Skip to main content
Erschienen in: Cancer Cell International 1/2019

Open Access 01.12.2019 | Primary research

New insights into the association between AXIN2 148 C/T, 1365 C/T, and rs4791171 A/G variants and cancer risk

verfasst von: Bin Xu, Wei Yuan, Li Shi, Li Zuo, Xing-Yu Wu, Wei Zhang, Qiaxian Wen

Erschienen in: Cancer Cell International | Ausgabe 1/2019

Abstract

Background

Many epidemiological studies have investigated association of AXIN2 variants on overall cancer risks; however, the available results remain inconsistent.

Methods

An updated analysis was conducted to ascertain a more accurate estimation of the correlation between AXIN2 148 C/T, 1365 C/T, and rs4791171 A/G polymorphisms and cancer risk. We also used in silico tools to assess the effect of AXIN2 expression on cancer susceptibility and overall survival time.

Results

A total of 4281 cases and 3955 control participants were studied. The overall results indicated that AXIN2 148 C/T variant was associated with cancer risk (allelic contrast: OR = 0.88, 95% CI 0.77–0.99, Pheterogeneity = 0.004; dominant model: OR = 0.82, 95% CI 0.69–0.96, Pheterogeneity = 0.022), especially for lung and prostate adenocarcinoma. Similar results were observed in 1365 C/T polymorphism (OR = 0.71, 95% CI 0.61–0.98, Pheterogeneity = 0.873; dominant model: OR = 0.66, 95% CI 0.47–0.94, Pheterogeneity = 0.775). Moreover, in subgroup analysis by ethnicity, similar findings were obtained for Asian and Caucasian populations. Results from in silico tools suggested that AXIN2 expressions in lung adenocarcinoma were lower than that in normal group.

Conclusions

Our findings indicated that AXIN2 148 C/T and 1365 C/T variants may be associated with decreased cancer susceptibility.
Hinweise
Bin Xu, Wei Yuan and Li Shi contributors equally to this work
Abkürzungen
AT
astrocytoma
BC
breast cancer
CRC
colorectal cancer
GBC
gallbladder cancer
HB
hospital-based
PB
population-based
PCR-RFLP
polymerase chain reaction and restrictive fragment length polymorphism
RT
real time
NA
not available
NOS
Newcastle–Ottawa Scale
HCC
hepatocellular carcinoma
HNC
head and neck cancer
HWE
Hardy–Weinberg equilibrium of controls
LC
lung adenocarcinoma
PC
prostate adenocarcinoma
PTC
papillary thyroid carcinoma
OC
ovarian cancer

Background

The continuing changes in global population and epidemiology indicate that the burden of cancer will continue to increase in the coming decades. Cancer is considered as a multifactorial disease and its occurrence is associated with several factors such as lifestyle, environment and single nucleotide polymorphism (SNP) [13]. With the remarkable development of a series of genotyping technologies including genome-wide association studies (GWAS), our understanding of genetic factors related to carcinogenesis has substantially expanded [46]. Wnt/β-catenin signaling pathway is known to play a central role in the process of embryogenesis, and abnormalities of this pathway are associated with numerous human malignant tumors [7, 8]. Axin2 protein acts as a negative regulator of Wnt pathway and plays a crucial role in cell differentiation, migration, cytometaplasia, and apoptosis [911]. Axin2 protein is also involved in down-regulation of β-catenin translocation ito the nucleus. In this process, Axin2 binds to transcription factors and subsequently inhibits the expression of numerous target genes including vascular matrix metalloproteinases (MMP), cox 2, and endothelial growth factor (VEGF) [12, 13].
Mutations of AXIN2 gene has been identified by previous genotyping technologies. This gene is located on human chromosome 17q23-q24 and composed of 10 exons, which encodes a protein consisting of 843 amino acids [14]. Loss of heterozygosity of this gene was previously identified in a number of carcinomas such as hepatoblastoma, hepatocellular carcinoma, melanoma, gastrointestinal, ovarian, synchronous endometrial carcinomas [1518]. Association between AXIN2 variants and carcinoma susceptibility has also been reported by previous publications. These SNPs including: 148 C>T (rs2240308), 1365 C/T (rs9915936), and rs4791171 A/G (NC_000017.10) [1924]. Study population of these genetic variants has involved numerous ethnicities such as Brazilians, Iranians, Chinese, Saudi Arabians, Indians and Poles [2027]. These studies also evaluated various malignancies; nevertheless, there were ambiguous conclusions on the relationship between the AXIN2 polymorphisms and cancer risk among different case–control studies.
For AXIN2 148 C>T polymorphism, a case–control study observed no statistically significant correlation between controls and prostate adenocarcinoma in Turkish population [27]. However, another two studies identified notable decreased risks in Iranian colorectal cancer subjects and Chinese prostate adenocarcinoma participants [21, 22]. Therefore, a meta analysis with all eligible data based on the inclusion criteria was conducted to further assess the associations between AXIN2 148 C/T, 1365 C/T, and rs4791171 A/G polymorphisms and cancer risk [1933].

Materials and methods

Literature retrieval strategy

PubMed, Web of Science, Google Scholar, and China Wanfang Databases were systematically searched to identify all eligible published articles on AXIN2 variants and cancer susceptibility. The following terms were utilized for searching abstracts and titles: “Axin OR AXIN2”, “polymorphism OR SNP OR variant”, and “cancer OR adenocarcinoma OR carcinoma OR tumor”. The latest search was conducted on Jan 31, 2019 with no language restrictions. Furthermore, we also carefully screened and manually searched the review or original publications for more eligible studies.

Study selection

Two authors independently chose the eligible studies based on the inclusion criteria: (a) case–control studies that evaluated the association between AXIN2 148 C/T, 1365 C/T, and rs4791171 A/G variants and cancer risk; (b) studies that involved available information for measuring odds ratio (OR) with 95% confidence intervals (CIs); (c) genotype distribution in controls must be conformed to Hardy-Weinberg equilibrium (HWE).

Data extraction

All related information was independently screened by two investigators (L Shi and B Xu) from each enrolled study, including the name of first author, year of publication, country of origin, ethnicity, source of control, genotyping method, cancer type, total number of participants, P value for HWE, age range, genotyping data of AXIN2 148 C/T, 1365 C/T, and rs4791171 A/G variants in cases and controls. Disagreement should be resolved by discussion with a third author (W Zhang). If the controversial content still existed, it should be addressed by all investigators to reach a consensus.

Statistical analysis

The strength of the relationship between AXIN2 148 C/T, 1365 C/T, and rs4791171 A/G polymorphisms and cancer susceptibility was measured by calculating OR with 95% CI. A total of four genetic models were adopted in the current analysis, including allelic comparison model (M-allele vs. W-allele), homozygote contrast model (MM vs. WW), heterozygote model (MW vs. WW), and dominant model (MM + MW vs. WW). The χ2-test-based Q test was performed to investigate P value for heterogeneity among eligible researches. If P < 0.05, indicating that a significant heterogeneity was found, we employed the random-effects model (DerSimonian–Laird method) [34]. On the other hand, the fixed-effects model (Mantel–Haenszel method) was carried out [35]. We adopted qualitative funnel plot to assess possible publication bias by calculating the standard error of log(OR) for each research plotted against its log(OR). We further conducted quantitative Egger’s test to evaluate funnel plot asymmetry [36]. The web-based program was applied to check for deviations from the Hardy–Weinberg equilibrium (HWE) of distribution frequencies (http://​ihg2.​helmholtz-muenchen.​de/​cgibin/​hw/​hwa1.​pl) [37]. The P value more than 0.05 suggested an HWE balance. Moreover, we applied leave-one-out sensitivity analyses to calculate the stability of pooled results [38]. All of the above analyses were conducted by STATA software v11.0 (Stata Corporation, TX).

In silico analysis of AXIN2 expression

An online gene expression database was adopted to investigate the AXIN2 expression in lung and prostate adenocarcinoma tissues and the paracancerous tissues. (http://​gemini.​cancer-pku.​cn/​) [39]. RNA expression profiles of 446 pathologically diagnosed lung adenocarcinoma (including 387 Caucasians, 51 African-Americans, and 8 Asians) and 153 prostate adenocarcinoma tissues (containing 147 Caucasians and 6 African-Americans) were evaluated by this database. The Cancer Genome Atlas (TCGA) samples were also utilized to investigate the high and low expression of AXIN2 on cancer susceptibility and overall survival time. Moreover, the String online server was applied to assess the gene–gene correlation of AXIN2 (http://​string-db.​org/​).

Results

Characteristics of studies

As was shown in Table 1, 15 articles were finally retrieved in the present analysis, which contains 22 case–control studies for AXIN2 148 C/T, 1365 C/T, and rs4791171 A/G variants. There were 2909 cancer subjects and 2907 control volunteers for 148 C/T polymorphism, 587 cancer subjects and 605 controls for 1365 C/T variant, 785 cases and 443 controls for rs4791171 A/G variant. Furthermore, we checked the minor allele frequencies (MAF) of three AXIN2 variants by Trans-Omics for Precision Medicine (TOPMed) online (https://​www.​ncbi.​nlm.​nih.​gov/​snp/​) (Fig. 1). MAF of AXIN2 148 C/T were: in Africans, 0.119; Asians, 0.426; Europeans, 0.526; Americans, 0.561; others (including Pacific Islanders), 0.470; Global, 0.474. MAF of AXIN2 1365 C/T were: in Africans, 0.069; East Asians, 0.192; Europeans, 0.114; Americans, 0.100; others, 0.090; Global, 0.104. Finally, MAF of AXIN2 rs4791171 A/G were: in Africans, 0.267; East Asians, 0.370; Europeans, 0.681; Americans, 0.620; others, 0.670; Global, 0.547. In stratified analysis by ethnicity, seven studies were performed in Caucasian populations, twelve studies were in Asian descendants, and two were done in Arabians and one was in Latin descendants. Eight studies were conducted using population based controls and the rest 14 studies were utilizing hospital based controls. The classical genotyping method, PCR-restriction fragment length polymorphism (RFLP) was adopted in nine of these studies.
Table 1
Basic information for included studies of the correlation between AXIN2 148 C/T, 1365 C/T, and rs4791171 A/G variations and cancer risk
Author/year
Origin
Ethnicity
Source
Cancer
Method
Age range
Age range
Case
Control
Case
Control
HWE
148 C/T
Case
Control
TT
TC
CC
TT
TC
CC
Kanzaki 2006 [26]
Japan
Asian
PB
LC
PCR–RFLP
66.4 (mean)
NA
160
109
8
71
81
15
52
42
0.863
Kanzaki 2006 [26]
Japan
Asian
PB
HNC
PCR–RFLP
66.4 (mean)
NA
63
109
9
29
25
15
52
42
0.863
Kanzaki 2006 [26]
Japan
Asian
PB
CRC
PCR–RFLP
66.4 (mean)
NA
113
109
15
44
54
15
52
42
0.863
Gunes 2009 [19]
Turkey
Caucasian
PB
LC
PCR
59.22 ± 9.63
57.01 ± 7.89
100
100
8
47
45
16
52
32
0.501
Gunes 2010 [25]
Turkey
Caucasian
HB
AT
PCR
58.66 ± 8.04
57.01 ± 7.89
100
100
16
45
39
16
52
32
0.501
 Pinarbasi 2011 [27]
Turkey
Caucasian
HB
PC
PCR
70.38 ± 7.78
68.55 ± 4.47
84
100
19
35
30
18
48
34
0.883
Naghibal 2012 [21]
Iran
Asian
HB
CRC
PCR–RFLP
NA
NA
110
179
19
57
34
26
98
55
0.096
Liu 2014 [28]
China
Asian
PB
LC
RT-PCR
57.78 ± 9.89
52.21 ± 10.56
498
533
47
216
235
67
255
211
0.457
Ma 2014 [22]
China
Asian
PB
PC
PCR
71.2 (mean)
70.4 (mean)
103
100
11
31
61
9
52
39
0.153
Mostowska 2014 [24]
Poland
Caucasian
HB
OC
PCR–RFLP
58.4 ± 9.7
57.4 ± 7.5
228
282
46
115
67
65
146
71
0.546
Yadav 2016 [23]
India
Asian
HB
GBC
Taqman
52.05 ± 10.06
43.2 ± 11.5
564
250
119
253
192
44
108
98
0.138
Liu 2016 [32]
China
Asian
HB
PTC
MassARRAY
45.13 ± 10.97
41.9 ± 10.22
53
50
2
24
27
4
29
17
0.084
Kim 2016 [31]
Korea
Asian
HB
HCC
Goldengate
53.8 ± 10.3
41.1 ± 10.3
242
482
18
100
124
41
195
246
0.789
Rosales 2016 [29]
Mexico
Latin
PB
CRC
PCR–RFLP
59.03 (mean)
36.88 (mean)
188
99
54
109
25
18
59
22
0.054
Bahl 2017 [30]
India
Asian
HB
LC
PCR–RFLP
57.38 ± 10.74
53.23 ± 10.44
303
305
54
150
99
80
144
81
0.330
1365 C/T
         
TT
TC
CC
TT
TC
CC
 
Bahl 2017 [30]
India
Asian
HB
LC
PCR–RFLP
57.38 ± 10.74
53.23 ± 10.44
303
305
6
29
268
5
51
249
0.215
Pinarbasi 2011 [27]
Turkey
Caucasian
HB
PC
PCR
70.38 ± 7.78
68.55 ± 4.47
84
100
0
7
77
0
8
92
0.677
Gunes 2010 [25]
Turkey
Caucasian
HB
AT
PCR
58.66 ± 8.039
57.01 ± 7.89
100
100
0
9
91
0
12
88
0.523
Gunes 2009 [19]
Turkey
Caucasian
PB
LC
PCR
59.22 ± 9.63
57.01 ± 7.89
100
100
0
9
91
0
12
88
0.523
rs4791171A/G
         
GG
GA
AA
GG
GA
AA
 
Alanazi 2013 [20]
Saudi
Arabian
HB
BC
RT-PCR
48.0 (mean)
NA
99
83
21
44
34
17
44
22
0.559
Yadav 2016 [23]
India
Asian
HB
GBC
PCR–RFLP
52.05 ± 10.06
43.2 ± 11.5
564
250
228
248
88
97
118
35
0.926
Parine 2019  [33]
Saudi
Arabian
HB
CRC
TaqMan
57.0 (mean)
NA
122
110
27
55
40
24
48
38
0.236
HB hospital-based, PB population-based, AT astrocytoma, BC breast cancer, CRC colorectal cancer, GBC gallbladder cancer, PCR–RFLP polymerase chain reaction and restrictive fragment length polymorphism, RT real time, NA not available, NOS Newcastle–Ottawa Scale, HCC hepatocellular carcinoma, HNC head and neck cancer, HWE Hardy–Weinberg equilibrium of controls, LC lung adenocarcinoma, PC prostate adenocarcinoma, PTC papillary thyroid carcinoma, OC ovarian cancer

Quantitative synthesis

In the overall analysis, we identified a significant correlation between AXIN2 148 C/T variant and cancer risk (allele contrast: OR = 0.88, 95% CI 0.77–0.99, Pheterogeneity = 0.004, P = 0.041; heterozygote comparison: OR = 0.84, 95% CI 0.75–0.95, Pheterogeneity = 0.112, P = 0.004; dominant genetic model: OR = 0.82, 95% CI 0.69–0.96, Pheterogeneity = 0.022, P = 0.015) (Table 2). In subgroup analysis by race, we observed positive results in Asians (allele contrast: OR = 0.85, 95% CI 0.73–0.98, Pheterogeneity = 0.016, P = 0.027; dominant genetic model: OR = 0.80, 95% CI 0.66–0.96, Pheterogeneity = 0.030, P = 0.020) and Caucasians (dominant genetic model: OR = 0.76, 95% CI 0.59–0.98, Pheterogeneity = 0.701, P = 0.036), (Fig. 2). Moreover, subgroup analysis by cancer type suggested that 148 C/T variant was associated with a decreased cancer risk in lung adenocarcinoma (allele contrast: OR = 0.74, 95% CI 0.65–0.84, P value for heterogeneity = 0.602, P < 0.001; dominant genetic model: OR = 0.70, 95% CI 0.59–0.84, Pheterogeneity = 0.803, P < 0.001, Fig. 3). Similar finding was indicated in prostate adenocarcinoma (heterozygote comparison: OR = 0.54, 95% CI 0.35–0.84, Pheterogeneity = 0.088, P = 0.006; dominant genetic model: OR = 0.62, 95% CI 0.41–0.93, Pheterogeneity = 0.078, P = 0.022). In subgroup analysis by source of control, similar results were also observed in population-based studies. Furthermore, we identified notable correlation between AXIN2 1365 C/T variant and cancer risk (allele contrast: OR = 0.71, 95% CI 0.61–0.98, Pheterogeneity = 0.873, P = 0.038; heterozygote comparison: OR = 0.63, 95% CI 0.44–0.91, Pheterogeneity = 0.668, P = 0.014; dominant model: OR = 0.66, 95% CI 0.47–0.94, Pheterogeneity = 0.775, P = 0.021). For rs4791171 A/G polymorphism, no significant association was indicated (allele comparison, OR = 0.99, 95% CI 0.85–1.17, Pheterogeneity = 0.786, P = 0.864; homozygote contrast, OR = 0.94, 95% CI 0.66–1.33, Pheterogeneity = 0.873, P = 0.728; heterozygote contrast, OR = 0.86, 95% CI 0.62–1.17, Pheterogeneity = 0.522, P = 0.322; dominant model, OR = 0.89, 95% CI 0.66–1.19, Pheterogeneity = 0.575, P = 0.429).
Table 2
Stratified analyses of AXIN2 148 C/T, 1365 C/T, and rs4791171 A/G variants on overall cancer risk
Variables
N
Case/control
OR (95% CI)
P h
P
OR (95% CI)
P h
P
OR (95% CI)
P h
P
OR (95% CI)
P h
P
M-allele vs. W-allele
MM vs. WW
MW vs. WW
MM+MW vs. WW
148 C/T
 Total
15
2909/2907
0.88 (0.77–0.99)
0.004
0.041
0.82 (0.63–1.06)
0.007
0.132
0.84 (0.75–0.95)
0.112
0.004
0.82 (0.69–0.96)
0.022
0.015
 Ethnicity
  Asian
10
2209/2226
0.85 (0.73–0.98)
0.016
0.027
0.76 (0.57–1.03)
0.040
0.078
0.84 (0.74–0.96)
0.074
0.009
0.80 (0.66–0.96)
0.030
0.020
  Caucasian
4
512/582
0.85 (0.72–1.01)
0.380
0.061
0.75 (0.53–1.07)
0.304
0.108
0.77 (0.58–1.00)
0.896
0.053
0.76 (0.59–0.98)
0.701
0.036
  Latin
1
188/99
1.48 (1.05–2.09)
0.026
2.64 (1.21–5.78)
0.015
1.63 (0.84–3.13)
0.146
1.86 (0.99–3.51)
0.054
 Cancer type
  LC
4
1061/1047
0.74 (0.65–0.84)
0.602
< 0.001
0.53 (0.40–0.70)
0.360
< 0.001
0.76 (0.63–0.92)
0.865
0.005
0.70 (0.59–0.84)
0.803
< 0.001
  CRC
3
411/387
1.10 (0.90–1.35)
0.071
0.348
1.36 (0.87–2.11)
0.096
0.178
0.96 (0.68–1.34)
0.123
0.796
1.01 (0.74–1.39)
0.060
0.932
  PC
2
187/200
0.83 (0.62–1.12)
0.099
0.223
1.00 (0.54–1.87)
0.509
0.987
0.54 (0.35–0.84)
0.088
0.006
0.62 (0.41–0.93)
0.078
0.022
  Others
7
1250/1273
0.98 (0.87–1.11)
0.217
0.751
0.98 (0.76–1.26)
0.363
0.862
0.96 (0.80–1.15)
0.375
0.640
0.96 (0.81–1.14)
0.218
0.664
 Source
  HB
8
1684/1748
0.94 (0.85–1.04)
0.093
0.219
0.89 (0.72–1.09)
0.128
0.267
0.93 (0.80–1.09)
0.564
0.364
0.92 (0.80–1.07)
0.268
0.272
  PB
7
1225/1159
0.82 (0.65–1.02)
0.009
0.074
0.73 (0.44–1.22)
0.007
0.235
0.74 (0.62–0.88)
0.083
0.001
0.74 (0.56–0.97)
0.037
0.032
1365 C/T
 Total
4
587/605
0.71 (0.61–0.98)
0.873
0.038
1.11 (0.34–3.70)
0.859
0.63 (0.44–0.91)
0.668
0.014
0.66 (0.47–0.94)
0.775
0.021
 Ethnicity
  Asian
1
303/305
0.66 (0.43–0.99)
0.043
1.11 (0.34–3.70)
0.859
0.53 (0.32–0.86)
0.010
0.58 (0.37–0.92)
0.020
  Caucasian
3
284/300
0.81 (0.47–1.38)
0.855
0.440
NA
  
0.80 (0.46–1.39)
0.846
0.428
0.80 (0.46–1.39)
0.846
0.428
 Cancer type
  LC
2
403/405
0.67 (0.46–0.97)
0.806
0.034
1.11 (0.34–3.70)
0.859
0.57 (0.37–0.87)
0.548
0.009
0.61 (0.41–0.91)
0.669
0.016
  PC
1
84/100
1.04 (0.37–2.94)
0.936
NA
  
1.05 (0.36–3.01)
0.934
1.05 (0.36–3.01)
0.934
  AT
1
100/100
0.74 (0.30–1.79)
0.503
NA
  
0.73 (0.29–1.81)
0.490
0.73 (0.29–1.81)
0.490
rs4791171 A/G
 Total
3
785/443
0.99 (0.85–1.17)
0.786
0.864
0.94 (0.66–1.33)
0.873
0.728
0.86 (0.62–1.17)
0.522
0.322
0.89 (0.66–1.19)
0.575
0.429
 Ethnicity
  Asian
1
564/250
1.00 (0.80–1.24)
0.997
0.93 (0.69–1.48)
0.773
0.84 (0.63–1.31)
0.434
0.88 (0.68–1.34)
0.556
  Arabian
2
221/193
0.96 (0.73–1.27)
0.511
0.778
0.96 (0.66–1.62)
0.603
0.843
0.87 (0.56–1.36)
0.257
0.538
0.89 (0.69–1.36)
0.294
0.596
 Cancer type
  BC
1
99/83
0.87 (0.57–1.31)
0.497
0.80 (0.35–1.84)
0.599
0.65 (0.33–1.28)
0.209
0.69 (0.36–1.31)
0.255
  GBC
1
564/250
1.00 (0.80–1.24)
0.997
0.93 (0.59–1.48)
0.773
0.84 (0.53–1.31)
0.434
0.88 (0.58–1.34)
0.556
  CRC
1
122/110
1.04 (0.72–1.51)
0.822
1.07 (0.53–2.17)
0.854
1.09 (0.60–1.96)
0.778
1.08 (0.63–1.87)
0.777
AT astrocytoma, BC breast cancer, CRC colorectal cancer, HB hospital-based, PB population-based, NA not available, LC lung adenocarcinoma, PC prostate adenocarcinoma, GBC gallbladder cancer
aP value of Q-test for heterogeneity test (Pheter)

In silico analysis of AXIN2 expression

Results from in silico tools suggested that AXIN2 expression in normal group was higher than that in lung adenocarcinoma tissue (Fig. 4a). However, no obvious difference was indicated for prostate adenocarcinoma (Fig. 4b). Moreover, we explored whether the AXIN2 expression had an effect on the overall survival time of lung adenocarcinoma patients. However, Kaplan–Meier estimate showed no vital difference of overall survival time between high and low AXIN2 expression groups (P = 0.40, Fig. 5).

Publication bias and sensitivity analyses

Egger’s test and Begg’s funnel plot were utilized to evaluate publication bias in all of enrolled studies. We demonstrated no publication bias for AXIN2 148 C/T polymorphism (allelic contrast, t = − 0.52, P = 0.614; TT vs. CC, t = − 0.66, P = 0.519; heterozygote comparison, t = − 0.30, P = 0.771; TT + TC vs. CC, t = − 0.34, P = 0.741), AXIN2 1365 C/T variant (allelic comparison, t = 2.20, P = 0.159; TC vs. CC, t = 2.18, P = 0.161) and rs4791171 A/G polymorphism (G-allele versus A-allele, t = − 0.55, P = 0.680; homozygote contrast, t = − 0.62, P = 0.645; GA vs. AA, t = − 0.72, P = 0.602; dominant model, t = − 0.78, P = 0.577). As shown in Fig. 6, results from funnel plots appeared symmetrical in the overall analysis under dominant model, which indicated a lack of publication bias. Sensitivity analyses were also utilized to assess the pooled OR by omission of any one study. The results suggested that the current data from pooled ORs were relatively stable. No single study can substantially change the overall OR (Fig. 7).

Discussion

To date, large quantities of studies have been conducted to explore whether the variants confer individual’s susceptibility to carcinoma. However, results from the previous publications have yielded controversial results [21, 22]. A previous study based on Indian descendants found a strong protective effect in participants having heterozygous genotype for 1365 C/T variant [30], while another study group did not observe such positive correlation in Turkish population [27]. In 2005, Wu et al. performed a meta-analysis and found that AXIN2 rs2240308 variant may increase the risk of cancer, especially lung cancer in Asian descendants [40]. Two years later, another meta-analysis indicated no obvious correlation between this variant and cancer risk in the overall analysis. Moreover, researches of this article observed that rs2240308 polymorphism was significantly associated with a decreased cancer risk in Asian population [41]. The overall goal of the present study was to evaluate all eligible data based on the inclusion criteria to enhance the statistical powers and draw more accurate conclusions.
In the current study, a total of 4281 cases and 3955 control participants were investigated. The overall results showed evidence that AXIN2 148 C/T variant was associated with decreased cancer risk, especially for lung and prostate adenocarcinoma, which is in line with conclusions identified by Kanzaki et al. Liu et al. and Gune et al. [19, 26, 28]. Similar results were observed in AXIN2 1365 C/T polymorphism (under allelic contrast, heterozygote comparison, and dominant genetic model). Moreover, in subgroup analysis by ethnicity, positive findings were obtained for Asian and Caucasian populations. In the stratified analysis by source of control, similar findings were identified in population-based studies for AXIN2 148 C/T variant, which is consistent with the findings reported by Yu et al. [41]. Moreover, results from in silico tools showed that AXIN2 expressions in lung cancer and prostate cancer are lower than that in normal counterpart. High expression of AXIN2 may have longer OS time than low expression group for lung cancer participants, which were consistent with results derived from the present meta-analysis. Nevertheless, we indicated no significant difference between the high expression and low/medium expression of AXIN2 in prostate cancer patients.
Some limitations of the above analysis should be mentioned. Firstly, the numbers of enrolled articles in the current analysis were still not large enough for the comprehensive analysis, especially for AXIN2 1365 C/T and rs4791171 A/G variants. Four articles towards AXIN2 1365 C/T and three articles for rs4791171 A/G polymorphism were eligible based on the selection criteria. Secondly, insufficient original data from the raw articles limited further evaluation of potential interactions, including relationship between the AXIN2 148 C/T, 1365 C/T, and rs4791171 A/G variants and different tumor grade and stage. Thirdly, meta-analysis was based on unadjusted estimates, which may lead to serious confounding bias. Furthermore, gene–gene interaction would also participate in etiological mechanism of carcinoma. As shown in Fig. 8, at least 20 related genes may be involved in such interaction, which are required to be further investigated in future studies. On the other hand, core advantages in current analysis should also be acknowledged. Firstly, a comprehensive study of the correlation of the AXIN2 148 C/T, 1365 C/T, and rs4791171 A/G variants with overall cancer susceptibility is statistically more powerful than single case–control study. All the studies according to the inclusion criteria were accumulated in our analysis. Secondly, genotype distribution of controls is conformed to Hardy–Weinberg equilibrium (HWE) in any of the enrolled studies and no significant publication bias was found, which indicated that conclusions of the present analysis are relatively trustworthy.

Conclusions

Taken together, the current study showed evidence that AXIN2 148 C/T and 1365 C/T variants may be associated with decreased cancer susceptibility, especially for lung and prostate adenocarcinoma. Future large scale studies with standardized unbiased cases and well-matched control subjects are needed to ascertain these finding in more detail.

Authors’ contributions

BX and WZ contributed to the design of the study, WY and QW searched the databases, LS, XYW and BX extracted the data, LS and LZ wrote the manuscript, LZ and QW interpreted the results and revised the manuscript. All authors read and approved the final manuscript.

Acknowledgements

Not applicable.

Competing interests

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. We also declare that there was no non-financial competing interests in the manuscript.

Availability of data and materials

All data generated and analyzed during this study are included in this published article. Please contact author for data requests.
Not applicable.
Not applicable.

Funding

Not applicable.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Begum S. Molecular changes in smoking-related lung cancer. Expert Rev Mol Diagn. 2012;12(1):93–106.CrossRef Begum S. Molecular changes in smoking-related lung cancer. Expert Rev Mol Diagn. 2012;12(1):93–106.CrossRef
2.
Zurück zum Zitat He Q, Fu Y, Tian D, Yan W. The contrasting roles of inflammasomes in cancer. Am J Cancer Res. 2018;8(4):566–83.PubMedPubMedCentral He Q, Fu Y, Tian D, Yan W. The contrasting roles of inflammasomes in cancer. Am J Cancer Res. 2018;8(4):566–83.PubMedPubMedCentral
3.
Zurück zum Zitat Lu B, Li J, Gao Q, Yu W, Yang Q, Li X. Laryngeal cancer risk and common single nucleotide polymorphisms in nucleotide excision repair pathway genes ERCC1, ERCC2, ERCC3, ERCC4, ERCC5 and XPA. Gene. 2014;542(1):64–8.CrossRef Lu B, Li J, Gao Q, Yu W, Yang Q, Li X. Laryngeal cancer risk and common single nucleotide polymorphisms in nucleotide excision repair pathway genes ERCC1, ERCC2, ERCC3, ERCC4, ERCC5 and XPA. Gene. 2014;542(1):64–8.CrossRef
4.
Zurück zum Zitat Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661–78.CrossRef Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661–78.CrossRef
5.
Zurück zum Zitat Parikh H, Wang Z, Pettigrew KA, Jia J, Daugherty S, Yeager M, Jacobs KB, Hutchinson A, Burdett L, Cullen M, Qi L, Boland J, Collins I, Albert TJ, Vatten LJ, Hveem K, Njølstad I, Cancel-Tassin G, Cussenot O, Valeri A, Virtamo J, Thun MJ, Feigelson HS, Diver WR, Chatterjee N, Thomas G, Albanes D, Chanock SJ, Hunter DJ, Hoover R, Hayes RB, Berndt SI, Sampson J, Amundadottir L. Fine mapping the KLK3 locus on chromosome 19q13.33 associated with prostate cancer susceptibility and PSA levels. Hum Genet. 2011;129(6):675–85.CrossRef Parikh H, Wang Z, Pettigrew KA, Jia J, Daugherty S, Yeager M, Jacobs KB, Hutchinson A, Burdett L, Cullen M, Qi L, Boland J, Collins I, Albert TJ, Vatten LJ, Hveem K, Njølstad I, Cancel-Tassin G, Cussenot O, Valeri A, Virtamo J, Thun MJ, Feigelson HS, Diver WR, Chatterjee N, Thomas G, Albanes D, Chanock SJ, Hunter DJ, Hoover R, Hayes RB, Berndt SI, Sampson J, Amundadottir L. Fine mapping the KLK3 locus on chromosome 19q13.33 associated with prostate cancer susceptibility and PSA levels. Hum Genet. 2011;129(6):675–85.CrossRef
6.
Zurück zum Zitat Hoffmann TJ, Passarelli MN, Graff RE, Emami NC, Sakoda LC, Jorgenson E, Habel LA, Shan J, Ranatunga DK, Quesenberry CP, Chao CR, Ghai NR, Aaronson D, Presti J, Nordström T, Wang Z, Berndt SI, Chanock SJ, Mosley JD, Klein RJ, Middha M, Lilja H, Melander O, Kvale MN, Kwok PY, Schaefer C, Risch N, Van Den Eeden SK, Witte JS. Genome-wide association study of prostate-specific antigen levels identifies novel loci independent of prostate cancer. Nat Commun. 2017;8:14248.CrossRef Hoffmann TJ, Passarelli MN, Graff RE, Emami NC, Sakoda LC, Jorgenson E, Habel LA, Shan J, Ranatunga DK, Quesenberry CP, Chao CR, Ghai NR, Aaronson D, Presti J, Nordström T, Wang Z, Berndt SI, Chanock SJ, Mosley JD, Klein RJ, Middha M, Lilja H, Melander O, Kvale MN, Kwok PY, Schaefer C, Risch N, Van Den Eeden SK, Witte JS. Genome-wide association study of prostate-specific antigen levels identifies novel loci independent of prostate cancer. Nat Commun. 2017;8:14248.CrossRef
7.
Zurück zum Zitat Mulholland DJ, Dedhar S, Coetzee GA, Nelson CC. Interaction of nuclear receptors with the Wnt/beta-catenin/Tcf signaling axis: Wnt you like to know? Endocr Rev. 2005;26(7):898–915.CrossRef Mulholland DJ, Dedhar S, Coetzee GA, Nelson CC. Interaction of nuclear receptors with the Wnt/beta-catenin/Tcf signaling axis: Wnt you like to know? Endocr Rev. 2005;26(7):898–915.CrossRef
8.
Zurück zum Zitat Cselenyi CS, Jernigan KK, Tahinci E, Thorne CA, Lee LA, Lee E. LRP6 transduces a canonical Wnt signal independently of Axin degradation by inhibiting GSK3’s phosphorylation of beta-catenin. Proc Natl Acad Sci USA. 2008;105(23):8032–7.CrossRef Cselenyi CS, Jernigan KK, Tahinci E, Thorne CA, Lee LA, Lee E. LRP6 transduces a canonical Wnt signal independently of Axin degradation by inhibiting GSK3’s phosphorylation of beta-catenin. Proc Natl Acad Sci USA. 2008;105(23):8032–7.CrossRef
9.
Zurück zum Zitat Brantjes H, Barker N, van Es J, Clevers H. TCF: lady Justice casting the final verdict on the outcome of Wnt signalling. Biol Chem. 2002;383(2):255–61.CrossRef Brantjes H, Barker N, van Es J, Clevers H. TCF: lady Justice casting the final verdict on the outcome of Wnt signalling. Biol Chem. 2002;383(2):255–61.CrossRef
10.
Zurück zum Zitat Bhatia N, Spiegelman VS. Activation of Wnt/beta-catenin/Tcf signaling in mouse skin carcinogenesis. Mol Carcinog. 2005;42(4):213–21.CrossRef Bhatia N, Spiegelman VS. Activation of Wnt/beta-catenin/Tcf signaling in mouse skin carcinogenesis. Mol Carcinog. 2005;42(4):213–21.CrossRef
11.
Zurück zum Zitat Sakanaka C, Sun TQ, Williams LT. New steps in the Wnt/beta-catenin signal transduction pathway. Recent Prog Horm Res. 2000;55:225–36.PubMed Sakanaka C, Sun TQ, Williams LT. New steps in the Wnt/beta-catenin signal transduction pathway. Recent Prog Horm Res. 2000;55:225–36.PubMed
12.
Zurück zum Zitat Leung JY, Kolligs FT, Wu R, Zhai Y, Kuick R, Hanash S, Cho KR, Fearon ER. Activation of AXIN2 expression by beta-catenin-T cell factor. A feedback repressor pathway regulating Wnt signaling. J Biol Chem. 2002;277(24):21657–65.CrossRef Leung JY, Kolligs FT, Wu R, Zhai Y, Kuick R, Hanash S, Cho KR, Fearon ER. Activation of AXIN2 expression by beta-catenin-T cell factor. A feedback repressor pathway regulating Wnt signaling. J Biol Chem. 2002;277(24):21657–65.CrossRef
13.
Zurück zum Zitat Kikuchi A. Modulation of Wnt signaling by Axin and Axil. Cytokine Growth Factor Rev. 1999;10(3–4):255–65.CrossRef Kikuchi A. Modulation of Wnt signaling by Axin and Axil. Cytokine Growth Factor Rev. 1999;10(3–4):255–65.CrossRef
14.
Zurück zum Zitat Mai M, Qian C, Yokomizo A, Smith D, Liu W. Cloning of the human homolog of conductin (AXIN2), a gene mapping to chromosome 17q23-q24. Genomics. 1999;55(3):341–4.CrossRef Mai M, Qian C, Yokomizo A, Smith D, Liu W. Cloning of the human homolog of conductin (AXIN2), a gene mapping to chromosome 17q23-q24. Genomics. 1999;55(3):341–4.CrossRef
15.
Zurück zum Zitat Buendia MA. Genetic alterations in hepatoblastoma and hepatocellular carcinoma: common and distinctive aspects. Med Pediatr Oncol. 2002;39(5):530–5.CrossRef Buendia MA. Genetic alterations in hepatoblastoma and hepatocellular carcinoma: common and distinctive aspects. Med Pediatr Oncol. 2002;39(5):530–5.CrossRef
16.
Zurück zum Zitat Moreno-Bueno G, Gamallo C, Pérez-Gallego L, de Mora JC, Suárez A, Palacios J. beta-Catenin expression pattern, beta-catenin gene mutations, and microsatellite instability in endometrioid ovarian carcinomas and synchronous endometrial carcinomas. Diagn Mol Pathol. 2001;10(2):116–22.CrossRef Moreno-Bueno G, Gamallo C, Pérez-Gallego L, de Mora JC, Suárez A, Palacios J. beta-Catenin expression pattern, beta-catenin gene mutations, and microsatellite instability in endometrioid ovarian carcinomas and synchronous endometrial carcinomas. Diagn Mol Pathol. 2001;10(2):116–22.CrossRef
17.
Zurück zum Zitat Mazzoni SM, Fearon ER. AXIN1 and AXIN2 variants in gastrointestinal cancers. Cancer Lett. 2014;355(1):1–8.CrossRef Mazzoni SM, Fearon ER. AXIN1 and AXIN2 variants in gastrointestinal cancers. Cancer Lett. 2014;355(1):1–8.CrossRef
18.
Zurück zum Zitat Morin PJ. Beta-catenin signaling and cancer. BioEssays. 1999;21(12):1021–30.CrossRef Morin PJ. Beta-catenin signaling and cancer. BioEssays. 1999;21(12):1021–30.CrossRef
19.
Zurück zum Zitat Gunes EG, Pinarbasi E, Pinarbasi H, Silig Y. Strong association between lung cancer and the AXIN2 polymorphism. Mol Med Rep. 2009;2(6):1029–35.PubMed Gunes EG, Pinarbasi E, Pinarbasi H, Silig Y. Strong association between lung cancer and the AXIN2 polymorphism. Mol Med Rep. 2009;2(6):1029–35.PubMed
20.
Zurück zum Zitat Alanazi MS, Parine NR, Shaik JP, Alabdulkarim HA, Ajaj SA, Khan Z. Association of single nucleotide polymorphisms in Wnt signaling pathway genes with breast cancer in Saudi patients. PLoS ONE. 2013;8(3):e59555.CrossRef Alanazi MS, Parine NR, Shaik JP, Alabdulkarim HA, Ajaj SA, Khan Z. Association of single nucleotide polymorphisms in Wnt signaling pathway genes with breast cancer in Saudi patients. PLoS ONE. 2013;8(3):e59555.CrossRef
21.
Zurück zum Zitat Naghibalhossaini F, Zamani M, Mokarram P, Khalili I, Rasti M, Mostafavi-Pour Z. Epigenetic and genetic analysis of WNT signaling pathway in sporadic colorectal cancer patients from Iran. Mol Biol Rep. 2012;39(5):6171–8.CrossRef Naghibalhossaini F, Zamani M, Mokarram P, Khalili I, Rasti M, Mostafavi-Pour Z. Epigenetic and genetic analysis of WNT signaling pathway in sporadic colorectal cancer patients from Iran. Mol Biol Rep. 2012;39(5):6171–8.CrossRef
22.
Zurück zum Zitat Ma C, Liu C, Huang P, Kaku H, Chen J, Guo K, Ueki H, Sakai A, Nasu Y, Kumon H, Shimizu K, Watanabe M. Significant association between the Axin2 rs2240308 single nucleotide polymorphism and the incidence of prostate cancer. Oncol Lett. 2014;8(2):789–94.CrossRef Ma C, Liu C, Huang P, Kaku H, Chen J, Guo K, Ueki H, Sakai A, Nasu Y, Kumon H, Shimizu K, Watanabe M. Significant association between the Axin2 rs2240308 single nucleotide polymorphism and the incidence of prostate cancer. Oncol Lett. 2014;8(2):789–94.CrossRef
23.
Zurück zum Zitat Yadav A, Gupta A, Yadav S, Rastogi N, Agrawal S, Kumar A, Kumar V, Misra S, Mittal B. Association of Wnt signaling pathway genetic variants in gallbladder cancer susceptibility and survival. Tumour Biol. 2016;37(6):8083–95.CrossRef Yadav A, Gupta A, Yadav S, Rastogi N, Agrawal S, Kumar A, Kumar V, Misra S, Mittal B. Association of Wnt signaling pathway genetic variants in gallbladder cancer susceptibility and survival. Tumour Biol. 2016;37(6):8083–95.CrossRef
24.
Zurück zum Zitat Mostowska A, Pawlik P, Sajdak S, Markowska J, Pawałowska M, Lianeri M, Jagodzinski PP. An analysis of polymorphisms within the Wnt signaling pathway in relation to ovarian cancer risk in a Polish population. Mol Diagn Ther. 2014;18(1):85–91.CrossRef Mostowska A, Pawlik P, Sajdak S, Markowska J, Pawałowska M, Lianeri M, Jagodzinski PP. An analysis of polymorphisms within the Wnt signaling pathway in relation to ovarian cancer risk in a Polish population. Mol Diagn Ther. 2014;18(1):85–91.CrossRef
25.
Zurück zum Zitat Gunes EG, Pinarbasi E, Pinarbasi H. AXIN2 polymorphism and its association with astrocytoma in a Turkish population. Mol Med Rep. 2010;3(4):705–9.PubMed Gunes EG, Pinarbasi E, Pinarbasi H. AXIN2 polymorphism and its association with astrocytoma in a Turkish population. Mol Med Rep. 2010;3(4):705–9.PubMed
26.
Zurück zum Zitat Kanzaki H, Ouchida M, Hanafusa H, Yano M, Suzuki H, Aoe M, Imai K, Shimizu N, Nakachi K, Shimizu K. Single nucleotide polymorphism of the AXIN2 gene is preferentially associated with human lung cancer risk in a Japanese population. Int J Mol Med. 2006;18(2):279–84.PubMed Kanzaki H, Ouchida M, Hanafusa H, Yano M, Suzuki H, Aoe M, Imai K, Shimizu N, Nakachi K, Shimizu K. Single nucleotide polymorphism of the AXIN2 gene is preferentially associated with human lung cancer risk in a Japanese population. Int J Mol Med. 2006;18(2):279–84.PubMed
27.
Zurück zum Zitat Pinarbasi E, Gunes EG, Pinarbasi H, Donmez G, Silig Y. AXIN2 polymorphism and its association with prostate cancer in a Turkish population. Med Oncol. 2011;28(4):1373–8.CrossRef Pinarbasi E, Gunes EG, Pinarbasi H, Donmez G, Silig Y. AXIN2 polymorphism and its association with prostate cancer in a Turkish population. Med Oncol. 2011;28(4):1373–8.CrossRef
28.
Zurück zum Zitat Liu D, Li L, Yang Y, Liu W, Wu J. The Axin2 rs2240308 polymorphism and susceptibility to lung cancer in a Chinese population. Tumour Biol. 2014;35(11):10987–91.CrossRef Liu D, Li L, Yang Y, Liu W, Wu J. The Axin2 rs2240308 polymorphism and susceptibility to lung cancer in a Chinese population. Tumour Biol. 2014;35(11):10987–91.CrossRef
29.
Zurück zum Zitat Rosales-Reynoso MA, Arredondo-Valdez AR, Wence-Chávez LI, Barros-Núñez P, Gallegos-Arreola MP, Flores-Martínez SE, Sánchez-Corona J. AXIN2 polymorphisms and their association with colorectal cancer in Mexican patients. Genet Test Mol Biomarkers. 2016;20(8):438–44.CrossRef Rosales-Reynoso MA, Arredondo-Valdez AR, Wence-Chávez LI, Barros-Núñez P, Gallegos-Arreola MP, Flores-Martínez SE, Sánchez-Corona J. AXIN2 polymorphisms and their association with colorectal cancer in Mexican patients. Genet Test Mol Biomarkers. 2016;20(8):438–44.CrossRef
30.
Zurück zum Zitat Bahl C, Sharma S, Singh N, Behera D. Association study between genetic variations in Axin2 gene and lung cancer risk in North Indian population: a multiple interaction analysis. Tumour Biol. 2017;39(4):1010428317695533.CrossRef Bahl C, Sharma S, Singh N, Behera D. Association study between genetic variations in Axin2 gene and lung cancer risk in North Indian population: a multiple interaction analysis. Tumour Biol. 2017;39(4):1010428317695533.CrossRef
31.
Zurück zum Zitat Kim SS, Cho HJ, Lee HY, Park JH, Noh CK, Shin SJ, Lee KM, Yoo BM, Lee KJ, Cho SW, Cheong JY. Genetic polymorphisms in the Wnt/β-catenin pathway genes as predictors of tumor development and survival in patients with hepatitis B virus-associated hepatocellular carcinoma. Clin Biochem. 2016;49(10–11):792–801.CrossRef Kim SS, Cho HJ, Lee HY, Park JH, Noh CK, Shin SJ, Lee KM, Yoo BM, Lee KJ, Cho SW, Cheong JY. Genetic polymorphisms in the Wnt/β-catenin pathway genes as predictors of tumor development and survival in patients with hepatitis B virus-associated hepatocellular carcinoma. Clin Biochem. 2016;49(10–11):792–801.CrossRef
32.
Zurück zum Zitat Liu X, Li S, Lin X, Yan K, Zhao L, Yu Q, Liu X. AXIN2 is associated with papillary thyroid carcinoma. Iran Red Crescent Med J. 2016;18(2):e20960.CrossRef Liu X, Li S, Lin X, Yan K, Zhao L, Yu Q, Liu X. AXIN2 is associated with papillary thyroid carcinoma. Iran Red Crescent Med J. 2016;18(2):e20960.CrossRef
33.
Zurück zum Zitat Parine NR, Azzam N, Shaik J, Aljebreen AM, Alharbi OA, Almadi MA, Alanazi M, Khan Z. Genetic variants in the WNT signaling pathway are protectively associated with colorectal cancer in a Saudi population. Saudi J Biol Sci. 2019;26(2):286–93.CrossRef Parine NR, Azzam N, Shaik J, Aljebreen AM, Alharbi OA, Almadi MA, Alanazi M, Khan Z. Genetic variants in the WNT signaling pathway are protectively associated with colorectal cancer in a Saudi population. Saudi J Biol Sci. 2019;26(2):286–93.CrossRef
34.
Zurück zum Zitat Wu Z, Sun Y, Tang S, Liu C, Zhu S, Wei L, Xu H. AXIN2 rs2240308 polymorphism contributes to increased cancer risk: evidence based on a meta-analysis. Cancer Cell Int. 2015;15:68.CrossRef Wu Z, Sun Y, Tang S, Liu C, Zhu S, Wei L, Xu H. AXIN2 rs2240308 polymorphism contributes to increased cancer risk: evidence based on a meta-analysis. Cancer Cell Int. 2015;15:68.CrossRef
35.
Zurück zum Zitat Yu Y, Tao Y, Liu L, Yang J, Wang L, Li X, Zhuang X, Chu M. New concept of the Axin2 rs2240308 polymorphism and cancer risk: an updated meta-analysis. Neoplasma. 2017;64(2):269–77.CrossRef Yu Y, Tao Y, Liu L, Yang J, Wang L, Li X, Zhuang X, Chu M. New concept of the Axin2 rs2240308 polymorphism and cancer risk: an updated meta-analysis. Neoplasma. 2017;64(2):269–77.CrossRef
36.
Zurück zum Zitat Barili F, Parolari A, Kappetein PA, Freemantle N. Statistical Primer: heterogeneity, random- or fixed-effects model analyses? Interact Cardiovasc Thorac Surg. 2018;27(3):317–21.CrossRef Barili F, Parolari A, Kappetein PA, Freemantle N. Statistical Primer: heterogeneity, random- or fixed-effects model analyses? Interact Cardiovasc Thorac Surg. 2018;27(3):317–21.CrossRef
37.
Zurück zum Zitat Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22(4):719–48.PubMed Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22(4):719–48.PubMed
38.
Zurück zum Zitat Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.CrossRef Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.CrossRef
39.
Zurück zum Zitat Zamora-Ros R, Rothwell JA, Scalbert A, Knaze V, Romieu I, Slimani N, Fagherazzi G, Perquier F, Touillaud M, Molina-Montes E, Huerta JM, Barricarte A, Amiano P, Menéndez V, Tumino R, de Magistris MS, Palli D, Ricceri F, Sieri S, Crowe FL, Khaw KT, Wareham NJ, Grote V, Li K, Boeing H, Förster J, Trichopoulou A, Benetou V, Tsiotas K, Bueno-de-Mesquita HB, Ros M, Peeters PH, Tjønneland A, Halkjær J, Overvad K, Ericson U, Wallström P, Johansson I, Landberg R, Weiderpass E, Engeset D, Skeie G, Wark P, Riboli E, González CA. Dietary intakes and food sources of phenolic acids in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Br J Nutr. 2013;110(8):1500–11.CrossRef Zamora-Ros R, Rothwell JA, Scalbert A, Knaze V, Romieu I, Slimani N, Fagherazzi G, Perquier F, Touillaud M, Molina-Montes E, Huerta JM, Barricarte A, Amiano P, Menéndez V, Tumino R, de Magistris MS, Palli D, Ricceri F, Sieri S, Crowe FL, Khaw KT, Wareham NJ, Grote V, Li K, Boeing H, Förster J, Trichopoulou A, Benetou V, Tsiotas K, Bueno-de-Mesquita HB, Ros M, Peeters PH, Tjønneland A, Halkjær J, Overvad K, Ericson U, Wallström P, Johansson I, Landberg R, Weiderpass E, Engeset D, Skeie G, Wark P, Riboli E, González CA. Dietary intakes and food sources of phenolic acids in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Br J Nutr. 2013;110(8):1500–11.CrossRef
40.
Zurück zum Zitat Tobias A, Campbell MJ. Modelling influenza epidemics in the relation between black smoke and total mortality. A sensitivity analysis. J Epidemiol Community Health. 1999; 53(9):583-4.CrossRef Tobias A, Campbell MJ. Modelling influenza epidemics in the relation between black smoke and total mortality. A sensitivity analysis. J Epidemiol Community Health. 1999; 53(9):583-4.CrossRef
41.
Zurück zum Zitat Tang Z, Li C, Zhang K, Yang M, Hu X. GE-mini: a mobile APP for large-scale gene expression visualization. Bioinformatics. 2017;33(6):941–3.PubMed Tang Z, Li C, Zhang K, Yang M, Hu X. GE-mini: a mobile APP for large-scale gene expression visualization. Bioinformatics. 2017;33(6):941–3.PubMed
Metadaten
Titel
New insights into the association between AXIN2 148 C/T, 1365 C/T, and rs4791171 A/G variants and cancer risk
verfasst von
Bin Xu
Wei Yuan
Li Shi
Li Zuo
Xing-Yu Wu
Wei Zhang
Qiaxian Wen
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
Cancer Cell International / Ausgabe 1/2019
Elektronische ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-019-0840-z

Weitere Artikel der Ausgabe 1/2019

Cancer Cell International 1/2019 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.