Skip to main content
Erschienen in:

27.02.2024 | Original Article

Neural radiance fields-based multi-view endoscopic scene reconstruction for surgical simulation

verfasst von: Zhibao Qin, Kai Qian, Shaojun Liang, Qinhong Zheng, Jun Peng, Yonghang Tai

Erschienen in: International Journal of Computer Assisted Radiology and Surgery | Ausgabe 5/2024

Einloggen, um Zugang zu erhalten

Abstract

Purpose

In virtual surgery, the appearance of 3D models constructed from CT images lacks realism, leading to potential misunderstandings among residents. Therefore, it is crucial to reconstruct realistic endoscopic scene using multi-view images captured by an endoscope.

Methods

We propose an Endoscope-NeRF network for implicit radiance fields reconstruction of endoscopic scene under non-fixed light source, and synthesize novel views using volume rendering. Endoscope-NeRF network with multiple MLP networks and a ray transformer network represents endoscopic scene as implicit field function with color and volume density at continuous 5D vectors (3D position and 2D direction). The final synthesized image is obtained by aggregating all sampling points on each ray of the target camera using volume rendering. Our method considers the effect of distance from the light source to the sampling point on the scene radiance.

Results

Our network is validated on the lung, liver, kidney and heart of pig collected by our device. The results show that the novel views of endoscopic scene synthesized by our method outperform existing methods (NeRF and IBRNet) in terms of PSNR, SSIM, and LPIPS metrics.

Conclusion

Our network can effectively learn a radiance field function with generalization ability. Fine-tuning the pre-trained model on a new endoscopic scene to further optimize the neural radiance fields of the scene, which can provide more realistic, high-resolution rendered images for surgical simulation.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Jensen K, Bjerrum F, Hansen HJ, Petersen RH, Pedersen JH, Konge L (2017) Using virtual reality simulation to assess competence in video-assisted thoracoscopic surgery (vats) lobectomy. Surg Endosc 31(6):2520–2528CrossRefPubMed Jensen K, Bjerrum F, Hansen HJ, Petersen RH, Pedersen JH, Konge L (2017) Using virtual reality simulation to assess competence in video-assisted thoracoscopic surgery (vats) lobectomy. Surg Endosc 31(6):2520–2528CrossRefPubMed
2.
Zurück zum Zitat Chan S, Shum H-Y, Ng K-T (2007) Image-based rendering and synthesis. IEEE Signal Process Mag 24(6):22–33CrossRef Chan S, Shum H-Y, Ng K-T (2007) Image-based rendering and synthesis. IEEE Signal Process Mag 24(6):22–33CrossRef
3.
Zurück zum Zitat Mildenhall B, Srinivasan PP, Tancik M, Barron JT, Ramamoorthi R, Ng R (2021) Nerf: representing scenes as neural radiance fields for view synthesis. Commun ACM 65(1):99–106CrossRef Mildenhall B, Srinivasan PP, Tancik M, Barron JT, Ramamoorthi R, Ng R (2021) Nerf: representing scenes as neural radiance fields for view synthesis. Commun ACM 65(1):99–106CrossRef
4.
Zurück zum Zitat Zhang K, Riegler G, Snavely N, Koltun VN (2020) Analyzing and improving neural radiance fields. Adv Neural Inf Process Syst Zhang K, Riegler G, Snavely N, Koltun VN (2020) Analyzing and improving neural radiance fields. Adv Neural Inf Process Syst
5.
Zurück zum Zitat Chen A, Xu Z, Zhao F, Zhang X, Xiang F, Yu J, Su H (2021) Mvsnerf: fast generalizable radiance field reconstruction from multi-view stereo. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 14124–14133 Chen A, Xu Z, Zhao F, Zhang X, Xiang F, Yu J, Su H (2021) Mvsnerf: fast generalizable radiance field reconstruction from multi-view stereo. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 14124–14133
6.
Zurück zum Zitat Barron JT, Mildenhall B, Verbin D, Srinivasan PP, Hedman P (2022) Mip-nerf 360: unbounded anti-aliased neural radiance fields. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 5470–5479 Barron JT, Mildenhall B, Verbin D, Srinivasan PP, Hedman P (2022) Mip-nerf 360: unbounded anti-aliased neural radiance fields. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 5470–5479
7.
Zurück zum Zitat Müller T, Evans A, Schied C, Keller A (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Gr 41(4):1–15CrossRef Müller T, Evans A, Schied C, Keller A (2022) Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans Gr 41(4):1–15CrossRef
8.
Zurück zum Zitat Wang Q, Wang Z, Genova K, Srinivasan PP, Zhou H, Barron JT, Martin R, Snavely N, Funkhouser T (2021) Ibrnet: learning multi-view image-based rendering. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 4690–4699 Wang Q, Wang Z, Genova K, Srinivasan PP, Zhou H, Barron JT, Martin R, Snavely N, Funkhouser T (2021) Ibrnet: learning multi-view image-based rendering. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 4690–4699
9.
Zurück zum Zitat Garbin SJ, Kowalski M, Johnson M, Shotton J, Valentin J (2021) Fastnerf: high-fidelity neural rendering at 200fps. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 14346–14355 Garbin SJ, Kowalski M, Johnson M, Shotton J, Valentin J (2021) Fastnerf: high-fidelity neural rendering at 200fps. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 14346–14355
10.
Zurück zum Zitat Yu A, Ye V, Tancik M, Kanazawa A (2021) pixelnerf: neural radiance fields from one or few images. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 4578–4587 Yu A, Ye V, Tancik M, Kanazawa A (2021) pixelnerf: neural radiance fields from one or few images. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 4578–4587
11.
Zurück zum Zitat Xu Q, Xu Z, Philip J, Bi S, Shu Z, Sunkavalli K, Neumann U (2022) Point-nerf: point-based neural radiance fields. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 5438–5448 Xu Q, Xu Z, Philip J, Bi S, Shu Z, Sunkavalli K, Neumann U (2022) Point-nerf: point-based neural radiance fields. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 5438–5448
12.
Zurück zum Zitat Drebin RA, Carpenter L, Hanrahan P (1988) Volume rendering. ACM Siggraph Comput Gr 22(4):65–74CrossRef Drebin RA, Carpenter L, Hanrahan P (1988) Volume rendering. ACM Siggraph Comput Gr 22(4):65–74CrossRef
13.
Zurück zum Zitat Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the 23rd annual conference on computer graphics and interactive techniques, pp 31–42 Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the 23rd annual conference on computer graphics and interactive techniques, pp 31–42
14.
Zurück zum Zitat Penner E, Zhang L (2017) Soft 3d reconstruction for view synthesis. ACM Trans Gr 36(6):1–11CrossRef Penner E, Zhang L (2017) Soft 3d reconstruction for view synthesis. ACM Trans Gr 36(6):1–11CrossRef
15.
Zurück zum Zitat Chlubna T, Milet T, Zemčík P (2021) Real-time per-pixel focusing method for light field rendering. Comput Vis Med 7(3):319–333CrossRef Chlubna T, Milet T, Zemčík P (2021) Real-time per-pixel focusing method for light field rendering. Comput Vis Med 7(3):319–333CrossRef
16.
Zurück zum Zitat Yao Y, Luo Z, Li S, Fang T, Quan L (2018) Mvsnet: depth inference for unstructured multi-view stereo. In: Proceedings of the European conference on computer vision (ECCV), pp 767–783 Yao Y, Luo Z, Li S, Fang T, Quan L (2018) Mvsnet: depth inference for unstructured multi-view stereo. In: Proceedings of the European conference on computer vision (ECCV), pp 767–783
17.
Zurück zum Zitat Zhang K, Luan F, Li Z, Snavely N (2022) Iron: inverse rendering by optimizing neural sdfs and materials from photometric images. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 5565–5574 Zhang K, Luan F, Li Z, Snavely N (2022) Iron: inverse rendering by optimizing neural sdfs and materials from photometric images. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 5565–5574
18.
Zurück zum Zitat Xiangli Y, Xu L, Pan X, Zhao N, Rao A, Theobalt C, Dai B, Lin D (2022) Bungeenerf: Progressive neural radiance field for extreme multi-scale scene rendering. In: European conference on computer vision. Springer, pp 106–122 Xiangli Y, Xu L, Pan X, Zhao N, Rao A, Theobalt C, Dai B, Lin D (2022) Bungeenerf: Progressive neural radiance field for extreme multi-scale scene rendering. In: European conference on computer vision. Springer, pp 106–122
19.
Zurück zum Zitat Kajiya JT (1986) The rendering equation. In: Proceedings of the 13th annual conference on computer graphics and interactive techniques, pp 143–150 Kajiya JT (1986) The rendering equation. In: Proceedings of the 13th annual conference on computer graphics and interactive techniques, pp 143–150
20.
Zurück zum Zitat Moreno I, Viveros-Méndez P (2021) Modeling the irradiation pattern of leds at short distances. Opt Express 29(5):6845–6853CrossRefPubMed Moreno I, Viveros-Méndez P (2021) Modeling the irradiation pattern of leds at short distances. Opt Express 29(5):6845–6853CrossRefPubMed
21.
Zurück zum Zitat Zhu J, Zhao S, Xu Y, Meng X, Wang L, Yan L-Q (2022) Recent advances in glinty appearance rendering. Comput Vis Med, pp 1–18 Zhu J, Zhao S, Xu Y, Meng X, Wang L, Yan L-Q (2022) Recent advances in glinty appearance rendering. Comput Vis Med, pp 1–18
22.
Zurück zum Zitat Mildenhall B, Srinivasan PP, Ortiz-Cayon R, Kalantari NK, Ramamoorthi R, Ng R, Kar A (2019) Local light field fusion: practical view synthesis with prescriptive sampling guidelines. ACM Trans Gr 38(4):1–14CrossRef Mildenhall B, Srinivasan PP, Ortiz-Cayon R, Kalantari NK, Ramamoorthi R, Ng R, Kar A (2019) Local light field fusion: practical view synthesis with prescriptive sampling guidelines. ACM Trans Gr 38(4):1–14CrossRef
23.
Zurück zum Zitat Schonberger JL, Frahm J-M (2016) Structure-from-motion revisited. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4104–4113 Schonberger JL, Frahm J-M (2016) Structure-from-motion revisited. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4104–4113
24.
Zurück zum Zitat Dabov K, Foi A, Katkovnik V, Egiazarian K (2007) Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Trans Image Process 16(8):2080–2095CrossRefPubMed Dabov K, Foi A, Katkovnik V, Egiazarian K (2007) Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Trans Image Process 16(8):2080–2095CrossRefPubMed
25.
Zurück zum Zitat Oktay O, Schlemper J, Folgoc LL, Lee M, Heinrich M, Misawa K, Mori K, McDonagh S, Hammerla NY, Kainz B, Glocker B, Rueckert D (2018) Attention u-net: learning where to look for the pancreas. In: Medical imaging with deep learning Oktay O, Schlemper J, Folgoc LL, Lee M, Heinrich M, Misawa K, Mori K, McDonagh S, Hammerla NY, Kainz B, Glocker B, Rueckert D (2018) Attention u-net: learning where to look for the pancreas. In: Medical imaging with deep learning
26.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778
27.
Zurück zum Zitat Hirschberg J, Manning CD (2015) Advances in natural language processing. Science 349(6245):261–266CrossRefPubMed Hirschberg J, Manning CD (2015) Advances in natural language processing. Science 349(6245):261–266CrossRefPubMed
28.
Zurück zum Zitat Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need. Adv Neural Inf Process Syst 30 Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need. Adv Neural Inf Process Syst 30
Metadaten
Titel
Neural radiance fields-based multi-view endoscopic scene reconstruction for surgical simulation
verfasst von
Zhibao Qin
Kai Qian
Shaojun Liang
Qinhong Zheng
Jun Peng
Yonghang Tai
Publikationsdatum
27.02.2024
Verlag
Springer International Publishing
Erschienen in
International Journal of Computer Assisted Radiology and Surgery / Ausgabe 5/2024
Print ISSN: 1861-6410
Elektronische ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-024-03080-8

Neu im Fachgebiet Radiologie

Stumme Schlaganfälle − ein häufiger Nebenbefund im Kopf-CT?

In 4% der in der Notfallambulanz initiierten zerebralen Bildgebung sind „alte“ Schlaganfälle zu erkennen. Gar nicht so selten handelt es sich laut einer aktuellen Studie dabei um unbemerkte Insulte. Bietet sich hier womöglich die Chance auf ein effektives opportunistisches Screening?

Stören weiße Wände und viel Licht die Bildqualitätskontrolle?

Wenn es darum geht, die technische Qualität eines Mammogramms zu beurteilen, könnten graue Wandfarbe und reduzierte Beleuchtung im Bildgebungsraum von Vorteil sein. Darauf deuten zumindest Ergebnisse einer kleinen Studie hin. 

PMBCL mit CMR: Radiatio kann ohne Risiko weggelassen werden

Patienten mit primär mediastinalem B-Zell-Lymphom (PMBCL), die nach der Induktionstherapie eine komplette metabolische Remission (CMR) erreichen und keine konsolidierende Bestrahlung erhalten, müssen offenbar keine Überlebensnachteile fürchten.

Das alles ändert sich für Arztpraxen in 2025

  • 31.12.2024
  • EBM
  • Nachrichten

Ab Januar greifen jede Menge Neuerungen – ob im EBM, Arbeits- und Steuerrecht oder bei der digitalen Vernetzung. Darunter einige Verbesserungen, aber teils auch Mehraufwand. „Same procedure as every year?“ – Ein Überblick.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.