Skip to main content
Erschienen in: Critical Care 1/2016

Open Access 01.12.2016 | Commentary

New generation indirect calorimeters for measuring energy expenditure in the critically ill: a rampant or reticent revolution?

verfasst von: Elisabeth De Waele, Patrick M. Honore, Herbert D. Spapen

Erschienen in: Critical Care | Ausgabe 1/2016

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

To lower the risk of incorrectly feeding critically ill patients, indirect calorimetry (IC) is proposed as the most ideal method to evaluate energy expenditure and to establish caloric goals. New IC devices are progressively introduced but validation of this new generation remains challenging and arduous.
Hinweise
This comment refers to the article available at: http://​dx.​doi.​org/​10.​1186/​s13054-016-1232-6.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

EDW designed the paper, EDW, PMH and HDS participated in drafting the manuscript and have read and approved the final version.
Abkürzungen
ICU
intensive care unit
REE
resting energy expenditure
VO2
oxygen consumption
VCO2
carbon dioxide production
Nutrition has definitely forged a place amidst the therapeutic armamentarium of the intensive care unit (ICU) [1, 2]. “Nutrition pharmacology” has developed into an intrinsic ICU subspecialty and knowledge on “critical care nutrition” is growing steadily [3]. Experts agree that energy-protein targeting is of cardinal importance in fragile and often malnourished ICU patients [4]. Adequate provision of calories over time is also linked to an improved clinical outcome [5].
Today, it is evident that a correct estimation of resting energy expenditure (REE) is indispensable within an ICU nutritional care plan. Equations for calculating REE often generate insufficiently precise or poorly reproducible results in critically ill patients [6, 7]. Indirect calorimetry (IC) may more accurately predict energy requirements and is actually recommended for use in this population [8]. For decades, the Deltatrac counted as the “gold standard” metabolic monitor for measuring REE in a critical care setting. The Deltatrac gained this status because it harvested measurements of oxygen consumption (VO2) and carbon dioxide production (VCO2) in mechanically ventilated patients that were equivalent to those obtained by mass spectrometry [9]. Unfortunately, production of the Deltatrac device has ceased completely. As a result, we are now facing a surge of “new generation” ICs aiming to fill in this gap. These devices rely on breath-by-breath technology for measuring gas exchange, which differs from the mixing chamber method used by the Deltatrac. Initial experience comparing novel ICs with the Deltatrac in spontaneously breathing subjects showed good precision and acceptable bias [10, 11]. However, mechanically ventilated ICU patients represent a particular challenge. Patient–ventilator interactions, either involuntarily but also increasingly indulged in modern ventilation strategies, may significantly affect or perturb gas exchange patterns and result in inconsistent measurements. In addition, novel ICs have not been extensively tested in thermogenically “unstable” conditions created by catecholamine treatment, varying sedation levels, more frequent use of continuous extracorporeal, including renal, supportive therapy, and differences in type and quantity of feeding. Studies on validation of novel IC instruments in mechanically ventilated patients have been disappointing. A study comparing the Deltatrac with the Medgraphics Ultima calorimeter showed acceptable bias but poor precision for measuring VO2 [12] and poor agreement was found between the Deltatrac and the Quark RMR, M-COVX, and Evita 4 monitors [13, 14].
In this issue of Critical Care, Sundström Rehal et al. present an elaborate study that underscores the complexity and pitfalls of metabolic measurement in the ICU [1]. Within a robust methodological framework, these investigators compared two new generation ICs (E-sCOVX and Quark RMR) with the Deltatrac. Both modern ICs systematically overestimated VO2 and VCO2 and showed high variability in REE assessment. Unlike Sundström Rehal et al., we believe that the degree of overestimation and observed lack of precision seriously questions whether these instruments have a compelling role in daily metabolic measurement. Results must also be interpreted within the constraints of a rigorous study protocol which may not be easily applicable in daily ICU routine. Nonetheless, the work of Sundström Rehal et al. holds an outspoken claim to further invest in appropriate validation studies and to foster research into functional improvement of existing devices or even the development of a specific ICU calorimeter.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

EDW designed the paper, EDW, PMH and HDS participated in drafting the manuscript and have read and approved the final version.
download
DOWNLOAD
print
DRUCKEN
Literatur
1.
Zurück zum Zitat Sundström Rehal M, Fiskaare E, Tjäder I, Norberg A, Rooyackers O, Wernerman J. Measuring energy expenditure in the intensive care unit: a comparison of indirect calorimetry by E-sCOVX and Quark RMR with Deltatrac II in mechanically ventilated critically ill patients. Crit Care. 2016;20:54.CrossRef Sundström Rehal M, Fiskaare E, Tjäder I, Norberg A, Rooyackers O, Wernerman J. Measuring energy expenditure in the intensive care unit: a comparison of indirect calorimetry by E-sCOVX and Quark RMR with Deltatrac II in mechanically ventilated critically ill patients. Crit Care. 2016;20:54.CrossRef
2.
Zurück zum Zitat Iapichino G, Radrizzani D, Giacomini M, Pezzi A, Zaniboni M, Mistraletti G. Metabolic treatment of critically ill patients: energy expenditure and energy supply. Minerva Anestesiol. 2006;72:559–65.PubMed Iapichino G, Radrizzani D, Giacomini M, Pezzi A, Zaniboni M, Mistraletti G. Metabolic treatment of critically ill patients: energy expenditure and energy supply. Minerva Anestesiol. 2006;72:559–65.PubMed
3.
Zurück zum Zitat Wischmeyer PE, Heyland DK. The future of critical care nutrition therapy. Crit Care Clin. 2010;26:433–41.CrossRefPubMed Wischmeyer PE, Heyland DK. The future of critical care nutrition therapy. Crit Care Clin. 2010;26:433–41.CrossRefPubMed
4.
Zurück zum Zitat Singer P, Hiesmayr M, Biolo G, Felbinger TW, Berger MM, Goeters C, et al. Pragmatic approach to nutrition in the ICU: expert opinion regarding which calorie protein target. Clin Nutr. 2014;33:246–51.CrossRefPubMed Singer P, Hiesmayr M, Biolo G, Felbinger TW, Berger MM, Goeters C, et al. Pragmatic approach to nutrition in the ICU: expert opinion regarding which calorie protein target. Clin Nutr. 2014;33:246–51.CrossRefPubMed
6.
Zurück zum Zitat Preiser JC, van Zanten AR, Berger MM, Biolo G, Casaer MP, Doig GS. Metabolic and nutritional support of critically ill patients: consensus and controversies. Crit Care. 2015;19:35.CrossRefPubMedPubMedCentral Preiser JC, van Zanten AR, Berger MM, Biolo G, Casaer MP, Doig GS. Metabolic and nutritional support of critically ill patients: consensus and controversies. Crit Care. 2015;19:35.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Picolo MF, Lago AF, Menegueti MG, Nicolini EA, Basile-Filho A, Nunes AA, et al. Harris-Benedict equation and resting energy expenditure estimates in critically ill ventilator patients. Am J Crit Care. 2016;25:e21–9.CrossRefPubMed Picolo MF, Lago AF, Menegueti MG, Nicolini EA, Basile-Filho A, Nunes AA, et al. Harris-Benedict equation and resting energy expenditure estimates in critically ill ventilator patients. Am J Crit Care. 2016;25:e21–9.CrossRefPubMed
8.
Zurück zum Zitat Singer P, Berger MM, Van den Berghe G, Biolo G, Calder P, Forbes, et al. ESPEN Guidelines on Parenteral Nutrition: intensive care. Clin Nutr. 2009;28:387–400.CrossRefPubMed Singer P, Berger MM, Van den Berghe G, Biolo G, Calder P, Forbes, et al. ESPEN Guidelines on Parenteral Nutrition: intensive care. Clin Nutr. 2009;28:387–400.CrossRefPubMed
9.
Zurück zum Zitat Tissot S, Delafosse B, Bertrand O, Bouffard Y, Viale JP, Annat G. Clinical validation of the Deltatrac monitoring system in mechanically ventilated patients. Intensive Care Med. 1995;21:149–53.CrossRefPubMed Tissot S, Delafosse B, Bertrand O, Bouffard Y, Viale JP, Annat G. Clinical validation of the Deltatrac monitoring system in mechanically ventilated patients. Intensive Care Med. 1995;21:149–53.CrossRefPubMed
10.
Zurück zum Zitat Ashcraft CM, Frankenfield DC. Validity test of a new open-circuit indirect calorimeter. J Parenter Enteral Nutr. 2015;39:738–42.CrossRef Ashcraft CM, Frankenfield DC. Validity test of a new open-circuit indirect calorimeter. J Parenter Enteral Nutr. 2015;39:738–42.CrossRef
11.
Zurück zum Zitat Frankenfield DC, Ashcraft CM, Wood C, Chinchilli VM. Validation of an indirect calorimeter using n-of-1 methodology. Clin Nutr. 2016;35:163–8.CrossRefPubMed Frankenfield DC, Ashcraft CM, Wood C, Chinchilli VM. Validation of an indirect calorimeter using n-of-1 methodology. Clin Nutr. 2016;35:163–8.CrossRefPubMed
12.
Zurück zum Zitat Black C, Grocott MP, Singer M. Metabolic monitoring in the intensive care unit: a comparison of the Medgraphics Ultima, Deltatrac II, and Douglas bag collection methods. Br J Anaesth. 2015;114:261–8.CrossRefPubMed Black C, Grocott MP, Singer M. Metabolic monitoring in the intensive care unit: a comparison of the Medgraphics Ultima, Deltatrac II, and Douglas bag collection methods. Br J Anaesth. 2015;114:261–8.CrossRefPubMed
13.
Zurück zum Zitat Graf S, Karsegard VL, Viatte V, Heidegger CP, Fleury Y, Pichard C, et al. Evaluation of three indirect calorimetry devices in mechanically ventilated patients: which device compares best with the Deltatrac II(®)? A prospective observational study. Clin Nutr. 2015;34:60–5.CrossRefPubMed Graf S, Karsegard VL, Viatte V, Heidegger CP, Fleury Y, Pichard C, et al. Evaluation of three indirect calorimetry devices in mechanically ventilated patients: which device compares best with the Deltatrac II(®)? A prospective observational study. Clin Nutr. 2015;34:60–5.CrossRefPubMed
14.
Zurück zum Zitat Singer P, Pogrebetsky I, Attal-Singer J, Cohen J. Comparison of metabolic monitors in critically ill, ventilated patients. Nutrition. 2006;22:1077–86.CrossRefPubMed Singer P, Pogrebetsky I, Attal-Singer J, Cohen J. Comparison of metabolic monitors in critically ill, ventilated patients. Nutrition. 2006;22:1077–86.CrossRefPubMed
Metadaten
Titel
New generation indirect calorimeters for measuring energy expenditure in the critically ill: a rampant or reticent revolution?
verfasst von
Elisabeth De Waele
Patrick M. Honore
Herbert D. Spapen
Publikationsdatum
01.12.2016
Verlag
BioMed Central
Erschienen in
Critical Care / Ausgabe 1/2016
Elektronische ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-016-1315-4

Weitere Artikel der Ausgabe 1/2016

Critical Care 1/2016 Zur Ausgabe

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.