Skip to main content
Erschienen in: Brain Structure and Function 4/2016

26.04.2015 | Original Article

Neurons in the lateral part of the lumbar spinal cord show distinct novel axon trajectories and are excited by short propriospinal ascending inputs

verfasst von: Zs. Antal, L. L. Luz, B. V. Safronov, M. Antal, Peter Szücs

Erschienen in: Brain Structure and Function | Ausgabe 4/2016

Einloggen, um Zugang zu erhalten

Abstract

The role of spinal dorsal horn propriospinal connections in nociceptive processing is not yet established. Recently described, rostrocaudally oriented axon collaterals of lamina I projection and local-circuit neurons (PNs and LCNs) running in the dorsolateral funiculus (DLF) may serve as the anatomical substrate for intersegmental processing. Putative targets of these axons include lateral dendrites of superficial dorsal horn neurons, including PNs, and also neurons in the lateral spinal nucleus (LSN) that are thought to be important integrator units receiving, among others, visceral sensory information. Here we used an intact spinal cord preparation to study intersegmental connections within the lateral part of the superficial dorsal horn. We detected brief monosynaptic and prolonged polysynaptic excitation of lamina I and LSN neurons when stimulating individual dorsal horn neurons located caudally, even in neighboring spinal cord segments. These connections, however, were infrequent. We also revealed that some projection neurons outside the dorsal grey matter and in the LSN have distinct, previously undescribed course of their projection axon. Our findings indicate that axon collaterals of lamina I PNs and LCNs in the DLF rarely form functional connections with other lamina I and LSN neurons and that the majority of their targets are on other elements of the dorsal horn. The unique axon trajectories of neurons in the dorsolateral aspect of the spinal cord, including the LSN do not fit our present understanding of midline axon guidance and suggest that their function and development differ from the neurons inside lamina I. These findings emphasize the importance of understanding the connectivity matrix of the superficial dorsal horn in order to decipher spinal sensory information processing.
Literatur
Zurück zum Zitat Aguiar P, Sousa M, Szucs P (2013) Versatile morphometric analysis and visualization of the three-dimensional structure of neurons. Neuroinformatics 11(4):393–403CrossRefPubMed Aguiar P, Sousa M, Szucs P (2013) Versatile morphometric analysis and visualization of the three-dimensional structure of neurons. Neuroinformatics 11(4):393–403CrossRefPubMed
Zurück zum Zitat Al-Khater KM, Todd AJ (2009) Collateral projections of neurons in laminae I, III, and IV of rat spinal cord to thalamus, periaqueductal gray matter, and lateral parabrachial area. J Comp Neurol 515(6):629–646CrossRefPubMedPubMedCentral Al-Khater KM, Todd AJ (2009) Collateral projections of neurons in laminae I, III, and IV of rat spinal cord to thalamus, periaqueductal gray matter, and lateral parabrachial area. J Comp Neurol 515(6):629–646CrossRefPubMedPubMedCentral
Zurück zum Zitat Augsburger A, Schuchardt A, Hoskins S, Dodd J, Butler S (1999) BMPs as mediators of roof plate repulsion of commissural neurons. Neuron 24(1):127–141CrossRefPubMed Augsburger A, Schuchardt A, Hoskins S, Dodd J, Butler S (1999) BMPs as mediators of roof plate repulsion of commissural neurons. Neuron 24(1):127–141CrossRefPubMed
Zurück zum Zitat Braz J, Solorzano C, Wang X, Basbaum AI (2014) Transmitting pain and itch messages: a contemporary view of the spinal cord circuits that generate gate control. Neuron 82(3):522–536CrossRefPubMedPubMedCentral Braz J, Solorzano C, Wang X, Basbaum AI (2014) Transmitting pain and itch messages: a contemporary view of the spinal cord circuits that generate gate control. Neuron 82(3):522–536CrossRefPubMedPubMedCentral
Zurück zum Zitat Bresnahan JC, Ho RH, Beattie MS (1984) A comparison of the ultrastructure of substance P and enkephalin-immunoreactive elements in the nucleus of the dorsal lateral funiculus and laminae I and II of the rat spinal cord. J Comp Neurol 229(4):497–511CrossRefPubMed Bresnahan JC, Ho RH, Beattie MS (1984) A comparison of the ultrastructure of substance P and enkephalin-immunoreactive elements in the nucleus of the dorsal lateral funiculus and laminae I and II of the rat spinal cord. J Comp Neurol 229(4):497–511CrossRefPubMed
Zurück zum Zitat Burstein R, Giesler GJ Jr (1989) Retrograde labeling of neurons in spinal cord that project directly to nucleus accumbens or the septal nuclei in the rat. Brain Res 497(1):149–154CrossRefPubMed Burstein R, Giesler GJ Jr (1989) Retrograde labeling of neurons in spinal cord that project directly to nucleus accumbens or the septal nuclei in the rat. Brain Res 497(1):149–154CrossRefPubMed
Zurück zum Zitat Burstein R, Potrebic S (1993) Retrograde labeling of neurons in the spinal cord that project directly to the amygdala or the orbital cortex in the rat. J Comp Neurol 335(4):469–485CrossRefPubMed Burstein R, Potrebic S (1993) Retrograde labeling of neurons in the spinal cord that project directly to the amygdala or the orbital cortex in the rat. J Comp Neurol 335(4):469–485CrossRefPubMed
Zurück zum Zitat Burstein R, Cliffer KD, Giesler GJ Jr (1990) Cells of origin of the spinohypothalamic tract in the rat. J Comp Neurol 291(3):329–344CrossRefPubMed Burstein R, Cliffer KD, Giesler GJ Jr (1990) Cells of origin of the spinohypothalamic tract in the rat. J Comp Neurol 291(3):329–344CrossRefPubMed
Zurück zum Zitat Charron F, Stein E, Jeong J, McMahon AP, Tessier-Lavigne M (2003) The morphogen sonic hedgehog is an axonal chemoattractant that collaborates with netrin-1 in midline axon guidance. Cell 113(1):11–23CrossRefPubMed Charron F, Stein E, Jeong J, McMahon AP, Tessier-Lavigne M (2003) The morphogen sonic hedgehog is an axonal chemoattractant that collaborates with netrin-1 in midline axon guidance. Cell 113(1):11–23CrossRefPubMed
Zurück zum Zitat Chen Z, Gore BB, Long H, Ma L, Tessier-Lavigne M (2008) Alternative splicing of the Robo3 axon guidance receptor governs the midline switch from attraction to repulsion. Neuron 58(3):325–332CrossRefPubMed Chen Z, Gore BB, Long H, Ma L, Tessier-Lavigne M (2008) Alternative splicing of the Robo3 axon guidance receptor governs the midline switch from attraction to repulsion. Neuron 58(3):325–332CrossRefPubMed
Zurück zum Zitat Cliffer KD, Urca G, Elde RP, Giesler GJ Jr (1988) Studies of peptidergic input to the lateral spinal nucleus. Brain Res 460(2):356–360CrossRefPubMed Cliffer KD, Urca G, Elde RP, Giesler GJ Jr (1988) Studies of peptidergic input to the lateral spinal nucleus. Brain Res 460(2):356–360CrossRefPubMed
Zurück zum Zitat Ding YQ, Takada M, Shigemoto R, Mizumo N (1995) Spinoparabrachial tract neurons showing substance P receptor-like immunoreactivity in the lumbar spinal cord of the rat. Brain Res 674(2):336–340CrossRefPubMed Ding YQ, Takada M, Shigemoto R, Mizumo N (1995) Spinoparabrachial tract neurons showing substance P receptor-like immunoreactivity in the lumbar spinal cord of the rat. Brain Res 674(2):336–340CrossRefPubMed
Zurück zum Zitat Dutton RC, Carstens MI, Antognini JF, Carstens E (2006) Long ascending propriospinal projections from lumbosacral to upper cervical spinal cord in the rat. Brain Res 1119(1):76–85CrossRefPubMed Dutton RC, Carstens MI, Antognini JF, Carstens E (2006) Long ascending propriospinal projections from lumbosacral to upper cervical spinal cord in the rat. Brain Res 1119(1):76–85CrossRefPubMed
Zurück zum Zitat Escalante A, Murillo B, Morenilla-Palao C, Klar A, Herrera E (2013) Zic2-dependent axon midline avoidance controls the formation of major ipsilateral tracts in the CNS. Neuron 80(6):1392–1406CrossRefPubMed Escalante A, Murillo B, Morenilla-Palao C, Klar A, Herrera E (2013) Zic2-dependent axon midline avoidance controls the formation of major ipsilateral tracts in the CNS. Neuron 80(6):1392–1406CrossRefPubMed
Zurück zum Zitat Esteves F, Lima D, Coimbra A (1993) Structural types of spinal cord marginal (lamina I) neurons projecting to the nucleus of the tractus solitarius in the rat. Somatosens Mot Res 10(2):203–216CrossRefPubMed Esteves F, Lima D, Coimbra A (1993) Structural types of spinal cord marginal (lamina I) neurons projecting to the nucleus of the tractus solitarius in the rat. Somatosens Mot Res 10(2):203–216CrossRefPubMed
Zurück zum Zitat Etlin A, Blivis D, Ben-Zwi M, Lev-Tov A (2010) Long and short multifunicular projections of sacral neurons are activated by sensory input to produce locomotor activity in the absence of supraspinal control. J Neurosci 30(31):10324–10336CrossRefPubMed Etlin A, Blivis D, Ben-Zwi M, Lev-Tov A (2010) Long and short multifunicular projections of sacral neurons are activated by sensory input to produce locomotor activity in the absence of supraspinal control. J Neurosci 30(31):10324–10336CrossRefPubMed
Zurück zum Zitat Feil K, Herbert H (1995) Topographic organization of spinal and trigeminal somatosensory pathways to the rat parabrachial and Kolliker-Fuse nuclei. J Comp Neurol 353(4):506–528CrossRefPubMed Feil K, Herbert H (1995) Topographic organization of spinal and trigeminal somatosensory pathways to the rat parabrachial and Kolliker-Fuse nuclei. J Comp Neurol 353(4):506–528CrossRefPubMed
Zurück zum Zitat Gauriau C, Bernard JF (2004) A comparative reappraisal of projections from the superficial laminae of the dorsal horn in the rat: the forebrain. J Comp Neurol 468(1):24–56CrossRefPubMed Gauriau C, Bernard JF (2004) A comparative reappraisal of projections from the superficial laminae of the dorsal horn in the rat: the forebrain. J Comp Neurol 468(1):24–56CrossRefPubMed
Zurück zum Zitat Giesler GJ Jr, Elde RP (1985) Immunocytochemical studies of the peptidergic content of fibers and terminals within the lateral spinal and lateral cervical nuclei. J Neurosci 5(7):1833–1841PubMed Giesler GJ Jr, Elde RP (1985) Immunocytochemical studies of the peptidergic content of fibers and terminals within the lateral spinal and lateral cervical nuclei. J Neurosci 5(7):1833–1841PubMed
Zurück zum Zitat Gwyn DG, Waldron HA (1968) A nucleus in the dorsolateral funiculus of the spinal cord of the rat. Brain Res 10(3):342–351CrossRefPubMed Gwyn DG, Waldron HA (1968) A nucleus in the dorsolateral funiculus of the spinal cord of the rat. Brain Res 10(3):342–351CrossRefPubMed
Zurück zum Zitat Gwyn DG, Waldron HA (1969) Observations on the morphology of a nucleus in the dorsolateral funiculus of the spinal cord of the guinea-pig, rabbit, ferret and cat. J Comp Neurol 136(2):233–236CrossRefPubMed Gwyn DG, Waldron HA (1969) Observations on the morphology of a nucleus in the dorsolateral funiculus of the spinal cord of the guinea-pig, rabbit, ferret and cat. J Comp Neurol 136(2):233–236CrossRefPubMed
Zurück zum Zitat Harmann PA, Carlton SM, Willis WD (1988) Collaterals of spinothalamic tract cells to the periaqueductal gray: a fluorescent double-labeling study in the rat. Brain Res 441(1–2):87–97CrossRefPubMed Harmann PA, Carlton SM, Willis WD (1988) Collaterals of spinothalamic tract cells to the periaqueductal gray: a fluorescent double-labeling study in the rat. Brain Res 441(1–2):87–97CrossRefPubMed
Zurück zum Zitat Jansen AS, Loewy AD (1997) Neurons lying in the white matter of the upper cervical spinal cord project to the intermediolateral cell column. Neuroscience 77(3):889–898CrossRefPubMed Jansen AS, Loewy AD (1997) Neurons lying in the white matter of the upper cervical spinal cord project to the intermediolateral cell column. Neuroscience 77(3):889–898CrossRefPubMed
Zurück zum Zitat Juvin L, Simmers J, Morin D (2005) Propriospinal circuitry underlying interlimb coordination in mammalian quadrupedal locomotion. J Neurosci 25(25):6025–6035CrossRefPubMed Juvin L, Simmers J, Morin D (2005) Propriospinal circuitry underlying interlimb coordination in mammalian quadrupedal locomotion. J Neurosci 25(25):6025–6035CrossRefPubMed
Zurück zum Zitat Kato G, Kawasaki Y, Koga K, Uta D, Kosugi M, Yasaka T, Yoshimura M, Ji RR, Strassman AM (2009) Organization of intralaminar and translaminar neuronal connectivity in the superficial spinal dorsal horn. J Neurosci 29(16):5088–5099CrossRefPubMedPubMedCentral Kato G, Kawasaki Y, Koga K, Uta D, Kosugi M, Yasaka T, Yoshimura M, Ji RR, Strassman AM (2009) Organization of intralaminar and translaminar neuronal connectivity in the superficial spinal dorsal horn. J Neurosci 29(16):5088–5099CrossRefPubMedPubMedCentral
Zurück zum Zitat Kennedy TE, Serafini T, de la Torre JR, Tessier-Lavigne M (1994) Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell 78(3):425–435CrossRefPubMed Kennedy TE, Serafini T, de la Torre JR, Tessier-Lavigne M (1994) Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell 78(3):425–435CrossRefPubMed
Zurück zum Zitat Leah J, Menetrey D, de Pommery J (1988) neuropeptides in long ascending spinal tract cells in the rat: evidence for parallel processing of ascending information. Neuroscience 24(1):195–207CrossRefPubMed Leah J, Menetrey D, de Pommery J (1988) neuropeptides in long ascending spinal tract cells in the rat: evidence for parallel processing of ascending information. Neuroscience 24(1):195–207CrossRefPubMed
Zurück zum Zitat Lee DC, Jensen AL, Schiefer MA, Morgan CW, Grill WM (2005) Structural mechanisms to produce differential dendritic gains. Brain Res 1033(2):117–127CrossRefPubMed Lee DC, Jensen AL, Schiefer MA, Morgan CW, Grill WM (2005) Structural mechanisms to produce differential dendritic gains. Brain Res 1033(2):117–127CrossRefPubMed
Zurück zum Zitat Lima D (1998) Anatomical basis for the dynamic processing of nociceptive input. Eur J Pain 2(3):195–202CrossRefPubMed Lima D (1998) Anatomical basis for the dynamic processing of nociceptive input. Eur J Pain 2(3):195–202CrossRefPubMed
Zurück zum Zitat Lima D, Coimbra A (1986) A Golgi study of the neuronal population of the marginal zone (lamina I) of the rat spinal cord. J Comp Neurol 244(1):53–71CrossRefPubMed Lima D, Coimbra A (1986) A Golgi study of the neuronal population of the marginal zone (lamina I) of the rat spinal cord. J Comp Neurol 244(1):53–71CrossRefPubMed
Zurück zum Zitat Long H, Sabatier C, Ma L, Plump A, Yuan W, Ornitz DM, Tamada A, Murakami F, Goodman CS, Tessier-Lavigne M (2004) Conserved roles for Slit and Robo proteins in midline commissural axon guidance. Neuron 42(2):213–223CrossRefPubMed Long H, Sabatier C, Ma L, Plump A, Yuan W, Ornitz DM, Tamada A, Murakami F, Goodman CS, Tessier-Lavigne M (2004) Conserved roles for Slit and Robo proteins in midline commissural axon guidance. Neuron 42(2):213–223CrossRefPubMed
Zurück zum Zitat Lu Y, Perl ER (2003) A specific inhibitory pathway between substantia gelatinosa neurons receiving direct C-fiber input. J Neurosci 23(25):8752–8758PubMed Lu Y, Perl ER (2003) A specific inhibitory pathway between substantia gelatinosa neurons receiving direct C-fiber input. J Neurosci 23(25):8752–8758PubMed
Zurück zum Zitat Lu Y, Perl ER (2005) Modular organization of excitatory circuits between neurons of the spinal superficial dorsal horn (laminae I and II). J Neurosci 25(15):3900–3907CrossRefPubMed Lu Y, Perl ER (2005) Modular organization of excitatory circuits between neurons of the spinal superficial dorsal horn (laminae I and II). J Neurosci 25(15):3900–3907CrossRefPubMed
Zurück zum Zitat Luz LL, Szucs P, Pinho R, Safronov BV (2010) Monosynaptic excitatory inputs to spinal lamina I anterolateral-tract-projecting neurons from neighbouring lamina I neurons. J Physiol 588(22):4489–4505CrossRefPubMedPubMedCentral Luz LL, Szucs P, Pinho R, Safronov BV (2010) Monosynaptic excitatory inputs to spinal lamina I anterolateral-tract-projecting neurons from neighbouring lamina I neurons. J Physiol 588(22):4489–4505CrossRefPubMedPubMedCentral
Zurück zum Zitat Menetrey D, Basbaum AI (1987) Spinal and trigeminal projections to the nucleus of the solitary tract: a possible substrate for somatovisceral and viscerovisceral reflex activation. J Comp Neurol 255(3):439–450CrossRefPubMed Menetrey D, Basbaum AI (1987) Spinal and trigeminal projections to the nucleus of the solitary tract: a possible substrate for somatovisceral and viscerovisceral reflex activation. J Comp Neurol 255(3):439–450CrossRefPubMed
Zurück zum Zitat Menetrey D, Chaouch A, Binder D, Besson JM (1982) The origin of the spinomesencephalic tract in the rat: an anatomical study using the retrograde transport of horseradish peroxidase. J Comp Neurol 206(2):193–207CrossRefPubMed Menetrey D, Chaouch A, Binder D, Besson JM (1982) The origin of the spinomesencephalic tract in the rat: an anatomical study using the retrograde transport of horseradish peroxidase. J Comp Neurol 206(2):193–207CrossRefPubMed
Zurück zum Zitat Olave MJ, Maxwell DJ (2004) Axon terminals possessing alpha2C-adrenergic receptors densely innervate neurons in the rat lateral spinal nucleus which respond to noxious stimulation. Neuroscience 126(2):391–403CrossRefPubMed Olave MJ, Maxwell DJ (2004) Axon terminals possessing alpha2C-adrenergic receptors densely innervate neurons in the rat lateral spinal nucleus which respond to noxious stimulation. Neuroscience 126(2):391–403CrossRefPubMed
Zurück zum Zitat Pechura CM, Liu RP (1986) Spinal neurons which project to the periaqueductal gray and the medullary reticular formation via axon collaterals: a double-label fluorescence study in the rat. Brain Res 374(2):357–361CrossRefPubMed Pechura CM, Liu RP (1986) Spinal neurons which project to the periaqueductal gray and the medullary reticular formation via axon collaterals: a double-label fluorescence study in the rat. Brain Res 374(2):357–361CrossRefPubMed
Zurück zum Zitat Petko M, Antal M (2000) Propriospinal afferent and efferent connections of the lateral and medial areas of the dorsal horn (laminae I-IV) in the rat lumbar spinal cord. J Comp Neurol 422(2):312–325CrossRefPubMed Petko M, Antal M (2000) Propriospinal afferent and efferent connections of the lateral and medial areas of the dorsal horn (laminae I-IV) in the rat lumbar spinal cord. J Comp Neurol 422(2):312–325CrossRefPubMed
Zurück zum Zitat Petko M, Veress G, Vereb G, Storm-Mathisen J, Antal M (2004) Commissural propriospinal connections between the lateral aspects of laminae III-IV in the lumbar spinal cord of rats. J Comp Neurol 480(4):364–377CrossRefPubMed Petko M, Veress G, Vereb G, Storm-Mathisen J, Antal M (2004) Commissural propriospinal connections between the lateral aspects of laminae III-IV in the lumbar spinal cord of rats. J Comp Neurol 480(4):364–377CrossRefPubMed
Zurück zum Zitat Pinto V, Szucs P, Lima D, Safronov BV (2010) Multisegmental Aδ-and C-fiber input to neurons in lamina I and the lateral spinal nucleus. J Neurosci 30(6):2384–2395CrossRefPubMed Pinto V, Szucs P, Lima D, Safronov BV (2010) Multisegmental Aδ-and C-fiber input to neurons in lamina I and the lateral spinal nucleus. J Neurosci 30(6):2384–2395CrossRefPubMed
Zurück zum Zitat Reed WR, Shum-siu A, Onifer SM, Magnuson DSK (2006) Inter-enlargement pathways in the ventrolateral funiculus of the adult rat spinal cord. Neuroscience 142:1195–1207CrossRefPubMedPubMedCentral Reed WR, Shum-siu A, Onifer SM, Magnuson DSK (2006) Inter-enlargement pathways in the ventrolateral funiculus of the adult rat spinal cord. Neuroscience 142:1195–1207CrossRefPubMedPubMedCentral
Zurück zum Zitat Rethelyi M (2003) Neurons of the lateral spinal nucleus in the rat spinal cord—a Golgi study. Eur J Anat 7(1):8 Rethelyi M (2003) Neurons of the lateral spinal nucleus in the rat spinal cord—a Golgi study. Eur J Anat 7(1):8
Zurück zum Zitat Sabatier C, Plump AS, Le M, Brose K, Tamada A, Murakami F, Lee EY, Tessier-Lavigne M (2004) The divergent Robo family protein rig-1/Robo3 is a negative regulator of slit responsiveness required for midline crossing by commissural axons. Cell 117(2):157–169CrossRefPubMed Sabatier C, Plump AS, Le M, Brose K, Tamada A, Murakami F, Lee EY, Tessier-Lavigne M (2004) The divergent Robo family protein rig-1/Robo3 is a negative regulator of slit responsiveness required for midline crossing by commissural axons. Cell 117(2):157–169CrossRefPubMed
Zurück zum Zitat Safronov BV, Pinto V, Derkach VA (2007) High-resolution single-cell imaging for functional studies in the whole brain and spinal cord and thick tissue blocks using light-emitting diode illumination. J Neurosci Methods 164(2):292–298CrossRefPubMedPubMedCentral Safronov BV, Pinto V, Derkach VA (2007) High-resolution single-cell imaging for functional studies in the whole brain and spinal cord and thick tissue blocks using light-emitting diode illumination. J Neurosci Methods 164(2):292–298CrossRefPubMedPubMedCentral
Zurück zum Zitat Santos SF, Rebelo S, Derkach VA, Safronov BV (2007) Excitatory interneurons dominate sensory processing in the spinal substantia gelatinosa of rat. J Physiol 581(Pt 1):241–254CrossRefPubMedPubMedCentral Santos SF, Rebelo S, Derkach VA, Safronov BV (2007) Excitatory interneurons dominate sensory processing in the spinal substantia gelatinosa of rat. J Physiol 581(Pt 1):241–254CrossRefPubMedPubMedCentral
Zurück zum Zitat Santos SF, Luz LL, Szucs P, Lima D, Derkach VA, Safronov BV (2009) Transmission efficacy and plasticity in glutamatergic synapses formed by excitatory interneurons of the substantia gelatinosa in the rat spinal cord. PLoS One 4(11):e8047CrossRefPubMedPubMedCentral Santos SF, Luz LL, Szucs P, Lima D, Derkach VA, Safronov BV (2009) Transmission efficacy and plasticity in glutamatergic synapses formed by excitatory interneurons of the substantia gelatinosa in the rat spinal cord. PLoS One 4(11):e8047CrossRefPubMedPubMedCentral
Zurück zum Zitat Seybold V, Elde R (1980) Immunohistochemical studies of peptidergic neurons in the dorsal horn of the spinal cord. J Histochem Cytochem 28(4):367–370CrossRefPubMed Seybold V, Elde R (1980) Immunohistochemical studies of peptidergic neurons in the dorsal horn of the spinal cord. J Histochem Cytochem 28(4):367–370CrossRefPubMed
Zurück zum Zitat Sugiura Y, Terui N, Hosoya Y (1989) Difference in distribution of central terminals between visceral and somatic unmyelinated (C) primary afferent fibers. J Neurophysiol 62(4):834–840PubMed Sugiura Y, Terui N, Hosoya Y (1989) Difference in distribution of central terminals between visceral and somatic unmyelinated (C) primary afferent fibers. J Neurophysiol 62(4):834–840PubMed
Zurück zum Zitat Szentagothai J (1964) Neuronal and synaptic arrangement in the substantia gelatinosa Rolandi. J Comp Neurol 122:219–239CrossRefPubMed Szentagothai J (1964) Neuronal and synaptic arrangement in the substantia gelatinosa Rolandi. J Comp Neurol 122:219–239CrossRefPubMed
Zurück zum Zitat Szucs P, Pinto V, Safronov BV (2009) Advanced technique of infrared LED imaging of unstained cells and intracellular structures in isolated spinal cord, brainstem, ganglia and cerebellum. J Neurosci Methods 177(2):369–380CrossRefPubMed Szucs P, Pinto V, Safronov BV (2009) Advanced technique of infrared LED imaging of unstained cells and intracellular structures in isolated spinal cord, brainstem, ganglia and cerebellum. J Neurosci Methods 177(2):369–380CrossRefPubMed
Zurück zum Zitat Szucs P, Luz LL, Lima D, Safronov BV (2010) Local axon collaterals of lamina I projection neurons in the spinal cord of young rats. J Comp Neurol 518(14):2645–2665CrossRefPubMed Szucs P, Luz LL, Lima D, Safronov BV (2010) Local axon collaterals of lamina I projection neurons in the spinal cord of young rats. J Comp Neurol 518(14):2645–2665CrossRefPubMed
Zurück zum Zitat Szucs P, Luz LL, Pinho R, Aguiar P, Antal Z, Tiong SY, Todd AJ, Safronov BV (2013) Axon diversity of lamina I local-circuit neurons in the lumbar spinal cord. J Comp Neurol 521(12):2719–2741CrossRefPubMedPubMedCentral Szucs P, Luz LL, Pinho R, Aguiar P, Antal Z, Tiong SY, Todd AJ, Safronov BV (2013) Axon diversity of lamina I local-circuit neurons in the lumbar spinal cord. J Comp Neurol 521(12):2719–2741CrossRefPubMedPubMedCentral
Zurück zum Zitat Thome C, Kelly T, Yanez A, Schultz C, Engelhardt M, Cambridge SB, Both M, Draguhn A, Beck H, Egorov AV (2014) Axon-carrying dendrites convey privileged synaptic input in hippocampal neurons. Neuron 83(6):1418–1430CrossRefPubMed Thome C, Kelly T, Yanez A, Schultz C, Engelhardt M, Cambridge SB, Both M, Draguhn A, Beck H, Egorov AV (2014) Axon-carrying dendrites convey privileged synaptic input in hippocampal neurons. Neuron 83(6):1418–1430CrossRefPubMed
Zurück zum Zitat Verburgh CA, Voogd J, Kuypers HG, Stevens HP (1990) Propriospinal neurons with ascending collaterals to the dorsal medulla, the thalamus and the tectum: a retrograde fluorescent double-labeling study of the cervical cord of the rat. Exp Brain Res 80(3):577–590CrossRefPubMed Verburgh CA, Voogd J, Kuypers HG, Stevens HP (1990) Propriospinal neurons with ascending collaterals to the dorsal medulla, the thalamus and the tectum: a retrograde fluorescent double-labeling study of the cervical cord of the rat. Exp Brain Res 80(3):577–590CrossRefPubMed
Zurück zum Zitat Zou Y, Stoeckli E, Chen H, Tessier-Lavigne M (2000) Squeezing axons out of the gray matter: a role for slit and semaphorin proteins from midline and ventral spinal cord. Cell 102(3):363–375CrossRefPubMed Zou Y, Stoeckli E, Chen H, Tessier-Lavigne M (2000) Squeezing axons out of the gray matter: a role for slit and semaphorin proteins from midline and ventral spinal cord. Cell 102(3):363–375CrossRefPubMed
Metadaten
Titel
Neurons in the lateral part of the lumbar spinal cord show distinct novel axon trajectories and are excited by short propriospinal ascending inputs
verfasst von
Zs. Antal
L. L. Luz
B. V. Safronov
M. Antal
Peter Szücs
Publikationsdatum
26.04.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 4/2016
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-015-1046-3

Weitere Artikel der Ausgabe 4/2016

Brain Structure and Function 4/2016 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.