Skip to main content
Erschienen in: Der Radiologe 2/2016

01.02.2016 | Leitthema

Grundlagen und Anwendungen der suszeptibilitätsgewichteten Bildgebung

verfasst von: F. T. Kurz, M. Freitag, H.-P. Schlemmer, M. Bendszus, Dr. Dr. C. H. Ziener

Erschienen in: Die Radiologie | Ausgabe 2/2016

Einloggen, um Zugang zu erhalten

Zusammenfassung

Hintergrund

Die suszeptibilitätsgewichtete Bildgebung (SWI), ursprünglich entwickelt als verbessertes Verfahren für die zerebrale MR-Venographie, ist inzwischen ein fester Bestandteil der neuroradiologischen Diagnostik und gewinnt zunehmend an Bedeutung in der nichtzerebralen Bildgebung.

Grundlage

Gewebespezifische Suszeptibilitätsunterschiede erzeugen ein lokales Magnetfeld, in dem die Dephasierung der signalgebenden Protonen stattfindet. Dabei kommt es zu einer charakteristischen Phasenverschiebung, die als Kontrastverstärkung in der bekannten T2*-Bildgebung genutzt werden kann.

Klinische Anwendungen

Viele medizinisch relevante Pathologien erzeugen Veränderungen im Gewebe, die auch die magnetischen Eigenschaften beeinflussen. So können Blutungen und Verkalkungen in der SWI besser identifiziert werden als mit konventionellen MR-Sequenzen.

Ausblick

Neuere Techniken wie die quantitative Suszeptibilitätskartierung (QSM) bzw. die Suszeptibilitäts-Tensor-Bildgebung (STI) ermöglichen eine verbesserte Differenzierung zwischen Einblutungen und Verkalkungen bzw. stellen im Bereich der Fasertraktographie eine zur Diffusions-Tensor-Bildgebung alternative Bildgebungsmethode dar.
Literatur
1.
Zurück zum Zitat Babikian T, Freier MC, Tong KA et al (2005) Susceptibility weighted imaging: Neuropsychologic outcome and pediatric head injury. Pediatr Neurol 33:184–194CrossRefPubMed Babikian T, Freier MC, Tong KA et al (2005) Susceptibility weighted imaging: Neuropsychologic outcome and pediatric head injury. Pediatr Neurol 33:184–194CrossRefPubMed
2.
Zurück zum Zitat Bai Y, Wang M-Y, Han Y-H et al (2013) Susceptibility weighted imaging: a new tool in the diagnosis of prostate cancer and detection of prostatic calcification. PLoS One 8:e53237PubMedCentralCrossRefPubMed Bai Y, Wang M-Y, Han Y-H et al (2013) Susceptibility weighted imaging: a new tool in the diagnosis of prostate cancer and detection of prostatic calcification. PLoS One 8:e53237PubMedCentralCrossRefPubMed
3.
Zurück zum Zitat Bosemani T, Verschuuren SI, Poretti A et al (2014) Pitfalls in susceptibility-weighted imaging of the pediatric brain. J Neuroimaging 24:221–225CrossRefPubMed Bosemani T, Verschuuren SI, Poretti A et al (2014) Pitfalls in susceptibility-weighted imaging of the pediatric brain. J Neuroimaging 24:221–225CrossRefPubMed
4.
Zurück zum Zitat Breckwoldt M, Bendszus M (2015) Cerebral MR imaging of malignant melanoma. Radiologe 55:113–119CrossRefPubMed Breckwoldt M, Bendszus M (2015) Cerebral MR imaging of malignant melanoma. Radiologe 55:113–119CrossRefPubMed
5.
Zurück zum Zitat Buschle LR, Kurz FT, Kampf T et al (2015) Diffusion-mediated dephasing in the dipole field around a single spherical magnetic object. Magn Reson Imaging 33(9):1126–1245CrossRefPubMed Buschle LR, Kurz FT, Kampf T et al (2015) Diffusion-mediated dephasing in the dipole field around a single spherical magnetic object. Magn Reson Imaging 33(9):1126–1245CrossRefPubMed
6.
Zurück zum Zitat Chang S-X, Li G-W, Chen Y et al (2013) Characterizing venous vasculatures of hepatocellular carcinoma using a multi-breath-hold two-dimensional susceptibility weighted imaging. PLoS One 8:e65895PubMedCentralCrossRefPubMed Chang S-X, Li G-W, Chen Y et al (2013) Characterizing venous vasculatures of hepatocellular carcinoma using a multi-breath-hold two-dimensional susceptibility weighted imaging. PLoS One 8:e65895PubMedCentralCrossRefPubMed
7.
Zurück zum Zitat Chavhan GB, Babyn PS, Thomas B et al (2009) Principles, techniques, and applications of T2*-based MR imaging and its special applications. Radiographics 29:1433–1449PubMedCentralCrossRefPubMed Chavhan GB, Babyn PS, Thomas B et al (2009) Principles, techniques, and applications of T2*-based MR imaging and its special applications. Radiographics 29:1433–1449PubMedCentralCrossRefPubMed
8.
Zurück zum Zitat Chen W, Delproposto Z, Liu W et al (2014) Susceptibility-weighted imaging for the noncontrast evaluation of hepatocellular carcinoma: a prospective study with histopathologic correlation. PLoS One 9:e98303PubMedCentralCrossRefPubMed Chen W, Delproposto Z, Liu W et al (2014) Susceptibility-weighted imaging for the noncontrast evaluation of hepatocellular carcinoma: a prospective study with histopathologic correlation. PLoS One 9:e98303PubMedCentralCrossRefPubMed
9.
Zurück zum Zitat Deistung A, Schweser F, Wiestler B et al (2013) Quantitative susceptibility mapping differentiates between blood depositions and calcifications in patients with glioblastoma. PLoS One 8:e57924PubMedCentralCrossRefPubMed Deistung A, Schweser F, Wiestler B et al (2013) Quantitative susceptibility mapping differentiates between blood depositions and calcifications in patients with glioblastoma. PLoS One 8:e57924PubMedCentralCrossRefPubMed
10.
Zurück zum Zitat Di Ieva A, Göd S, Grabner G et al (2013) Three-dimensional susceptibility-weighted imaging at 7 T using fractal-based quantitative analysis to grade gliomas. Neuroradiology 55:35–40CrossRefPubMed Di Ieva A, Göd S, Grabner G et al (2013) Three-dimensional susceptibility-weighted imaging at 7 T using fractal-based quantitative analysis to grade gliomas. Neuroradiology 55:35–40CrossRefPubMed
11.
Zurück zum Zitat Di Ieva A, Lam T, Alcaide-Leon P et al (2015) Magnetic resonance susceptibility weighted imaging in neurosurgery: current applications and future perspectives. J Neurosurg 123(6):1463–1475CrossRefPubMed Di Ieva A, Lam T, Alcaide-Leon P et al (2015) Magnetic resonance susceptibility weighted imaging in neurosurgery: current applications and future perspectives. J Neurosurg 123(6):1463–1475CrossRefPubMed
12.
Zurück zum Zitat Essig M, Reichenbach JR, Schad L et al (2001) High resolution MR-venography of cerebral arteriovenous malformations. Radiologe 41:288–295CrossRefPubMed Essig M, Reichenbach JR, Schad L et al (2001) High resolution MR-venography of cerebral arteriovenous malformations. Radiologe 41:288–295CrossRefPubMed
13.
Zurück zum Zitat Feier D, Balassy C, Bastati N et al (2015) The diagnostic efficacy of quantitative liver MR imaging with diffusion-weighted, SWI, and hepato-specific contrast-enhanced sequences in staging liver fibrosis – a multiparametric approach. Eur Radiol. doi:10.1007/s00330-015-3830-0PubMed Feier D, Balassy C, Bastati N et al (2015) The diagnostic efficacy of quantitative liver MR imaging with diffusion-weighted, SWI, and hepato-specific contrast-enhanced sequences in staging liver fibrosis – a multiparametric approach. Eur Radiol. doi:10.1007/s00330-015-3830-0PubMed
14.
Zurück zum Zitat Haacke E, Reichenbach J (2011) Susceptibility weighted imaging in MRI. John Wiley & Sons, Inc., HobokenCrossRef Haacke E, Reichenbach J (2011) Susceptibility weighted imaging in MRI. John Wiley & Sons, Inc., HobokenCrossRef
15.
Zurück zum Zitat Haacke EM, Delproposto ZS, Chaturvedi S et al (2007) Imaging cerebral amyloid angiopathy with susceptibility-weighted imaging. Am J Neuroradiol 28:316–317PubMed Haacke EM, Delproposto ZS, Chaturvedi S et al (2007) Imaging cerebral amyloid angiopathy with susceptibility-weighted imaging. Am J Neuroradiol 28:316–317PubMed
16.
Zurück zum Zitat Haacke EM, Liu S, Buch S et al (2015) Quantitative susceptibility mapping: current status and future directions. Magn Reson Imaging 33:1–25CrossRefPubMed Haacke EM, Liu S, Buch S et al (2015) Quantitative susceptibility mapping: current status and future directions. Magn Reson Imaging 33:1–25CrossRefPubMed
17.
Zurück zum Zitat Haacke EM, Mittal S, Wu Z et al (2009) Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. Am J Neuroradiol 30:19–30PubMedCentralCrossRefPubMed Haacke EM, Mittal S, Wu Z et al (2009) Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. Am J Neuroradiol 30:19–30PubMedCentralCrossRefPubMed
18.
Zurück zum Zitat Haase A, Frahm J, Matthael D et al (1986) FLASH Imaging: rapid NMR imaging using low flip-angle pulses. J Magn Reson 67:258–266 Haase A, Frahm J, Matthael D et al (1986) FLASH Imaging: rapid NMR imaging using low flip-angle pulses. J Magn Reson 67:258–266
19.
Zurück zum Zitat Hermier M, Nighoghossian N, Derex L et al (2001) MRI of acute post-ischemic cerebral hemorrhage in stroke patients: diagnosis with T2*-weighted gradient-echo sequences. Neuroradiology 43:809–815CrossRefPubMed Hermier M, Nighoghossian N, Derex L et al (2001) MRI of acute post-ischemic cerebral hemorrhage in stroke patients: diagnosis with T2*-weighted gradient-echo sequences. Neuroradiology 43:809–815CrossRefPubMed
20.
Zurück zum Zitat Hu J, Yu Y, Juhasz C et al (2008) MR susceptibility weighted imaging (SWI) complements conventional contrast enhanced T1 weighted MRI in characterizing brain abnormalities of Sturge-Weber Syndrome. J Magn Reson Imaging 28:300–307PubMedCentralCrossRefPubMed Hu J, Yu Y, Juhasz C et al (2008) MR susceptibility weighted imaging (SWI) complements conventional contrast enhanced T1 weighted MRI in characterizing brain abnormalities of Sturge-Weber Syndrome. J Magn Reson Imaging 28:300–307PubMedCentralCrossRefPubMed
21.
Zurück zum Zitat Ide S, Kakeda S, Ueda I et al (2014) Internal structures of the globus pallidus in patients with Parkinson’s disease: evaluation with quantitative susceptibility mapping (QSM). Eur Radiol 25:710–718CrossRefPubMed Ide S, Kakeda S, Ueda I et al (2014) Internal structures of the globus pallidus in patients with Parkinson’s disease: evaluation with quantitative susceptibility mapping (QSM). Eur Radiol 25:710–718CrossRefPubMed
22.
Zurück zum Zitat Jagadeesan BD, Delgado Almandoz JE, Benzinger TL et al (2011) Postcontrast susceptibility-weighted imaging: a novel technique for the detection of arteriovenous shunting in vascular malformations of the brain. Stroke 42:3127–3131PubMedCentralCrossRefPubMed Jagadeesan BD, Delgado Almandoz JE, Benzinger TL et al (2011) Postcontrast susceptibility-weighted imaging: a novel technique for the detection of arteriovenous shunting in vascular malformations of the brain. Stroke 42:3127–3131PubMedCentralCrossRefPubMed
23.
Zurück zum Zitat Kidambi A, Biglands JD, Higgins DM et al (2014) Susceptibility-weighted cardiovascular magnetic resonance in comparison to T2 and T2 star imaging for detection of intramyocardial hemorrhage following acute myocardial infarction at 3 Tesla. J Cardiovasc Magn Reson 16:86PubMedCentralCrossRefPubMed Kidambi A, Biglands JD, Higgins DM et al (2014) Susceptibility-weighted cardiovascular magnetic resonance in comparison to T2 and T2 star imaging for detection of intramyocardial hemorrhage following acute myocardial infarction at 3 Tesla. J Cardiovasc Magn Reson 16:86PubMedCentralCrossRefPubMed
24.
Zurück zum Zitat Kurz FT, Kampf T, Heiland S et al (2014) Theoretical model of the single spin-echo relaxation time for spherical magnetic perturbers. Magn Reson Med 71:1888–1895CrossRefPubMed Kurz FT, Kampf T, Heiland S et al (2014) Theoretical model of the single spin-echo relaxation time for spherical magnetic perturbers. Magn Reson Med 71:1888–1895CrossRefPubMed
26.
Zurück zum Zitat Li C, Hu J, Zhou D et al (2014) Differentiation of bland from neoplastic thrombus of the portal vein in patients with hepatocellular carcinoma: application of susceptibility-weighted MR imaging. BMC Cancer 14:590PubMedCentralCrossRefPubMed Li C, Hu J, Zhou D et al (2014) Differentiation of bland from neoplastic thrombus of the portal vein in patients with hepatocellular carcinoma: application of susceptibility-weighted MR imaging. BMC Cancer 14:590PubMedCentralCrossRefPubMed
27.
Zurück zum Zitat Li L, Leigh JS (2004) Quantifying arbitrary magnetic susceptibility distributions with MR. Magn Reson Med 51:1077–1082CrossRefPubMed Li L, Leigh JS (2004) Quantifying arbitrary magnetic susceptibility distributions with MR. Magn Reson Med 51:1077–1082CrossRefPubMed
29.
Zurück zum Zitat Li X, Zhu Y, Kang H et al (2015) Glioma grading by microvascular permeability parameters derived from dynamic contrast-enhanced MRI and intratumoral susceptibility signal on susceptibility weighted imaging. Cancer Imaging 15:4PubMedCentralCrossRefPubMed Li X, Zhu Y, Kang H et al (2015) Glioma grading by microvascular permeability parameters derived from dynamic contrast-enhanced MRI and intratumoral susceptibility signal on susceptibility weighted imaging. Cancer Imaging 15:4PubMedCentralCrossRefPubMed
31.
Zurück zum Zitat Mannion RJ, Cross J, Bradley P et al (2007) Mechanism-based MRI classification of traumatic brainstem injury and its relationship to outcome. J Neurotrauma 24:128–135CrossRefPubMed Mannion RJ, Cross J, Bradley P et al (2007) Mechanism-based MRI classification of traumatic brainstem injury and its relationship to outcome. J Neurotrauma 24:128–135CrossRefPubMed
32.
Zurück zum Zitat Mehemed TM, Yamamoto A, Okada T et al (2013) Fat-water interface on susceptibility-weighted imaging and gradient-echo imaging: comparison of phantoms to intracranial lipomas. Am J Roentgenol 201:902–907CrossRef Mehemed TM, Yamamoto A, Okada T et al (2013) Fat-water interface on susceptibility-weighted imaging and gradient-echo imaging: comparison of phantoms to intracranial lipomas. Am J Roentgenol 201:902–907CrossRef
33.
Zurück zum Zitat Mie MB, Nissen JC, Zöllner FG et al (2010) Susceptibility weighted imaging (SWI) of the kidney at 3 T – initial results. Z Med Phys 20:143–150CrossRefPubMed Mie MB, Nissen JC, Zöllner FG et al (2010) Susceptibility weighted imaging (SWI) of the kidney at 3 T – initial results. Z Med Phys 20:143–150CrossRefPubMed
34.
Zurück zum Zitat Mittal S, Wu Z, Neelavalli J et al (2009) Susceptibility-weighted imaging: technical aspects and clinical applications, part 2. Am J Neuroradiol 30:232–252PubMedCentralCrossRefPubMed Mittal S, Wu Z, Neelavalli J et al (2009) Susceptibility-weighted imaging: technical aspects and clinical applications, part 2. Am J Neuroradiol 30:232–252PubMedCentralCrossRefPubMed
35.
Zurück zum Zitat Mohammed W, Xunning H, Haibin S et al (2013) Clinical applications of susceptibility-weighted imaging in detecting and grading intracranial gliomas: a review. Cancer Imaging 13:186–195PubMedCentralCrossRefPubMed Mohammed W, Xunning H, Haibin S et al (2013) Clinical applications of susceptibility-weighted imaging in detecting and grading intracranial gliomas: a review. Cancer Imaging 13:186–195PubMedCentralCrossRefPubMed
36.
Zurück zum Zitat Mugler JP, Brookeman JR (1990) Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magn Reson Med 15:152–157CrossRefPubMed Mugler JP, Brookeman JR (1990) Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magn Reson Med 15:152–157CrossRefPubMed
37.
Zurück zum Zitat Nörenberg D, Ebersberger HU, Walter T et al (2015) Diagnosis of calcific tendonitis of the rotator cuff by using susceptibility-weighted MR imaging. Radiology. doi:10.1148/radiol.2015150034PubMed Nörenberg D, Ebersberger HU, Walter T et al (2015) Diagnosis of calcific tendonitis of the rotator cuff by using susceptibility-weighted MR imaging. Radiology. doi:10.1148/radiol.2015150034PubMed
38.
Zurück zum Zitat Ogawa S, Lee TM, Kay AR et al (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872PubMedCentralCrossRefPubMed Ogawa S, Lee TM, Kay AR et al (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872PubMedCentralCrossRefPubMed
39.
Zurück zum Zitat Ogg RJ, Langston JW, Haacke EM et al (1999) The correlation between phase shifts in gradient-echo MR images and regional brain iron concentration. Magn Reson Imaging 17:1141–1148CrossRefPubMed Ogg RJ, Langston JW, Haacke EM et al (1999) The correlation between phase shifts in gradient-echo MR images and regional brain iron concentration. Magn Reson Imaging 17:1141–1148CrossRefPubMed
40.
Zurück zum Zitat Park MJ, Kim HS, Jahng G-H et al (2009) Semiquantitative assessment of Intratumoral susceptibility signals using non-contrast-enhanced high-field high-resolution susceptibility-weighted imaging in patients with Gliomas: comparison with MR perfusion imaging. Am J Neuroradiol 30:1402–1408CrossRefPubMed Park MJ, Kim HS, Jahng G-H et al (2009) Semiquantitative assessment of Intratumoral susceptibility signals using non-contrast-enhanced high-field high-resolution susceptibility-weighted imaging in patients with Gliomas: comparison with MR perfusion imaging. Am J Neuroradiol 30:1402–1408CrossRefPubMed
41.
Zurück zum Zitat Pauling L, Coryell CD (1936) The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobin. Proc Natl Acad Sci U S A 22:210–216PubMedCentralCrossRefPubMed Pauling L, Coryell CD (1936) The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobin. Proc Natl Acad Sci U S A 22:210–216PubMedCentralCrossRefPubMed
42.
Zurück zum Zitat Pfefferbaum A, Adalsteinsson E, Rohlfing T et al (2009) MRI estimates of brain iron concentration in normal aging: Comparison of field-dependent (FDRI) and phase (SWI) methods. Neuroimage 47:493–500PubMedCentralCrossRefPubMed Pfefferbaum A, Adalsteinsson E, Rohlfing T et al (2009) MRI estimates of brain iron concentration in normal aging: Comparison of field-dependent (FDRI) and phase (SWI) methods. Neuroimage 47:493–500PubMedCentralCrossRefPubMed
43.
Zurück zum Zitat Radbruch A, Graf M, Kramp L et al (2012) Differentiation of brain metastases by percentagewise quantification of intratumoral-susceptibility-signals at 3Tesla. Eur J Radiol 81:4064–4068CrossRefPubMed Radbruch A, Graf M, Kramp L et al (2012) Differentiation of brain metastases by percentagewise quantification of intratumoral-susceptibility-signals at 3Tesla. Eur J Radiol 81:4064–4068CrossRefPubMed
44.
Zurück zum Zitat Radbruch A, Mucke J, Schweser F et al (2013) Comparison of susceptibility weighted imaging and TOF-angiography for the detection of Thrombi in acute stroke. PLoS One 8:e63459PubMedCentralCrossRefPubMed Radbruch A, Mucke J, Schweser F et al (2013) Comparison of susceptibility weighted imaging and TOF-angiography for the detection of Thrombi in acute stroke. PLoS One 8:e63459PubMedCentralCrossRefPubMed
45.
Zurück zum Zitat Radbruch A, Wiestler B, Kramp L et al (2013) Differentiation of glioblastoma and primary CNS lymphomas using susceptibility weighted imaging. Eur J Radiol 82:552–556CrossRefPubMed Radbruch A, Wiestler B, Kramp L et al (2013) Differentiation of glioblastoma and primary CNS lymphomas using susceptibility weighted imaging. Eur J Radiol 82:552–556CrossRefPubMed
46.
Zurück zum Zitat Reichenbach JR, Haacke EM (2001) High-resolution BOLD venographic imaging: a window into brain function. NMR Biomed 14(7–8):453–467CrossRefPubMed Reichenbach JR, Haacke EM (2001) High-resolution BOLD venographic imaging: a window into brain function. NMR Biomed 14(7–8):453–467CrossRefPubMed
47.
Zurück zum Zitat Reichenbach JR, Schweser F, Serres B et al (2015) Quantitative Susceptibility Mapping: Concepts and Applications. Clin Neuroradiol 25(Suppl 2):225–230CrossRefPubMed Reichenbach JR, Schweser F, Serres B et al (2015) Quantitative Susceptibility Mapping: Concepts and Applications. Clin Neuroradiol 25(Suppl 2):225–230CrossRefPubMed
48.
Zurück zum Zitat Reichenbach JR, Venkatesan R, Schillinger DJ et al (1997) Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent. Radiology 204:272–277CrossRefPubMed Reichenbach JR, Venkatesan R, Schillinger DJ et al (1997) Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent. Radiology 204:272–277CrossRefPubMed
49.
Zurück zum Zitat Salvati M, Formichella AI, D’elia A et al (2009) Cerebral glioblastoma with oligodendrogliomal component: analysis of 36 cases. J Neuro-Oncol 94(1):129–134. doi:10.1007/s11060-009-9815-6CrossRef Salvati M, Formichella AI, D’elia A et al (2009) Cerebral glioblastoma with oligodendrogliomal component: analysis of 36 cases. J Neuro-Oncol 94(1):129–134. doi:10.1007/s11060-009-9815-6CrossRef
50.
Zurück zum Zitat Sedlacik J, Kutschbach C, Rauscher A et al (2008) Investigation of the influence of carbon dioxide concentrations on cerebral physiology by susceptibility-weighted magnetic resonance imaging (SWI). Neuroimage 43:36–43CrossRefPubMed Sedlacik J, Kutschbach C, Rauscher A et al (2008) Investigation of the influence of carbon dioxide concentrations on cerebral physiology by susceptibility-weighted magnetic resonance imaging (SWI). Neuroimage 43:36–43CrossRefPubMed
51.
Zurück zum Zitat Solak A, Sahin N, Genç B et al (2013) Diagnostic value of susceptibility-weighted imaging of abdominal wall endometriomas during the cyclic menstrual changes: a preliminary study. Eur J Radiol 82:e411–416CrossRefPubMed Solak A, Sahin N, Genç B et al (2013) Diagnostic value of susceptibility-weighted imaging of abdominal wall endometriomas during the cyclic menstrual changes: a preliminary study. Eur J Radiol 82:e411–416CrossRefPubMed
52.
Zurück zum Zitat Takeuchi M, Matsuzaki K, Harada M (2015) Susceptibility-weighted MRI of extra-ovarian endometriosis: preliminary results. Abdom Imaging 40:2512–2516CrossRefPubMed Takeuchi M, Matsuzaki K, Harada M (2015) Susceptibility-weighted MRI of extra-ovarian endometriosis: preliminary results. Abdom Imaging 40:2512–2516CrossRefPubMed
53.
Zurück zum Zitat Taupitz M, Schnorr J, Abramjuk C et al (2000) New generation of monomer-stabilized very small superparamagnetic iron oxide particles (VSOP) as contrast medium for MR angiography: preclinical results in rats and rabbits. J Magn Reson Imaging 12:905–911CrossRefPubMed Taupitz M, Schnorr J, Abramjuk C et al (2000) New generation of monomer-stabilized very small superparamagnetic iron oxide particles (VSOP) as contrast medium for MR angiography: preclinical results in rats and rabbits. J Magn Reson Imaging 12:905–911CrossRefPubMed
54.
Zurück zum Zitat Thomas B, Somasundaram S, Thamburaj K et al (2008) Clinical applications of susceptibility weighted MR imaging of the brain – a pictorial review. Neuroradiology 50:105–116CrossRefPubMed Thomas B, Somasundaram S, Thamburaj K et al (2008) Clinical applications of susceptibility weighted MR imaging of the brain – a pictorial review. Neuroradiology 50:105–116CrossRefPubMed
55.
Zurück zum Zitat Toh CH, Wei K-C, Chang C-N et al (2012) Differentiation of pyogenic brain abscesses from necrotic glioblastomas with use of susceptibility-weighted imaging. Am J Neuroradiol 33:1534–1538CrossRefPubMed Toh CH, Wei K-C, Chang C-N et al (2012) Differentiation of pyogenic brain abscesses from necrotic glioblastomas with use of susceptibility-weighted imaging. Am J Neuroradiol 33:1534–1538CrossRefPubMed
56.
Zurück zum Zitat Tong KA, Ashwal S, Holshouser BA et al (2003) Hemorrhagic shearing lesions in children and adolescents with posttraumatic diffuse axonal injury: improved detection and initial results1. Radiology 227:332–339CrossRefPubMed Tong KA, Ashwal S, Holshouser BA et al (2003) Hemorrhagic shearing lesions in children and adolescents with posttraumatic diffuse axonal injury: improved detection and initial results1. Radiology 227:332–339CrossRefPubMed
57.
Zurück zum Zitat Tong KA, Ashwal S, Obenaus A et al (2008) Susceptibility-weighted MR imaging: a review of clinical applications in children. Am J Neuroradiol 29:9–17CrossRefPubMed Tong KA, Ashwal S, Obenaus A et al (2008) Susceptibility-weighted MR imaging: a review of clinical applications in children. Am J Neuroradiol 29:9–17CrossRefPubMed
58.
Zurück zum Zitat Von Kummer R (2002) MRI: the new gold standard for detecting brain hemorrhage? Stroke 33:1748–1749CrossRef Von Kummer R (2002) MRI: the new gold standard for detecting brain hemorrhage? Stroke 33:1748–1749CrossRef
59.
Zurück zum Zitat Wang S, Lou M, Liu T et al (2013) Hematoma volume measurement in gradient echo MRI using quantitative susceptibility mapping. Stroke 44:2315–2317PubMedCentralCrossRefPubMed Wang S, Lou M, Liu T et al (2013) Hematoma volume measurement in gradient echo MRI using quantitative susceptibility mapping. Stroke 44:2315–2317PubMedCentralCrossRefPubMed
60.
Zurück zum Zitat Wycliffe ND, Choe J, Holshouser B et al (2004) Reliability in detection of hemorrhage in acute stroke by a new three-dimensional gradient recalled echo susceptibility-weighted imaging technique compared to computed tomography: a retrospective study. J Magn Reson Imaging 20:372–377CrossRefPubMed Wycliffe ND, Choe J, Holshouser B et al (2004) Reliability in detection of hemorrhage in acute stroke by a new three-dimensional gradient recalled echo susceptibility-weighted imaging technique compared to computed tomography: a retrospective study. J Magn Reson Imaging 20:372–377CrossRefPubMed
61.
Zurück zum Zitat Xie L, Sparks MA, Li W et al (2013) Quantitative susceptibility mapping of kidney inflammation and fibrosis in type 1 angiotensin receptor-deficient mice. NMR Biomed 26:1853–1863PubMedCentralCrossRefPubMed Xie L, Sparks MA, Li W et al (2013) Quantitative susceptibility mapping of kidney inflammation and fibrosis in type 1 angiotensin receptor-deficient mice. NMR Biomed 26:1853–1863PubMedCentralCrossRefPubMed
62.
63.
Zurück zum Zitat Zhang J, Tao R, You Z et al (2013) Gamna-Gandy bodies of the spleen detected with susceptibility weighted imaging: maybe a new potential non-invasive marker of esophageal varices. PLoS One 8:e55626PubMedCentralCrossRefPubMed Zhang J, Tao R, You Z et al (2013) Gamna-Gandy bodies of the spleen detected with susceptibility weighted imaging: maybe a new potential non-invasive marker of esophageal varices. PLoS One 8:e55626PubMedCentralCrossRefPubMed
64.
Zurück zum Zitat Zhong K, Leupold J, Von Elverfeldt D et al (2008) The molecular basis for gray and white matter contrast in phase imaging. Neuroimage 40:1561–1566CrossRefPubMed Zhong K, Leupold J, Von Elverfeldt D et al (2008) The molecular basis for gray and white matter contrast in phase imaging. Neuroimage 40:1561–1566CrossRefPubMed
65.
Zurück zum Zitat Ziener CH, Kampf T, Herold V et al (2008) Frequency autocorrelation function of stochastically fluctuating fields caused by specific magnetic field inhomogeneities. J Chem Phys 129:014507CrossRefPubMed Ziener CH, Kampf T, Herold V et al (2008) Frequency autocorrelation function of stochastically fluctuating fields caused by specific magnetic field inhomogeneities. J Chem Phys 129:014507CrossRefPubMed
66.
Zurück zum Zitat Ziener CH, Kampf T, Kurz FT (2015) Diffusion propagators for hindered diffusion in open geometries. Concepts Magn Reson Part A 44(3):150–159CrossRef Ziener CH, Kampf T, Kurz FT (2015) Diffusion propagators for hindered diffusion in open geometries. Concepts Magn Reson Part A 44(3):150–159CrossRef
67.
Zurück zum Zitat Ziener CH, Kampf T, Reents G et al (2012) Spin dephasing in a magnetic dipole field. Phys Rev E Stat Nonlin Soft Matter Phys 85(5 Pt 1):051908CrossRefPubMed Ziener CH, Kampf T, Reents G et al (2012) Spin dephasing in a magnetic dipole field. Phys Rev E Stat Nonlin Soft Matter Phys 85(5 Pt 1):051908CrossRefPubMed
68.
Zurück zum Zitat Ziener CH, Kurz FT, Kampf T (2015) Free induction decay caused by a dipole field. Physical review. Phys Rev E Stat Nonlin Soft Matter Phys 91:032707CrossRefPubMed Ziener CH, Kurz FT, Kampf T (2015) Free induction decay caused by a dipole field. Physical review. Phys Rev E Stat Nonlin Soft Matter Phys 91:032707CrossRefPubMed
69.
Zurück zum Zitat Zulfiqar M, Dumrongpisutikul N, Intrapiromkul J et al (2012) Detection of Intratumoral Calcification in Oligodendrogliomas by Susceptibility-Weighted MR Imaging. Am J Neuroradiol 33:858–864CrossRefPubMed Zulfiqar M, Dumrongpisutikul N, Intrapiromkul J et al (2012) Detection of Intratumoral Calcification in Oligodendrogliomas by Susceptibility-Weighted MR Imaging. Am J Neuroradiol 33:858–864CrossRefPubMed
Metadaten
Titel
Grundlagen und Anwendungen der suszeptibilitätsgewichteten Bildgebung
verfasst von
F. T. Kurz
M. Freitag
H.-P. Schlemmer
M. Bendszus
Dr. Dr. C. H. Ziener
Publikationsdatum
01.02.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Die Radiologie / Ausgabe 2/2016
Print ISSN: 2731-7048
Elektronische ISSN: 2731-7056
DOI
https://doi.org/10.1007/s00117-015-0069-3

Weitere Artikel der Ausgabe 2/2016

Der Radiologe 2/2016 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.