Skip to main content
Erschienen in: Inflammopharmacology 2/2024

03.02.2024 | Original Article

Neuroprotective mechanism of trans,trans-Farnesol in an ICV-STZ-induced rat model of Alzheimer’s pathology

verfasst von: Monika Kadian, Neetu Saini, Alka Khera, Anil Kumar

Erschienen in: Inflammopharmacology | Ausgabe 2/2024

Einloggen, um Zugang zu erhalten

Abstract

Background

Alzheimer’s disease (AD) is a prominent cause of dementia, resulting in neurodegeneration and memory impairment. This condition imposes a considerable public health burden on both patients and their families due to the patients’ functional impairments as well as the psychological and financial constraints. It has been well demonstrated that its aetiology involves proteinopathy, mitochondriopathies, and enhanced reactive oxygen species (ROS) generation, which are some of the key features of AD brains that further result in oxidative stress, excitotoxicity, autophagy, and mitochondrial dysfunction.

Objective

The current investigation was created with the aim of elucidating the neurological defence mechanism of trans,trans-Farnesol (TF) against intracerebroventricular-streptozotocin (ICV-STZ)-induced Alzheimer-like symptoms and related pathologies in rodents.

Materials and methods

The current investigation involved male SD rats receiving TF (25–100 mg/kg, per oral) consecutively for 21 days in ICV-STZ-treated animals. An in silico study was carried out to explore the possible interaction between TF and NADH dehydrogenase and succinate dehydrogenase. Further, various behavioural (Morris water maze and novel object recognition test), biochemical (oxidants and anti-oxidant markers), activities of mitochondrial enzyme complexes and acetylcholinesterase (AChE), pro-inflammatory (tumor necrosis factor-alpha; TNF-α) levels, and histopathological studies were evaluated in specific brain regions.

Results

Rats administered ICV-STZ followed by treatment with TF (25, 50, and 100 mg/kg) for 21 days had significantly better mental performance (reduced escape latency to access platform, extended time spent in target quadrant, and improved differential index) in the Morris water maze test and new object recognition test models when compared to control (ICV-STZ)-treated groups. Further, TF treatment significantly restored redox proportion, anti-oxidant levels, regained mitochondrial capacities, attenuated altered AChE action, levels of TNF-α, and histopathological alterations in certain brain regions in comparison with control. In in silico analysis, TF caused greater interaction with NADH dehydrogenase and succinate dehydrogenase.

Conclusion

The current work demonstrates the neuroprotective ability of TF in an experimental model with AD-like pathologies. The study further suggests that the neuroprotective impacts of TF may be related to its effects on TNF-α levels, oxidative stress pathways, and mitochondrial complex capabilities.
Literatur
Zurück zum Zitat Abukhalil MH, Hussein OE, Bin-Jumah M, Saghir SAM, Germoush MO, Elgebaly HA, Mosa NM, Hamad I, Qarmush MM, Hassanein EM, Kamel EM, Hernandez-Bautista R, Mahmoud AM (2020) Farnesol attenuates oxidative stress and liver injury and modulates fatty acid synthase and acetyl-CoA carboxylase in high cholesterol-fed rats. Environ Sci Pollut Res Int 27(24):30118–30132. https://doi.org/10.1007/s11356-020-09296-wCrossRefPubMed Abukhalil MH, Hussein OE, Bin-Jumah M, Saghir SAM, Germoush MO, Elgebaly HA, Mosa NM, Hamad I, Qarmush MM, Hassanein EM, Kamel EM, Hernandez-Bautista R, Mahmoud AM (2020) Farnesol attenuates oxidative stress and liver injury and modulates fatty acid synthase and acetyl-CoA carboxylase in high cholesterol-fed rats. Environ Sci Pollut Res Int 27(24):30118–30132. https://​doi.​org/​10.​1007/​s11356-020-09296-wCrossRefPubMed
Zurück zum Zitat Araújo Delmondes G, Pereira Lopes MJ, Araújo IM, de Sousa BA, Batista PR, Melo Coutinho HD, Alencar de Menezes IR, Barbosa-Filho JM, Bezerra Felipe CF, Kerntopf MR (2022) Possible mechanisms involved in the neuroprotective effect of Trans, trans-farnesol on pilocarpine-induced seizures in mice. Chem Biol Interact 365:110059. https://doi.org/10.1016/j.cbi.2022.110059CrossRefPubMed Araújo Delmondes G, Pereira Lopes MJ, Araújo IM, de Sousa BA, Batista PR, Melo Coutinho HD, Alencar de Menezes IR, Barbosa-Filho JM, Bezerra Felipe CF, Kerntopf MR (2022) Possible mechanisms involved in the neuroprotective effect of Trans, trans-farnesol on pilocarpine-induced seizures in mice. Chem Biol Interact 365:110059. https://​doi.​org/​10.​1016/​j.​cbi.​2022.​110059CrossRefPubMed
Zurück zum Zitat Bhatia V, Sharma S (2021) Role of mitochondrial dysfunction, oxidative stress and autophagy in progression of Alzheimer’s disease. J Neurol Sci 421:117253CrossRefPubMed Bhatia V, Sharma S (2021) Role of mitochondrial dysfunction, oxidative stress and autophagy in progression of Alzheimer’s disease. J Neurol Sci 421:117253CrossRefPubMed
Zurück zum Zitat Cho SY, Lim S, Ahn KS, Kwak HJ, Park J, Um JY (2021) Farnesol induces mitochondrial/peroxisomal biogenesis and thermogenesis by enhancing the AMPK signaling pathway in vivo and in vitro. Pharmacol Res 163:105312CrossRefPubMed Cho SY, Lim S, Ahn KS, Kwak HJ, Park J, Um JY (2021) Farnesol induces mitochondrial/peroxisomal biogenesis and thermogenesis by enhancing the AMPK signaling pathway in vivo and in vitro. Pharmacol Res 163:105312CrossRefPubMed
Zurück zum Zitat de Araújo DG, Bezerra DS, de Queiroz DD, de Souza BA, Araújo IM, Lins CG, Bandeira PFR, Barbosa R, Coutinho HDM, Felipe CFB, Barbosa-Filho JM, Alencar de Menezes IR, Kerntopf MR (2019) Toxicological and pharmacologic effects of farnesol (C15H26O): a descriptive systematic review. Food Chem Toxicol 129:169–200CrossRefPubMed de Araújo DG, Bezerra DS, de Queiroz DD, de Souza BA, Araújo IM, Lins CG, Bandeira PFR, Barbosa R, Coutinho HDM, Felipe CFB, Barbosa-Filho JM, Alencar de Menezes IR, Kerntopf MR (2019) Toxicological and pharmacologic effects of farnesol (C15H26O): a descriptive systematic review. Food Chem Toxicol 129:169–200CrossRefPubMed
Zurück zum Zitat de Oliveira JS, Abdalla FH, Dornelles GL, Adefegha SA, Palma TV, Signor C, da Silva BJ, Baldissarelli J, Lenz LS, Magni LP, Rubin MA, Pillat MM, de Andrade CM (2016) Berberine protects against memory impairment and anxiogenic-like behavior in rats submitted to sporadic Alzheimer’s-like dementia: Involvement of acetylcholinesterase and cell death. Neurotoxicology 57:241–250. https://doi.org/10.1016/j.neuro.2016.10.008CrossRefPubMed de Oliveira JS, Abdalla FH, Dornelles GL, Adefegha SA, Palma TV, Signor C, da Silva BJ, Baldissarelli J, Lenz LS, Magni LP, Rubin MA, Pillat MM, de Andrade CM (2016) Berberine protects against memory impairment and anxiogenic-like behavior in rats submitted to sporadic Alzheimer’s-like dementia: Involvement of acetylcholinesterase and cell death. Neurotoxicology 57:241–250. https://​doi.​org/​10.​1016/​j.​neuro.​2016.​10.​008CrossRefPubMed
Zurück zum Zitat de Delmondes Araújo G, Bezerra DS, de Queiroz Dias D, de Souza Borges A, Araújo IM, da Cunha GL, Bandeira PF, Barbosa R, Coutinho HD, Felipe CF, Barbosa-Filho JM (2019) Toxicological and pharmacologic effects of farnesol (C15H26O): A descriptive systematic review. Food Chem Toxicol 129:169–200. https://doi.org/10.1016/j.fct.2019.04.037CrossRef de Delmondes Araújo G, Bezerra DS, de Queiroz Dias D, de Souza Borges A, Araújo IM, da Cunha GL, Bandeira PF, Barbosa R, Coutinho HD, Felipe CF, Barbosa-Filho JM (2019) Toxicological and pharmacologic effects of farnesol (C15H26O): A descriptive systematic review. Food Chem Toxicol 129:169–200. https://​doi.​org/​10.​1016/​j.​fct.​2019.​04.​037CrossRef
Zurück zum Zitat Fukuyama H, Ogawa M, Yamauchi H, Yamaguchi S, Kimura J, Yonekura Y, Konishi J (1994) Altered cerebral energy metabolism in Alzheimer’s disease: a PET study. J Nucl Med 35(1):1–6PubMed Fukuyama H, Ogawa M, Yamauchi H, Yamaguchi S, Kimura J, Yonekura Y, Konishi J (1994) Altered cerebral energy metabolism in Alzheimer’s disease: a PET study. J Nucl Med 35(1):1–6PubMed
Zurück zum Zitat Imamura T, Yanagihara YT, Ohyagi Y, Nakamura N, Iinuma KM, Yamasaki R, Asai H, Maeda M, Murakami K, Irie K, Kira JI (2020) Insulin deficiency promotes formation of toxic amyloid-β42 conformer co-aggregating with hyper-phosphorylated tau oligomer in an Alzheimer’s disease model. Neurobiol Dis 137:104739. https://doi.org/10.1016/j.nbd.2020.104739CrossRefPubMed Imamura T, Yanagihara YT, Ohyagi Y, Nakamura N, Iinuma KM, Yamasaki R, Asai H, Maeda M, Murakami K, Irie K, Kira JI (2020) Insulin deficiency promotes formation of toxic amyloid-β42 conformer co-aggregating with hyper-phosphorylated tau oligomer in an Alzheimer’s disease model. Neurobiol Dis 137:104739. https://​doi.​org/​10.​1016/​j.​nbd.​2020.​104739CrossRefPubMed
Zurück zum Zitat Inaoka DK, Shiba T, Sato D, Balogun EO, Sasaki T, Nagahama M, Oda M, Matsuoka S, Ohmori J, Honma T, Inoue M (2015) Structural insights into the molecular design of flutolanil derivatives targeted for fumarate respiration of parasite mitochondria. Int J Mol Sci 16(7):15287–15308CrossRefPubMedPubMedCentral Inaoka DK, Shiba T, Sato D, Balogun EO, Sasaki T, Nagahama M, Oda M, Matsuoka S, Ohmori J, Honma T, Inoue M (2015) Structural insights into the molecular design of flutolanil derivatives targeted for fumarate respiration of parasite mitochondria. Int J Mol Sci 16(7):15287–15308CrossRefPubMedPubMedCentral
Zurück zum Zitat Kondo T, Asai M, Tsukita K, Kutoku Y, Ohsawa Y, Sunada Y, Imamura K, Egawa N, Yahata N, Okita K, Takahashi K, Asaka I, Aoi T, Watanabe A, Watanabe K, Kadoya C, Nakano R, Watanabe D, Maruyama K, Hori O, Hibino S, Choshi T, Nakahata T, Hioki H, Kaneko T, Naitoh M, Yoshikawa K, Yamawaki S, Suzuki S, Hata R, Ueno S, Seki T, Kobayashi K, Toda T, Murakami K, Irie K, Klein WL, Mori H, Asada T, Takahashi R, Iwata N, Yamanaka S, Inoue H (2013) Modeling Alzheimer’s disease with iPSCs reveals stress phenotypes associated with intracellular Aβ and differential drug responsiveness. Cell Stem Cell 12(4):487–496. https://doi.org/10.1016/j.stem.2013.01.009CrossRefPubMed Kondo T, Asai M, Tsukita K, Kutoku Y, Ohsawa Y, Sunada Y, Imamura K, Egawa N, Yahata N, Okita K, Takahashi K, Asaka I, Aoi T, Watanabe A, Watanabe K, Kadoya C, Nakano R, Watanabe D, Maruyama K, Hori O, Hibino S, Choshi T, Nakahata T, Hioki H, Kaneko T, Naitoh M, Yoshikawa K, Yamawaki S, Suzuki S, Hata R, Ueno S, Seki T, Kobayashi K, Toda T, Murakami K, Irie K, Klein WL, Mori H, Asada T, Takahashi R, Iwata N, Yamanaka S, Inoue H (2013) Modeling Alzheimer’s disease with iPSCs reveals stress phenotypes associated with intracellular Aβ and differential drug responsiveness. Cell Stem Cell 12(4):487–496. https://​doi.​org/​10.​1016/​j.​stem.​2013.​01.​009CrossRefPubMed
Zurück zum Zitat LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2’,7’-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5(2):227–231CrossRefPubMed LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2’,7’-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5(2):227–231CrossRefPubMed
Zurück zum Zitat Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275CrossRefPubMed Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275CrossRefPubMed
Zurück zum Zitat Luck H (1965) Catalase. In: Bergmeyer HU (ed) Method of enzymatic analysis. Academic Press, New York and London, pp 885–894CrossRef Luck H (1965) Catalase. In: Bergmeyer HU (ed) Method of enzymatic analysis. Academic Press, New York and London, pp 885–894CrossRef
Zurück zum Zitat Niedzielska E, Smaga I, Gawlik M, Moniczewski A, Stankowicz P, Pera J, Filip M (2016) Oxidative stress in neurodegenerative diseases. Mol Neurobiol 53:4094–4125CrossRefPubMed Niedzielska E, Smaga I, Gawlik M, Moniczewski A, Stankowicz P, Pera J, Filip M (2016) Oxidative stress in neurodegenerative diseases. Mol Neurobiol 53:4094–4125CrossRefPubMed
Zurück zum Zitat Ochalek A, Mihalik B, Avci HX, Chandrasekaran A, Téglási A, Bock I, Giudice ML, Táncos Z, Molnár K, László L, Nielsen JE, Holst B, Freude K, Hyttel P, Kobolák J, Dinnyés A (2017) Neurons derived from sporadic Alzheimer’s disease iPSCs reveal elevated TAU hyperphosphorylation, increased amyloid levels, and GSK3B activation. Alzheimers Res Ther 9(1):90. https://doi.org/10.1186/s13195-017-0317-zCrossRefPubMedPubMedCentral Ochalek A, Mihalik B, Avci HX, Chandrasekaran A, Téglási A, Bock I, Giudice ML, Táncos Z, Molnár K, László L, Nielsen JE, Holst B, Freude K, Hyttel P, Kobolák J, Dinnyés A (2017) Neurons derived from sporadic Alzheimer’s disease iPSCs reveal elevated TAU hyperphosphorylation, increased amyloid levels, and GSK3B activation. Alzheimers Res Ther 9(1):90. https://​doi.​org/​10.​1186/​s13195-017-0317-zCrossRefPubMedPubMedCentral
Zurück zum Zitat Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic Press, San Diego Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic Press, San Diego
Zurück zum Zitat Shahnouri M, Abouhosseini Tabari M, Araghi A (2016) Neuropharmacological properties of farnesol in Murine model. Iran J Vet Res 17(4):259–264PubMedPubMedCentral Shahnouri M, Abouhosseini Tabari M, Araghi A (2016) Neuropharmacological properties of farnesol in Murine model. Iran J Vet Res 17(4):259–264PubMedPubMedCentral
Metadaten
Titel
Neuroprotective mechanism of trans,trans-Farnesol in an ICV-STZ-induced rat model of Alzheimer’s pathology
verfasst von
Monika Kadian
Neetu Saini
Alka Khera
Anil Kumar
Publikationsdatum
03.02.2024
Verlag
Springer International Publishing
Erschienen in
Inflammopharmacology / Ausgabe 2/2024
Print ISSN: 0925-4692
Elektronische ISSN: 1568-5608
DOI
https://doi.org/10.1007/s10787-023-01413-8

Weitere Artikel der Ausgabe 2/2024

Inflammopharmacology 2/2024 Zur Ausgabe