMed Roberts LE, Bosnyak DJ, Bruce IC, Gander PE, Paul BT (2015) Evidence for differential modulation of primary and nonprimary auditory cortex by forward masking in tinnitus. Hear Res 327:9–27CrossRefPubMed
17.
Zurück zum Zitat Sametsky EA, Turner JG, Larsen D, Ling L, Caspary DM (2015) Enhanced GABA A -mediated tonic Inhibition in auditory thalamus of rats with behavioral evidence of tinnitus. J Neurosci 35:9369–9380CrossRefPubMedPubMedCentral Sametsky EA, Turner JG, Larsen D, Ling L, Caspary DM (2015) Enhanced GABA A -mediated tonic Inhibition in auditory thalamus of rats with behavioral evidence of tinnitus. J Neurosci 35:9369–9380CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Schaette R, McAlpine D (2011) Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model. J Neurosci 31:13452–13457CrossRefPubMed Schaette R, McAlpine D (2011) Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model. J Neurosci 31:13452–13457CrossRefPubMed
19.
Zurück zum Zitat Sedley W, Gander PE, Kumar S, Oya H, Kovach CK, Nourski KV, Griffiths TD et al (2015) Intracranial mapping of a cortical tinnitus system using residual inhibition. Curr Biol 25:1208–1214CrossRefPubMedPubMedCentral Sedley W, Gander PE, Kumar S, Oya H, Kovach CK, Nourski KV, Griffiths TD et al (2015) Intracranial mapping of a cortical tinnitus system using residual inhibition. Curr Biol 25:1208–1214CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Shaheen LA, Valero MD, Liberman MC (2015) Towards a diagnosis of cochlear neuropathy with envelope following responses. J Assoc Res Otolaryngol 16:727–745CrossRefPubMedPubMedCentral Shaheen LA, Valero MD, Liberman MC (2015) Towards a diagnosis of cochlear neuropathy with envelope following responses. J Assoc Res Otolaryngol 16:727–745CrossRefPubMedPubMedCentral
21.
22.
Zurück zum Zitat Stefanescu RA, Shore SE (2017) Muscarinic acetylcholine receptors control baseline activity and Hebbian stimulus timing-dependent plasticity in fusiform cells of the dorsal cochlear nucleus. J Neurophysiol 117:1229–1238CrossRefPubMed Stefanescu RA, Shore SE (2017) Muscarinic acetylcholine receptors control baseline activity and Hebbian stimulus timing-dependent plasticity in fusiform cells of the dorsal cochlear nucleus. J Neurophysiol 117:1229–1238CrossRefPubMed
23.
Zurück zum Zitat Wang H, Brozoski TJ, Turner JG, Ling L, Parrish JL, Hughes LF, Caspary DM (2009) Plasticity at glycinergic synapses in dorsal cochlear nucleus of rats with behavioral evidence of tinnitus. Neuroscience 164:747–759CrossRefPubMedPubMedCentral Wang H, Brozoski TJ, Turner JG, Ling L, Parrish JL, Hughes LF, Caspary DM (2009) Plasticity at glycinergic synapses in dorsal cochlear nucleus of rats with behavioral evidence of tinnitus. Neuroscience 164:747–759CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Wu C, Martel DT, Shore SE (2016) Increased synchrony and bursting of dorsal cochlear nucleus fusiform cells correlate with tinnitus. J Neurosci 36:2068–2073CrossRefPubMedPubMedCentral Wu C, Martel DT, Shore SE (2016) Increased synchrony and bursting of dorsal cochlear nucleus fusiform cells correlate with tinnitus. J Neurosci 36:2068–2073CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Marks KL, Martel DT, Wu C, Basura GJ, Roberts LE, Schvartz-Leyzac KC, Shore SE (2017) Auditory-somatosensory stimulation desynchronizes brain circuitry to reduce tinnitus in guinea pigs and humans. Sci Transl Med. (in press) Marks KL, Martel DT, Wu C, Basura GJ, Roberts LE, Schvartz-Leyzac KC, Shore SE (2017) Auditory-somatosensory stimulation desynchronizes brain circuitry to reduce tinnitus in guinea pigs and humans. Sci Transl Med. (in press)
Metadaten
Titel
Neural plasticity and its initiating conditions in tinnitus
verfasst von
L. E. Roberts
Publikationsdatum
12.12.2017
Verlag
Springer Medizin
Erschienen in
HNO / Ausgabe 3/2018
Print ISSN: 0017-6192
Elektronische ISSN: 1433-0458
DOI
https://doi.org/10.1007/s00106-017-0449-2

Weitere Artikel der Ausgabe 3/2018

HNO 3/2018 Zur Ausgabe

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.