Skip to main content
main-content
Erschienen in: Brain Structure and Function 1/2018

29.08.2017 | Original Article

Neuronal connections of the central amygdalar nucleus with refeeding-activated brain areas in rats

verfasst von: Györgyi Zséli, Barbara Vida, Anett Szilvásy-Szabó, Mónika Tóth, Ronald M. Lechan, Csaba Fekete

Erschienen in: Brain Structure and Function | Ausgabe 1/2018

Einloggen, um Zugang zu erhalten

Abstract

Following fasting, satiety is accompanied by neuronal activation in brain areas including the central amygdalar nucleus (CEA). Since CEA is known to inhibit food intake, we hypothesized that CEA contributes to the termination of meal during refeeding. To better understand the organization of this satiety-related circuit, the interconnections of the CEA with refeeding-activated neuronal groups were elucidated using retrograde (cholera toxin-β subunit, CTB) and anterograde (phaseolus vulgaris leucoagglutinin, PHA-L) tracers in male rats. C-Fos-immunoreactivity was used as marker of neuronal activation. The refeeding-activated input of the CEA primarily originated from the paraventricular thalamic, parasubthalamic and parabrachial nuclei. Few CTB-c-Fos double-labeled neurons were detected in the prefrontal cortex, lateral hypothalamic area, nucleus of the solitary tract (NTS) and the bed nuclei of the stria terminalis (BNST). Only few refeeding-activated proopiomelanocortin-producing neurons of the arcuate nucleus projected to the CEA. Anterograde tract tracing revealed a high density of PHAL-labeled axons contacted with refeeding-activated neurons in the BNST, lateral hypothalamic area, parasubthalamic, paraventricular thalamic and parabrachial nuclei and NTS; a low density of labeled axons was found in the paraventricular hypothalamic nucleus. Chemogenetic activation of the medial CEA (CEAm) inhibited food intake during the first hour of refeeding, while activation of lateral CEA had no effect. These data demonstrate the existence of reciprocal connections between the CEA and distinct refeeding-activated hypothalamic, thalamic and brainstem nuclei, suggesting the importance of short feedback loops in the regulation of satiety and importance of the CEAm in the regulation of food intake during refeeding.
Literatur
Zurück zum Zitat Baldwin AE, Holahan MR, Sadeghian K, Kelley AE (2000) N-methyl- d-aspartate receptor-dependent plasticity within a distributed corticostriatal network mediates appetitive instrumental learning. Behav Neurosci 114(1):84–98 CrossRefPubMed Baldwin AE, Holahan MR, Sadeghian K, Kelley AE (2000) N-methyl- d-aspartate receptor-dependent plasticity within a distributed corticostriatal network mediates appetitive instrumental learning. Behav Neurosci 114(1):84–98 CrossRefPubMed
Zurück zum Zitat Baldwin AE, Sadeghian K, Kelley AE (2002) Appetitive instrumental learning requires coincident activation of NMDA and dopamine D1 receptors within the medial prefrontal cortex. J Neurosci Off J Soc Neurosci 22(3):1063–1071 Baldwin AE, Sadeghian K, Kelley AE (2002) Appetitive instrumental learning requires coincident activation of NMDA and dopamine D1 receptors within the medial prefrontal cortex. J Neurosci Off J Soc Neurosci 22(3):1063–1071
Zurück zum Zitat Balleine BW, Dickinson A (1998) Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology 37(4–5):407–419 CrossRefPubMed Balleine BW, Dickinson A (1998) Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology 37(4–5):407–419 CrossRefPubMed
Zurück zum Zitat Balthasar N, Dalgaard LT, Lee CE, Yu J, Funahashi H, Williams T, Ferreira M, Tang V, McGovern RA, Kenny CD, Christiansen LM, Edelstein E, Choi B, Boss O, Aschkenasi C, Zhang CY, Mountjoy K, Kishi T, Elmquist JK, Lowell BB (2005) Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell 123(3):493–505. doi: 10.​1016/​j.​cell.​2005.​08.​035 CrossRefPubMed Balthasar N, Dalgaard LT, Lee CE, Yu J, Funahashi H, Williams T, Ferreira M, Tang V, McGovern RA, Kenny CD, Christiansen LM, Edelstein E, Choi B, Boss O, Aschkenasi C, Zhang CY, Mountjoy K, Kishi T, Elmquist JK, Lowell BB (2005) Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell 123(3):493–505. doi: 10.​1016/​j.​cell.​2005.​08.​035 CrossRefPubMed
Zurück zum Zitat Barrachina MD, Martinez V, Wang L, Wei JY, Tache Y (1997) Synergistic interaction between leptin and cholecystokinin to reduce short-term food intake in lean mice. Proc Natl Acad Sci USA 94(19):10455–10460 CrossRefPubMedPubMedCentral Barrachina MD, Martinez V, Wang L, Wei JY, Tache Y (1997) Synergistic interaction between leptin and cholecystokinin to reduce short-term food intake in lean mice. Proc Natl Acad Sci USA 94(19):10455–10460 CrossRefPubMedPubMedCentral
Zurück zum Zitat Bhatnagar S, Dallman MF (1999) The paraventricular nucleus of the thalamus alters rhythms in core temperature and energy balance in a state-dependent manner. Brain Res 851(1–2):66–75 CrossRefPubMed Bhatnagar S, Dallman MF (1999) The paraventricular nucleus of the thalamus alters rhythms in core temperature and energy balance in a state-dependent manner. Brain Res 851(1–2):66–75 CrossRefPubMed
Zurück zum Zitat Bienkowski MS, Rinaman L (2013) Common and distinct neural inputs to the medial central nucleus of the amygdala and anterior ventrolateral bed nucleus of stria terminalis in rats. Brain Struct Funct 218(1):187–208. doi: 10.​1007/​s00429-012-0393-6 CrossRefPubMed Bienkowski MS, Rinaman L (2013) Common and distinct neural inputs to the medial central nucleus of the amygdala and anterior ventrolateral bed nucleus of stria terminalis in rats. Brain Struct Funct 218(1):187–208. doi: 10.​1007/​s00429-012-0393-6 CrossRefPubMed
Zurück zum Zitat Chen S, Su HS (1990) Afferent connections of the thalamic paraventricular and parataenial nuclei in the rat—a retrograde tracing study with iontophoretic application of Fluoro-Gold. Brain Res 522(1):1–6 CrossRefPubMed Chen S, Su HS (1990) Afferent connections of the thalamic paraventricular and parataenial nuclei in the rat—a retrograde tracing study with iontophoretic application of Fluoro-Gold. Brain Res 522(1):1–6 CrossRefPubMed
Zurück zum Zitat Chometton S, Pedron S, Peterschmitt Y, Van Waes V, Fellmann D, Risold PY (2016) A premammillary lateral hypothalamic nuclear complex responds to hedonic but not aversive tastes in the male rat. Brain Struct Funct 221(4):2183–2208. doi: 10.​1007/​s00429-015-1038-3 CrossRefPubMed Chometton S, Pedron S, Peterschmitt Y, Van Waes V, Fellmann D, Risold PY (2016) A premammillary lateral hypothalamic nuclear complex responds to hedonic but not aversive tastes in the male rat. Brain Struct Funct 221(4):2183–2208. doi: 10.​1007/​s00429-015-1038-3 CrossRefPubMed
Zurück zum Zitat Cornwall J, Phillipson OT (1988) Afferent projections to the dorsal thalamus of the rat as shown by retrograde lectin transport. II. The midline nuclei. Brain Res Bull 21(2):147–161 CrossRefPubMed Cornwall J, Phillipson OT (1988) Afferent projections to the dorsal thalamus of the rat as shown by retrograde lectin transport. II. The midline nuclei. Brain Res Bull 21(2):147–161 CrossRefPubMed
Zurück zum Zitat DeCoteau WE, Kesner RP, Williams JM (1997) Short-term memory for food reward magnitude: the role of the prefrontal cortex. Behav Brain Res 88(2):239–249 CrossRefPubMed DeCoteau WE, Kesner RP, Williams JM (1997) Short-term memory for food reward magnitude: the role of the prefrontal cortex. Behav Brain Res 88(2):239–249 CrossRefPubMed
Zurück zum Zitat Delgado JM, Anand BK (1953) Increase of food intake induced by electrical stimulation of the lateral hypothalamus. Am J Physiol 172(1):162–168 PubMed Delgado JM, Anand BK (1953) Increase of food intake induced by electrical stimulation of the lateral hypothalamus. Am J Physiol 172(1):162–168 PubMed
Zurück zum Zitat Elmquist JK, Elias CF, Saper CB (1999) From lesions to leptin: hypothalamic control of food intake and body weight. Neuron 22(2):221–232 CrossRefPubMed Elmquist JK, Elias CF, Saper CB (1999) From lesions to leptin: hypothalamic control of food intake and body weight. Neuron 22(2):221–232 CrossRefPubMed
Zurück zum Zitat French SJ, Murray B, Rumsey RD, Sepple CP, Read NW (1993) Preliminary studies on the gastrointestinal responses to fatty meals in obese people. Int J Obes Relat Metab Disord J Int Assoc Study Obes 17(5):295–300 French SJ, Murray B, Rumsey RD, Sepple CP, Read NW (1993) Preliminary studies on the gastrointestinal responses to fatty meals in obese people. Int J Obes Relat Metab Disord J Int Assoc Study Obes 17(5):295–300
Zurück zum Zitat Geliebter A, Westreich S, Gage D (1988) Gastric distention by balloon and test-meal intake in obese and lean subjects. Am J Clin Nutr 48(3):592–594 CrossRefPubMed Geliebter A, Westreich S, Gage D (1988) Gastric distention by balloon and test-meal intake in obese and lean subjects. Am J Clin Nutr 48(3):592–594 CrossRefPubMed
Zurück zum Zitat Grill HJ, Hayes MR (2009) The nucleus tractus solitarius: a portal for visceral afferent signal processing, energy status assessment and integration of their combined effects on food intake. Int J Obes 33(Suppl 1):S11–S15. doi: 10.​1038/​ijo.​2009.​10 CrossRef Grill HJ, Hayes MR (2009) The nucleus tractus solitarius: a portal for visceral afferent signal processing, energy status assessment and integration of their combined effects on food intake. Int J Obes 33(Suppl 1):S11–S15. doi: 10.​1038/​ijo.​2009.​10 CrossRef
Zurück zum Zitat Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q, Berkemeier LR, Gu W, Kesterson RA, Boston BA, Cone RD, Smith FJ, Campfield LA, Burn P, Lee F (1997) Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88(1):131–141 CrossRefPubMed Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q, Berkemeier LR, Gu W, Kesterson RA, Boston BA, Cone RD, Smith FJ, Campfield LA, Burn P, Lee F (1997) Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88(1):131–141 CrossRefPubMed
Zurück zum Zitat Ji H, Friedman MI (1999) Compensatory hyperphagia after fasting tracks recovery of liver energy status. Physiol Behav 68(1–2):181–186 CrossRefPubMed Ji H, Friedman MI (1999) Compensatory hyperphagia after fasting tracks recovery of liver energy status. Physiol Behav 68(1–2):181–186 CrossRefPubMed
Zurück zum Zitat Kirouac GJ, Parsons MP, Li S (2006) Innervation of the paraventricular nucleus of the thalamus from cocaine- and amphetamine-regulated transcript (CART) containing neurons of the hypothalamus. J Comp Neurol 497(2):155–165. doi: 10.​1002/​cne.​20971 CrossRefPubMed Kirouac GJ, Parsons MP, Li S (2006) Innervation of the paraventricular nucleus of the thalamus from cocaine- and amphetamine-regulated transcript (CART) containing neurons of the hypothalamus. J Comp Neurol 497(2):155–165. doi: 10.​1002/​cne.​20971 CrossRefPubMed
Zurück zum Zitat Kishi T, Aschkenasi CJ, Lee CE, Mountjoy KG, Saper CB, Elmquist JK (2003) Expression of melanocortin 4 receptor mRNA in the central nervous system of the rat. J Comp Neurol 457(3):213–235. doi: 10.​1002/​cne.​10454 CrossRefPubMed Kishi T, Aschkenasi CJ, Lee CE, Mountjoy KG, Saper CB, Elmquist JK (2003) Expression of melanocortin 4 receptor mRNA in the central nervous system of the rat. J Comp Neurol 457(3):213–235. doi: 10.​1002/​cne.​10454 CrossRefPubMed
Zurück zum Zitat Lin Z, Gao N, Hu HZ, Liu S, Gao C, Kim G, Ren J, Xia Y, Peck OC, Wood JD (2002) Immunoreactivity of Hu proteins facilitates identification of myenteric neurones in guinea-pig small intestine. Neurogastroenterol Motility Off J Eur Gastrointest Motil Soc 14(2):197–204 CrossRef Lin Z, Gao N, Hu HZ, Liu S, Gao C, Kim G, Ren J, Xia Y, Peck OC, Wood JD (2002) Immunoreactivity of Hu proteins facilitates identification of myenteric neurones in guinea-pig small intestine. Neurogastroenterol Motility Off J Eur Gastrointest Motil Soc 14(2):197–204 CrossRef
Zurück zum Zitat Liposits Z, Setalo G, Flerko B (1984) Application of the silver-gold intensified 3,3′-diaminobenzidine chromogen to the light and electron microscopic detection of the luteinizing hormone-releasing hormone system of the rat brain. Neuroscience 13(2):513–525 CrossRefPubMed Liposits Z, Setalo G, Flerko B (1984) Application of the silver-gold intensified 3,3′-diaminobenzidine chromogen to the light and electron microscopic detection of the luteinizing hormone-releasing hormone system of the rat brain. Neuroscience 13(2):513–525 CrossRefPubMed
Zurück zum Zitat Murphy EM, Defontgalland D, Costa M, Brookes SJ, Wattchow DA (2007) Quantification of subclasses of human colonic myenteric neurons by immunoreactivity to Hu, choline acetyltransferase and nitric oxide synthase. Neurogastroenterol Motil Off J Eur Gastrointest Motil Soc 19(2):126–134. doi: 10.​1111/​j.​1365-2982.​2006.​00843.​x CrossRef Murphy EM, Defontgalland D, Costa M, Brookes SJ, Wattchow DA (2007) Quantification of subclasses of human colonic myenteric neurons by immunoreactivity to Hu, choline acetyltransferase and nitric oxide synthase. Neurogastroenterol Motil Off J Eur Gastrointest Motil Soc 19(2):126–134. doi: 10.​1111/​j.​1365-2982.​2006.​00843.​x CrossRef
Zurück zum Zitat Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic Press, San Diego Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic Press, San Diego
Zurück zum Zitat Reznikov LR, Reagan LP, Fadel JR (2008) Activation of phenotypically distinct neuronal subpopulations in the anterior subdivision of the rat basolateral amygdala following acute and repeated stress. J Comp Neurol 508(3):458–472. doi: 10.​1002/​cne.​21687 CrossRefPubMed Reznikov LR, Reagan LP, Fadel JR (2008) Activation of phenotypically distinct neuronal subpopulations in the anterior subdivision of the rat basolateral amygdala following acute and repeated stress. J Comp Neurol 508(3):458–472. doi: 10.​1002/​cne.​21687 CrossRefPubMed
Zurück zum Zitat Ritter S, Dinh TT, Zhang Y (2000) Localization of hindbrain glucoreceptive sites controlling food intake and blood glucose. Brain Res 856(1–2):37–47 CrossRefPubMed Ritter S, Dinh TT, Zhang Y (2000) Localization of hindbrain glucoreceptive sites controlling food intake and blood glucose. Brain Res 856(1–2):37–47 CrossRefPubMed
Zurück zum Zitat Rollins BL, King BM (2000) Amygdala-lesion obesity: what is the role of the various amygdaloid nuclei? Am J Physiol Regul Integr Comp Physiol 279(4):R1348–R1356 CrossRefPubMed Rollins BL, King BM (2000) Amygdala-lesion obesity: what is the role of the various amygdaloid nuclei? Am J Physiol Regul Integr Comp Physiol 279(4):R1348–R1356 CrossRefPubMed
Zurück zum Zitat Sato I, Arima H, Ozaki N, Watanabe M, Goto M, Hayashi M, Banno R, Nagasaki H, Oiso Y (2005) Insulin inhibits neuropeptide Y gene expression in the arcuate nucleus through GABAergic systems. J Neurosci Off J Soc Neurosci 25(38):8657–8664. doi: 10.​1523/​JNEUROSCI.​2739-05.​2005 CrossRef Sato I, Arima H, Ozaki N, Watanabe M, Goto M, Hayashi M, Banno R, Nagasaki H, Oiso Y (2005) Insulin inhibits neuropeptide Y gene expression in the arcuate nucleus through GABAergic systems. J Neurosci Off J Soc Neurosci 25(38):8657–8664. doi: 10.​1523/​JNEUROSCI.​2739-05.​2005 CrossRef
Zurück zum Zitat Schwartz GJ (2000) The role of gastrointestinal vagal afferents in the control of food intake: current prospects. Nutrition 16(10):866–873 CrossRefPubMed Schwartz GJ (2000) The role of gastrointestinal vagal afferents in the control of food intake: current prospects. Nutrition 16(10):866–873 CrossRefPubMed
Zurück zum Zitat Serrats J, Sawchenko PE (2006) CNS activational responses to staphylococcal enterotoxin B: T-lymphocyte-dependent immune challenge effects on stress-related circuitry. J Comp Neurol 495(2):236–254. doi: 10.​1002/​cne.​20872 CrossRefPubMed Serrats J, Sawchenko PE (2006) CNS activational responses to staphylococcal enterotoxin B: T-lymphocyte-dependent immune challenge effects on stress-related circuitry. J Comp Neurol 495(2):236–254. doi: 10.​1002/​cne.​20872 CrossRefPubMed
Zurück zum Zitat Swanson LW (2000) Cerebral hemisphere regulation of motivated behavior. Brain Res 886(1–2):113–164 CrossRefPubMed Swanson LW (2000) Cerebral hemisphere regulation of motivated behavior. Brain Res 886(1–2):113–164 CrossRefPubMed
Zurück zum Zitat Timofeeva E, Picard F, Duclos M, Deshaies Y, Richard D (2002) Neuronal activation and corticotropin-releasing hormone expression in the brain of obese (fa/fa) and lean (fa/?) Zucker rats in response to refeeding. Eur J Neurosci 15(6):1013–1029 CrossRefPubMed Timofeeva E, Picard F, Duclos M, Deshaies Y, Richard D (2002) Neuronal activation and corticotropin-releasing hormone expression in the brain of obese (fa/fa) and lean (fa/?) Zucker rats in response to refeeding. Eur J Neurosci 15(6):1013–1029 CrossRefPubMed
Zurück zum Zitat Wirth MM, Olszewski PK, Yu C, Levine AS, Giraudo SQ (2001) Paraventricular hypothalamic alpha-melanocyte-stimulating hormone and MTII reduce feeding without causing aversive effects. Peptides 22(1):129–134 CrossRefPubMed Wirth MM, Olszewski PK, Yu C, Levine AS, Giraudo SQ (2001) Paraventricular hypothalamic alpha-melanocyte-stimulating hormone and MTII reduce feeding without causing aversive effects. Peptides 22(1):129–134 CrossRefPubMed
Zurück zum Zitat Wise RA (1974) Lateral hypothalamic electrical stimulation: does it make animals ‘hungry’? Brain Res 67(2):187–209 CrossRefPubMed Wise RA (1974) Lateral hypothalamic electrical stimulation: does it make animals ‘hungry’? Brain Res 67(2):187–209 CrossRefPubMed
Zurück zum Zitat Wu Q, Lemus MB, Stark R, Bayliss JA, Reichenbach A, Lockie SH, Andrews ZB (2014) The temporal pattern of cfos activation in hypothalamic, cortical, and brainstem nuclei in response to fasting and refeeding in male mice. Endocrinology 155(3):840–853. doi: 10.​1210/​en.​2013-1831 CrossRefPubMed Wu Q, Lemus MB, Stark R, Bayliss JA, Reichenbach A, Lockie SH, Andrews ZB (2014) The temporal pattern of cfos activation in hypothalamic, cortical, and brainstem nuclei in response to fasting and refeeding in male mice. Endocrinology 155(3):840–853. doi: 10.​1210/​en.​2013-1831 CrossRefPubMed
Metadaten
Titel
Neuronal connections of the central amygdalar nucleus with refeeding-activated brain areas in rats
verfasst von
Györgyi Zséli
Barbara Vida
Anett Szilvásy-Szabó
Mónika Tóth
Ronald M. Lechan
Csaba Fekete
Publikationsdatum
29.08.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 1/2018
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-017-1501-4

Weitere Artikel der Ausgabe 1/2018

Brain Structure and Function 1/2018 Zur Ausgabe

Neu im Fachgebiet Neurologie

Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Neurologie und bleiben Sie gut informiert – ganz bequem per eMail.