Skip to main content

29.04.2019 | Original Article

Neuroprotective and anti-inflammatory effects of isoliquiritigenin in kainic acid-induced epileptic rats via the TLR4/MYD88 signaling pathway

Xiaobo Zhu, Jiankun Liu, Ou Chen, Jiang Xue, Shanying Huang, Weiwei Zhu, Yibiao Wang
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


Epileptogenesis is a complex pathological process that occurs after an initial brain injury and involves a series of molecular events. Isoliquiritigenin (ISL), a flavonoid in licorice, is reported to have anti-inflammatory and antioxidant effects in various experimental models, but its specific roles and molecular mechanisms in the epileptogenic process following kainic acid (KA) treatment remain unclear. The purpose of this study was to explore the effects of ISL pretreatment in KA-induced epileptic rats and the underlying mechanisms. Our findings show that ISL pretreatment significantly attenuated the KA-induced expression of ionized calcium‐binding adapter molecule 1 (IBα1)-labeled microglia (F(3, 20) = 97.29, p < 0.01, ηp2 = 0.94) and glial fibrillary acidic protein (GFAP)-positive astrocytes (F(3, 20) = 72.48, p < 0.01, ηp2 = 0.92), and the release of inflammatory mediators, such as TNF-α (F(3, 20) = 133.14, p < 0.01, ηp2 = 0.95), IL-1β, and C–C motif chemokine ligand 3 (CCL3). ISL pretreatment given before KA also significantly prevented apoptotic neuronal injury by upregulating the activities of superoxide dismutase and glutathione peroxidase. It also significantly suppressed the protein levels of Toll-like receptor 4 (TLR4) (F(3, 20) = 63.23, p < 0.01, ηp2 = 0.91) and its downstream molecules, myeloid differentiation primary response 88 (MYD88), phosphorylated (p-)IκBα, and p-NF-κB. Blocking TLR4/MYD88 signaling also attenuated KA-induced neuroinflammation and neuronal damage in the hippocampus. Overall, our study demonstrates that ISL pretreatment plays neuroprotective and anti-inflammatory roles in KA-induced epileptogenesis, which may be mediated by the TLR4/MYD88 signaling pathway.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

e.Med Interdisziplinär

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf Zusätzlich können Sie eine Zeitschrift Ihrer Wahl in gedruckter Form beziehen – ohne Aufpreis.

Über diesen Artikel