Skip to main content
Erschienen in: Abdominal Radiology 12/2020

04.04.2020 | Special Section: Prostate cancer

New prostate MRI techniques and sequences

verfasst von: Aritrick Chatterjee, Carla Harmath, Aytekin Oto

Erschienen in: Abdominal Radiology | Ausgabe 12/2020

Einloggen, um Zugang zu erhalten

Abstract

Prostate MRI has seen increasing interest in recent years and has led to the development of new MRI techniques and sequences to improve prostate cancer (PCa) diagnosis which are reviewed in this article. Numerous studies have focused on improving image quality (segmented DWI) and faster acquisition (compressed sensing, k-t-SENSE, PROPELLER). An increasing number of studies have developed new quantitative and computer-aided diagnosis methods including artificial intelligence (PROSTATEx challenge) that mitigate the subjective nature of mpMRI interpretation. MR fingerprinting allows rapid, simultaneous generation of quantitative maps of multiple physical properties (T1, T2), where PCa are characterized by lower T1 and T2 values. New techniques like luminal water imaging (LWI), restriction spectrum imaging (RSI), VERDICT and hybrid multi-dimensional MRI (HM-MRI) have been developed for microstructure imaging, which provide information similar to histology. The distinct MR properties of tissue components and their change with the presence of cancer is used to diagnose prostate cancer. LWI is a T2-based imaging technique where long T2-component corresponding to luminal water is reduced in PCa. RSI and VERDICT are diffusion-based techniques where PCa is characterized by increased signal from intra-cellular restricted water and increased intracellular volume fraction, respectively, due to increased cellularity. VERDICT also reveal loss of extracellular-extravascular space in PCa due to loss of glandular structure. HM-MRI measures volumes of prostate tissue components, where PCa has reduced lumen and stromal and increased epithelium volume similar to results shown in histology. Similarly, molecular imaging using hyperpolarized 13C imaging has been utilized.
Literatur
1.
Zurück zum Zitat Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA: A Cancer Journal for Clinicians. 2019; 69(1):7–34. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA: A Cancer Journal for Clinicians. 2019; 69(1):7–34.
2.
Zurück zum Zitat Weinreb JC, Barentsz JO, Choyke PL, et al. PI-RADS Prostate Imaging – Reporting and Data System: 2015, Version 2. European Urology. 2016; 69(1):16-40.PubMedCrossRef Weinreb JC, Barentsz JO, Choyke PL, et al. PI-RADS Prostate Imaging – Reporting and Data System: 2015, Version 2. European Urology. 2016; 69(1):16-40.PubMedCrossRef
3.
Zurück zum Zitat Turkbey B, Rosenkrantz AB, Haider MA, et al. Prostate Imaging Reporting and Data System Version 2.1: 2019 Update of Prostate Imaging Reporting and Data System Version 2. European Urology. 2019; 76(3):340–51. Turkbey B, Rosenkrantz AB, Haider MA, et al. Prostate Imaging Reporting and Data System Version 2.1: 2019 Update of Prostate Imaging Reporting and Data System Version 2. European Urology. 2019; 76(3):340–51.
4.
Zurück zum Zitat Borofsky S, George AK, Gaur S, et al. What Are We Missing? False-Negative Cancers at Multiparametric MR Imaging of the Prostate. Radiology. 2018; 286(1):186-95.PubMedCrossRef Borofsky S, George AK, Gaur S, et al. What Are We Missing? False-Negative Cancers at Multiparametric MR Imaging of the Prostate. Radiology. 2018; 286(1):186-95.PubMedCrossRef
5.
Zurück zum Zitat Fütterer JJ, Briganti A, De Visschere P, et al. Can Clinically Significant Prostate Cancer Be Detected with Multiparametric Magnetic Resonance Imaging? A Systematic Review of the Literature. European Urology. 2015; 68(6):1045-53.PubMedCrossRef Fütterer JJ, Briganti A, De Visschere P, et al. Can Clinically Significant Prostate Cancer Be Detected with Multiparametric Magnetic Resonance Imaging? A Systematic Review of the Literature. European Urology. 2015; 68(6):1045-53.PubMedCrossRef
6.
Zurück zum Zitat Niaf E, Lartizien C, Bratan F, et al. Prostate Focal Peripheral Zone Lesions: Characterization at Multiparametric MR Imaging—Influence of a Computer-aided Diagnosis System. Radiology. 2014; 271(3):761-9.PubMedCrossRef Niaf E, Lartizien C, Bratan F, et al. Prostate Focal Peripheral Zone Lesions: Characterization at Multiparametric MR Imaging—Influence of a Computer-aided Diagnosis System. Radiology. 2014; 271(3):761-9.PubMedCrossRef
7.
Zurück zum Zitat Storås TH, Gjesdal K-I, Gadmar ØB, Geitung JT, Kløw N-E. Prostate magnetic resonance imaging: Multiexponential T2 decay in prostate tissue. Journal of Magnetic Resonance Imaging. 2008; 28(5):1166-72.PubMedCrossRef Storås TH, Gjesdal K-I, Gadmar ØB, Geitung JT, Kløw N-E. Prostate magnetic resonance imaging: Multiexponential T2 decay in prostate tissue. Journal of Magnetic Resonance Imaging. 2008; 28(5):1166-72.PubMedCrossRef
8.
Zurück zum Zitat Kjaer L, Thomsen C, Iversen P, Henriksen O. In vivo estimation of relaxation processes in benign hyperplasia and carcinoma of the prostate gland by magnetic resonance imaging. Magnetic resonance imaging. 1987; 5(1):23-30.PubMedCrossRef Kjaer L, Thomsen C, Iversen P, Henriksen O. In vivo estimation of relaxation processes in benign hyperplasia and carcinoma of the prostate gland by magnetic resonance imaging. Magnetic resonance imaging. 1987; 5(1):23-30.PubMedCrossRef
9.
Zurück zum Zitat Schoeniger JS, Aiken N, Hsu E, Blackband SJ. Relaxation-Time and Diffusion NMR Microscopy of Single Neurons. Journal of Magnetic Resonance, Series B. 1994; 103(3):261-73.CrossRef Schoeniger JS, Aiken N, Hsu E, Blackband SJ. Relaxation-Time and Diffusion NMR Microscopy of Single Neurons. Journal of Magnetic Resonance, Series B. 1994; 103(3):261-73.CrossRef
10.
Zurück zum Zitat Sabouri S, Chang SD, Savdie R, et al. Luminal Water Imaging: A New MR Imaging T2 Mapping Technique for Prostate Cancer Diagnosis. Radiology. 2017; 284(2):451-9.PubMedCrossRef Sabouri S, Chang SD, Savdie R, et al. Luminal Water Imaging: A New MR Imaging T2 Mapping Technique for Prostate Cancer Diagnosis. Radiology. 2017; 284(2):451-9.PubMedCrossRef
11.
Zurück zum Zitat Sabouri S, Fazli L, Chang SD, et al. MR measurement of luminal water in prostate gland: Quantitative correlation between MRI and histology. Journal of Magnetic Resonance Imaging. 2017; 46(3):861-9.PubMedCrossRef Sabouri S, Fazli L, Chang SD, et al. MR measurement of luminal water in prostate gland: Quantitative correlation between MRI and histology. Journal of Magnetic Resonance Imaging. 2017; 46(3):861-9.PubMedCrossRef
12.
Zurück zum Zitat Langer DL, van der Kwast TH, Evans AJ, et al. Prostate tissue composition and MR measurements: investigating the relationships between ADC, T2, K(trans), v(e), and corresponding histologic features. Radiology. 2010; 255(2):485-94.PubMedCrossRef Langer DL, van der Kwast TH, Evans AJ, et al. Prostate tissue composition and MR measurements: investigating the relationships between ADC, T2, K(trans), v(e), and corresponding histologic features. Radiology. 2010; 255(2):485-94.PubMedCrossRef
13.
Zurück zum Zitat Chatterjee A, Watson G, Myint E, Sved P, McEntee M, Bourne R. Changes in Epithelium, Stroma, and Lumen Space Correlate More Strongly with Gleason Pattern and Are Stronger Predictors of Prostate ADC Changes than Cellularity Metrics. Radiology. 2015; 277(3):751-62.PubMedCrossRef Chatterjee A, Watson G, Myint E, Sved P, McEntee M, Bourne R. Changes in Epithelium, Stroma, and Lumen Space Correlate More Strongly with Gleason Pattern and Are Stronger Predictors of Prostate ADC Changes than Cellularity Metrics. Radiology. 2015; 277(3):751-62.PubMedCrossRef
14.
Zurück zum Zitat Sabouri S, Chang SD, Goldenberg SL, et al. Comparing diagnostic accuracy of luminal water imaging with diffusion-weighted and dynamic contrast-enhanced MRI in prostate cancer: A quantitative MRI study. NMR in Biomedicine. 2019; 32(2):e4048.PubMedCrossRef Sabouri S, Chang SD, Goldenberg SL, et al. Comparing diagnostic accuracy of luminal water imaging with diffusion-weighted and dynamic contrast-enhanced MRI in prostate cancer: A quantitative MRI study. NMR in Biomedicine. 2019; 32(2):e4048.PubMedCrossRef
15.
Zurück zum Zitat Carlin D, Orton MR, Collins D, deSouza NM. Probing structure of normal and malignant prostate tissue before and after radiation therapy with luminal water fraction and diffusion-weighted MRI. Journal of Magnetic Resonance Imaging. 0(0). Carlin D, Orton MR, Collins D, deSouza NM. Probing structure of normal and malignant prostate tissue before and after radiation therapy with luminal water fraction and diffusion-weighted MRI. Journal of Magnetic Resonance Imaging. 0(0).
16.
Zurück zum Zitat Chan RW, Lau AZ, Detzler G, Thayalasuthan V, Nam RK, Haider MA. Evaluating the accuracy of multicomponent T2 parameters for luminal water imaging of the prostate with acceleration using inner-volume 3D GRASE. Magnetic Resonance in Medicine. 2019; 81(1):466-76.PubMedCrossRef Chan RW, Lau AZ, Detzler G, Thayalasuthan V, Nam RK, Haider MA. Evaluating the accuracy of multicomponent T2 parameters for luminal water imaging of the prostate with acceleration using inner-volume 3D GRASE. Magnetic Resonance in Medicine. 2019; 81(1):466-76.PubMedCrossRef
17.
Zurück zum Zitat Devine W, Giganti F, Johnston EW, et al. Simplified Luminal Water Imaging for the Detection of Prostate Cancer From Multiecho T2 MR Images. Journal of Magnetic Resonance Imaging. 2019; 50(3):910-7.PubMedCrossRef Devine W, Giganti F, Johnston EW, et al. Simplified Luminal Water Imaging for the Detection of Prostate Cancer From Multiecho T2 MR Images. Journal of Magnetic Resonance Imaging. 2019; 50(3):910-7.PubMedCrossRef
18.
Zurück zum Zitat White NS, Leergaard TB, D'Arceuil H, Bjaalie JG, Dale AM. Probing tissue microstructure with restriction spectrum imaging: Histological and theoretical validation. Human Brain Mapping. 2013; 34(2):327-46.PubMedCrossRef White NS, Leergaard TB, D'Arceuil H, Bjaalie JG, Dale AM. Probing tissue microstructure with restriction spectrum imaging: Histological and theoretical validation. Human Brain Mapping. 2013; 34(2):327-46.PubMedCrossRef
19.
Zurück zum Zitat White NS, McDonald CR, Farid N, et al. Diffusion-Weighted Imaging in Cancer: Physical Foundations and Applications of Restriction Spectrum Imaging. Cancer Research. 2014; 74(17):4638.PubMedPubMedCentralCrossRef White NS, McDonald CR, Farid N, et al. Diffusion-Weighted Imaging in Cancer: Physical Foundations and Applications of Restriction Spectrum Imaging. Cancer Research. 2014; 74(17):4638.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat McCammack KC, Kane CJ, Parsons JK, et al. In vivo prostate cancer detection and grading using restriction spectrum imaging-MRI. Prostate Cancer and Prostatic Diseases. 2016; 19(2):168-73.PubMedPubMedCentralCrossRef McCammack KC, Kane CJ, Parsons JK, et al. In vivo prostate cancer detection and grading using restriction spectrum imaging-MRI. Prostate Cancer and Prostatic Diseases. 2016; 19(2):168-73.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Liss MA, White NS, Parsons JK, et al. MRI-Derived Restriction Spectrum Imaging Cellularity Index is Associated with High Grade Prostate Cancer on Radical Prostatectomy Specimens. Frontiers in Oncology. 2015; 5(30). Liss MA, White NS, Parsons JK, et al. MRI-Derived Restriction Spectrum Imaging Cellularity Index is Associated with High Grade Prostate Cancer on Radical Prostatectomy Specimens. Frontiers in Oncology. 2015; 5(30).
22.
Zurück zum Zitat Yamin G, Schenker-Ahmed NM, Shabaik A, et al. Voxel Level Radiologic–Pathologic Validation of Restriction Spectrum Imaging Cellularity Index with Gleason Grade in Prostate Cancer. Clinical Cancer Research. 2016; 22(11):2668.PubMedPubMedCentralCrossRef Yamin G, Schenker-Ahmed NM, Shabaik A, et al. Voxel Level Radiologic–Pathologic Validation of Restriction Spectrum Imaging Cellularity Index with Gleason Grade in Prostate Cancer. Clinical Cancer Research. 2016; 22(11):2668.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat McCammack KC, Schenker-Ahmed NM, White NS, et al. Restriction spectrum imaging improves MRI-based prostate cancer detection. Abdom Radiol. 2016; 41(5):946-53.CrossRef McCammack KC, Schenker-Ahmed NM, White NS, et al. Restriction spectrum imaging improves MRI-based prostate cancer detection. Abdom Radiol. 2016; 41(5):946-53.CrossRef
24.
Zurück zum Zitat Felker ER, Raman SS, Shakeri S, et al. Utility of Restriction Spectrum Imaging Among Men Undergoing First-Time Biopsy for Suspected Prostate Cancer. American Journal of Roentgenology. 2019; 213(2):365-70.PubMedCrossRef Felker ER, Raman SS, Shakeri S, et al. Utility of Restriction Spectrum Imaging Among Men Undergoing First-Time Biopsy for Suspected Prostate Cancer. American Journal of Roentgenology. 2019; 213(2):365-70.PubMedCrossRef
25.
Zurück zum Zitat Panagiotaki E, Walker-Samuel S, Siow B, et al. Noninvasive quantification of solid tumor microstructure using VERDICT MRI. Cancer research. 2014; 74(7):1902-12.PubMedCrossRef Panagiotaki E, Walker-Samuel S, Siow B, et al. Noninvasive quantification of solid tumor microstructure using VERDICT MRI. Cancer research. 2014; 74(7):1902-12.PubMedCrossRef
26.
Zurück zum Zitat Panagiotaki E, Walker-Samuel S, Siow B, et al. Noninvasive Quantification of Solid Tumor Microstructure Using VERDICT MRI. Cancer Research. 2014; 74(7):1902.PubMedCrossRef Panagiotaki E, Walker-Samuel S, Siow B, et al. Noninvasive Quantification of Solid Tumor Microstructure Using VERDICT MRI. Cancer Research. 2014; 74(7):1902.PubMedCrossRef
27.
Zurück zum Zitat Panagiotaki E, Chan RW, Dikaios N, et al. Microstructural Characterization of Normal and Malignant Human Prostate Tissue With Vascular, Extracellular, and Restricted Diffusion for Cytometry in Tumours Magnetic Resonance Imaging. Investigative radiology. 2015; 50(4):218-27.PubMedCrossRef Panagiotaki E, Chan RW, Dikaios N, et al. Microstructural Characterization of Normal and Malignant Human Prostate Tissue With Vascular, Extracellular, and Restricted Diffusion for Cytometry in Tumours Magnetic Resonance Imaging. Investigative radiology. 2015; 50(4):218-27.PubMedCrossRef
28.
Zurück zum Zitat Bailey C, Bourne RM, Siow B, et al. VERDICT MRI validation in fresh and fixed prostate specimens using patient-specific moulds for histological and MR alignment. NMR in Biomedicine. 2019; 32(5):e4073.PubMedPubMedCentralCrossRef Bailey C, Bourne RM, Siow B, et al. VERDICT MRI validation in fresh and fixed prostate specimens using patient-specific moulds for histological and MR alignment. NMR in Biomedicine. 2019; 32(5):e4073.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Alexander DC. A general framework for experiment design in diffusion MRI and its application in measuring direct tissue-microstructure features. Magnetic Resonance in Medicine. 2008; 60(2):439-48.PubMedCrossRef Alexander DC. A general framework for experiment design in diffusion MRI and its application in measuring direct tissue-microstructure features. Magnetic Resonance in Medicine. 2008; 60(2):439-48.PubMedCrossRef
30.
Zurück zum Zitat Bonet-Carne E, Johnston E, Daducci A, et al. VERDICT-AMICO: Ultrafast fitting algorithm for non-invasive prostate microstructure characterization. NMR in Biomedicine. 2019; 32(1):e4019.PubMedCrossRef Bonet-Carne E, Johnston E, Daducci A, et al. VERDICT-AMICO: Ultrafast fitting algorithm for non-invasive prostate microstructure characterization. NMR in Biomedicine. 2019; 32(1):e4019.PubMedCrossRef
31.
Zurück zum Zitat Johnston E, Pye H, Bonet-Carne E, et al. INNOVATE: A prospective cohort study combining serum and urinary biomarkers with novel diffusion-weighted magnetic resonance imaging for the prediction and characterization of prostate cancer. BMC Cancer. 2016; 16(1):816.PubMedPubMedCentralCrossRef Johnston E, Pye H, Bonet-Carne E, et al. INNOVATE: A prospective cohort study combining serum and urinary biomarkers with novel diffusion-weighted magnetic resonance imaging for the prediction and characterization of prostate cancer. BMC Cancer. 2016; 16(1):816.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Johnston EW, Bonet-Carne E, Ferizi U, et al. VERDICT MRI for Prostate Cancer: Intracellular Volume Fraction versus Apparent Diffusion Coefficient. Radiology. 2019; 291(2):391-7.PubMedCrossRef Johnston EW, Bonet-Carne E, Ferizi U, et al. VERDICT MRI for Prostate Cancer: Intracellular Volume Fraction versus Apparent Diffusion Coefficient. Radiology. 2019; 291(2):391-7.PubMedCrossRef
33.
Zurück zum Zitat Bourne RM, Kurniawan N, Cowin G, et al. Microscopic diffusivity compartmentation in formalin-fixed prostate tissue. Magn Reson Med. 2012; 68(2):614-20.PubMedCrossRef Bourne RM, Kurniawan N, Cowin G, et al. Microscopic diffusivity compartmentation in formalin-fixed prostate tissue. Magn Reson Med. 2012; 68(2):614-20.PubMedCrossRef
34.
Zurück zum Zitat Does MD, Gore JC. Compartmental study of diffusion and relaxation measured in vivo in normal and ischemic rat brain and trigeminal nerve. Magnetic Resonance in Medicine. 2000; 43(6):837-44.PubMedCrossRef Does MD, Gore JC. Compartmental study of diffusion and relaxation measured in vivo in normal and ischemic rat brain and trigeminal nerve. Magnetic Resonance in Medicine. 2000; 43(6):837-44.PubMedCrossRef
35.
Zurück zum Zitat Wang S, Peng Y, Medved M, et al. Hybrid multidimensional T2 and diffusion‐weighted MRI for prostate cancer detection. Journal of Magnetic Resonance Imaging. 2014; 39(4):781-8.PubMedCrossRef Wang S, Peng Y, Medved M, et al. Hybrid multidimensional T2 and diffusion‐weighted MRI for prostate cancer detection. Journal of Magnetic Resonance Imaging. 2014; 39(4):781-8.PubMedCrossRef
36.
Zurück zum Zitat Sadinski M, Karczmar G, Peng Y, et al. Pilot Study of the Use of Hybrid Multidimensional T2-Weighted Imaging–DWI for the Diagnosis of Prostate Cancer and Evaluation of Gleason Score. American Journal of Roentgenology. 2016; 207(3):592-8.PubMedCrossRef Sadinski M, Karczmar G, Peng Y, et al. Pilot Study of the Use of Hybrid Multidimensional T2-Weighted Imaging–DWI for the Diagnosis of Prostate Cancer and Evaluation of Gleason Score. American Journal of Roentgenology. 2016; 207(3):592-8.PubMedCrossRef
37.
Zurück zum Zitat Chatterjee A, Bourne R, Wang S, et al. Diagnosis of Prostate Cancer with Noninvasive Estimation of Prostate Tissue Composition by Using Hybrid Multidimensional MR Imaging: A Feasibility Study. Radiology. 2018; 287(3):864-72.PubMedCrossRef Chatterjee A, Bourne R, Wang S, et al. Diagnosis of Prostate Cancer with Noninvasive Estimation of Prostate Tissue Composition by Using Hybrid Multidimensional MR Imaging: A Feasibility Study. Radiology. 2018; 287(3):864-72.PubMedCrossRef
38.
Zurück zum Zitat Chatterjee A, Mercado C, Bourne RM, et al. Validation of prostate tissue composition measurement using Hybrid Multidimensional MRI: Correlation with quantitative histology. Proc Intl Soc Mag Reson Med (ISMRM). Montreal, Canada 2019; 0986. Chatterjee A, Mercado C, Bourne RM, et al. Validation of prostate tissue composition measurement using Hybrid Multidimensional MRI: Correlation with quantitative histology. Proc Intl Soc Mag Reson Med (ISMRM). Montreal, Canada 2019; 0986.
39.
Zurück zum Zitat Chatterjee A, Lee G, Dietz D, Oto A, Karczmar G. Cross vendor validation of Hybrid Multidimensional MRI in the non-invasive measurement of prostate tissue composition. Society of Abdominal Imaging (SAR) Annual Scientific Meeting. Maui, USA. 2020; 3285826. Chatterjee A, Lee G, Dietz D, Oto A, Karczmar G. Cross vendor validation of Hybrid Multidimensional MRI in the non-invasive measurement of prostate tissue composition. Society of Abdominal Imaging (SAR) Annual Scientific Meeting. Maui, USA. 2020; 3285826.
40.
Zurück zum Zitat Chatterjee A, Harmath C, Engelmann R, et al. Prospective Validation of an Automated Hybrid Multi-dimensional MR Imaging-Based Tool to Identify Areas for Prostate Cancer Biopsy: Preliminary results. Society of Abdominal Imaging (SAR) Annual Scientific Meeting Maui, USA. 2020; 3281119. Chatterjee A, Harmath C, Engelmann R, et al. Prospective Validation of an Automated Hybrid Multi-dimensional MR Imaging-Based Tool to Identify Areas for Prostate Cancer Biopsy: Preliminary results. Society of Abdominal Imaging (SAR) Annual Scientific Meeting Maui, USA. 2020; 3281119.
41.
Zurück zum Zitat Chatterjee A, Gallan AJ, He D, et al. Revisiting quantitative multi-parametric MRI of benign prostatic hyperplasia and its differentiation from transition zone cancer. Abdom Radiol. 2019; 44(6):2233-43.CrossRef Chatterjee A, Gallan AJ, He D, et al. Revisiting quantitative multi-parametric MRI of benign prostatic hyperplasia and its differentiation from transition zone cancer. Abdom Radiol. 2019; 44(6):2233-43.CrossRef
43.
Zurück zum Zitat Yu AC, Badve C, Ponsky LE, et al. Development of a Combined MR Fingerprinting and Diffusion Examination for Prostate Cancer. Radiology. 2017; 283(3):729-38.PubMedCrossRef Yu AC, Badve C, Ponsky LE, et al. Development of a Combined MR Fingerprinting and Diffusion Examination for Prostate Cancer. Radiology. 2017; 283(3):729-38.PubMedCrossRef
44.
Zurück zum Zitat Panda A, O'Connor G, Lo WC, et al. Targeted Biopsy Validation of Peripheral Zone Prostate Cancer Characterization With Magnetic Resonance Fingerprinting and Diffusion Mapping. Investigative Radiology. 2019; 54(8):485-93.PubMedPubMedCentralCrossRef Panda A, O'Connor G, Lo WC, et al. Targeted Biopsy Validation of Peripheral Zone Prostate Cancer Characterization With Magnetic Resonance Fingerprinting and Diffusion Mapping. Investigative Radiology. 2019; 54(8):485-93.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Panda A, Obmann VC, Lo W-C, et al. MR Fingerprinting and ADC Mapping for Characterization of Lesions in the Transition Zone of the Prostate Gland. Radiology. 2019; 292(3):685-94.PubMedCrossRef Panda A, Obmann VC, Lo W-C, et al. MR Fingerprinting and ADC Mapping for Characterization of Lesions in the Transition Zone of the Prostate Gland. Radiology. 2019; 292(3):685-94.PubMedCrossRef
46.
Zurück zum Zitat Atkinson D, Counsell S, Hajnal JV, Batchelor PG, Hill DLG, Larkman DJ. Nonlinear phase correction of navigated multi-coil diffusion images. Magnetic Resonance in Medicine. 2006; 56(5):1135-9.PubMedCrossRef Atkinson D, Counsell S, Hajnal JV, Batchelor PG, Hill DLG, Larkman DJ. Nonlinear phase correction of navigated multi-coil diffusion images. Magnetic Resonance in Medicine. 2006; 56(5):1135-9.PubMedCrossRef
47.
Zurück zum Zitat Porter DA, Heidemann RM. High resolution diffusion-weighted imaging using readout-segmented echo-planar imaging, parallel imaging and a two-dimensional navigator-based reacquisition. Magnetic Resonance in Medicine. 2009; 62(2):468-75.PubMedCrossRef Porter DA, Heidemann RM. High resolution diffusion-weighted imaging using readout-segmented echo-planar imaging, parallel imaging and a two-dimensional navigator-based reacquisition. Magnetic Resonance in Medicine. 2009; 62(2):468-75.PubMedCrossRef
48.
Zurück zum Zitat Fedorov A, Tuncali K, Panych LP, et al. Segmented diffusion-weighted imaging of the prostate: Application to transperineal in-bore 3T MR image-guided targeted biopsy. Magnetic Resonance Imaging. 2016; 34(8):1146-54.PubMedPubMedCentralCrossRef Fedorov A, Tuncali K, Panych LP, et al. Segmented diffusion-weighted imaging of the prostate: Application to transperineal in-bore 3T MR image-guided targeted biopsy. Magnetic Resonance Imaging. 2016; 34(8):1146-54.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Thian YL, Xie W, Porter DA, Weileng Ang B. Readout-segmented Echo-planar Imaging for Diffusion-weighted Imaging in the Pelvis at 3T—A Feasibility Study. Academic Radiology. 2014; 21(4):531-7.PubMedCrossRef Thian YL, Xie W, Porter DA, Weileng Ang B. Readout-segmented Echo-planar Imaging for Diffusion-weighted Imaging in the Pelvis at 3T—A Feasibility Study. Academic Radiology. 2014; 21(4):531-7.PubMedCrossRef
50.
Zurück zum Zitat Aksit Ciris P, Chiou JG, Glazer DI, et al. Accelerated Segmented Diffusion-Weighted Prostate Imaging for Higher Resolution, Higher Geometric Fidelity, and Multi-b Perfusion Estimation. Invest Radiol. 2019; 54(4):238-46.PubMedCrossRef Aksit Ciris P, Chiou JG, Glazer DI, et al. Accelerated Segmented Diffusion-Weighted Prostate Imaging for Higher Resolution, Higher Geometric Fidelity, and Multi-b Perfusion Estimation. Invest Radiol. 2019; 54(4):238-46.PubMedCrossRef
51.
Zurück zum Zitat Attenberger UI, Rathmann N, Sertdemir M, et al. Small Field-of-view single-shot EPI-DWI of the prostate: Evaluation of spatially-tailored two-dimensional radiofrequency excitation pulses. Z Med Phys. 2016; 26(2):168-76.PubMedCrossRef Attenberger UI, Rathmann N, Sertdemir M, et al. Small Field-of-view single-shot EPI-DWI of the prostate: Evaluation of spatially-tailored two-dimensional radiofrequency excitation pulses. Z Med Phys. 2016; 26(2):168-76.PubMedCrossRef
52.
Zurück zum Zitat Czarniecki M, Caglic I, Grist JT, et al. Role of PROPELLER-DWI of the prostate in reducing distortion and artefact from total hip replacement metalwork. Eur J Radiol. 2018; 102:213-9.PubMedCrossRef Czarniecki M, Caglic I, Grist JT, et al. Role of PROPELLER-DWI of the prostate in reducing distortion and artefact from total hip replacement metalwork. Eur J Radiol. 2018; 102:213-9.PubMedCrossRef
53.
Zurück zum Zitat Lustig M, Donoho D, Pauly JM. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magnetic Resonance in Medicine. 2007; 58(6):1182-95.PubMedCrossRef Lustig M, Donoho D, Pauly JM. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magnetic Resonance in Medicine. 2007; 58(6):1182-95.PubMedCrossRef
54.
Zurück zum Zitat Tsao J, Boesiger P, Pruessmann KP. k-t BLAST and k-t SENSE: Dynamic MRI with high frame rate exploiting spatiotemporal correlations. Magnetic Resonance in Medicine. 2003; 50(5):1031-42.PubMedCrossRef Tsao J, Boesiger P, Pruessmann KP. k-t BLAST and k-t SENSE: Dynamic MRI with high frame rate exploiting spatiotemporal correlations. Magnetic Resonance in Medicine. 2003; 50(5):1031-42.PubMedCrossRef
55.
Zurück zum Zitat Winkel DJ, Heye TJ, Benz MR, et al. Compressed Sensing Radial Sampling MRI of Prostate Perfusion: Utility for Detection of Prostate Cancer. Radiology. 2019; 290(3):702-8.PubMedCrossRef Winkel DJ, Heye TJ, Benz MR, et al. Compressed Sensing Radial Sampling MRI of Prostate Perfusion: Utility for Detection of Prostate Cancer. Radiology. 2019; 290(3):702-8.PubMedCrossRef
56.
Zurück zum Zitat Rosenkrantz AB, Geppert C, Grimm R, et al. Dynamic contrast-enhanced MRI of the prostate with high spatiotemporal resolution using compressed sensing, parallel imaging, and continuous golden-angle radial sampling: Preliminary experience. Journal of Magnetic Resonance Imaging. 2015; 41(5):1365-73.PubMedCrossRef Rosenkrantz AB, Geppert C, Grimm R, et al. Dynamic contrast-enhanced MRI of the prostate with high spatiotemporal resolution using compressed sensing, parallel imaging, and continuous golden-angle radial sampling: Preliminary experience. Journal of Magnetic Resonance Imaging. 2015; 41(5):1365-73.PubMedCrossRef
57.
Zurück zum Zitat Liu W, Turkbey B, Sénégas J, et al. Accelerated T2 mapping for characterization of prostate cancer. Magnetic Resonance in Medicine. 2011; 65(5):1400-6.PubMedPubMedCentralCrossRef Liu W, Turkbey B, Sénégas J, et al. Accelerated T2 mapping for characterization of prostate cancer. Magnetic Resonance in Medicine. 2011; 65(5):1400-6.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Chatterjee A, Devaraj A, Matthew M, et al. Performance of T2 maps in the detection of prostate cancer. Academic Radiology. 2019; 26(1):15-21.PubMedCrossRef Chatterjee A, Devaraj A, Matthew M, et al. Performance of T2 maps in the detection of prostate cancer. Academic Radiology. 2019; 26(1):15-21.PubMedCrossRef
59.
Zurück zum Zitat Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D. High Signal Intensity in the Dentate Nucleus and Globus Pallidus on Unenhanced T1-weighted MR Images: Relationship with Increasing Cumulative Dose of a Gadolinium-based Contrast Material. Radiology. 2014; 270(3):834-41.PubMedCrossRef Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D. High Signal Intensity in the Dentate Nucleus and Globus Pallidus on Unenhanced T1-weighted MR Images: Relationship with Increasing Cumulative Dose of a Gadolinium-based Contrast Material. Radiology. 2014; 270(3):834-41.PubMedCrossRef
60.
Zurück zum Zitat Robert P, Frenzel T, Factor C, et al. Methodological Aspects for Preclinical Evaluation of Gadolinium Presence in Brain Tissue: Critical Appraisal and Suggestions for Harmonization—A Joint Initiative. Investigative Radiology. 2018; 53(9):499-517.PubMedPubMedCentralCrossRef Robert P, Frenzel T, Factor C, et al. Methodological Aspects for Preclinical Evaluation of Gadolinium Presence in Brain Tissue: Critical Appraisal and Suggestions for Harmonization—A Joint Initiative. Investigative Radiology. 2018; 53(9):499-517.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Scialpi M, Prosperi E, D'Andrea A, et al. Biparametric versus Multiparametric MRI with Non-endorectal Coil at 3T in the Detection and Localization of Prostate Cancer. Anticancer Res. 2017; 37(3):1263-71.PubMedCrossRef Scialpi M, Prosperi E, D'Andrea A, et al. Biparametric versus Multiparametric MRI with Non-endorectal Coil at 3T in the Detection and Localization of Prostate Cancer. Anticancer Res. 2017; 37(3):1263-71.PubMedCrossRef
62.
Zurück zum Zitat He D, Chatterjee A, Fan X, et al. Feasibility of Dynamic Contrast-Enhanced Magnetic Resonance Imaging Using Low-Dose Gadolinium: Comparative Performance With Standard Dose in Prostate Cancer Diagnosis. Investigative Radiology. 2018; 53(10):609-15.PubMedPubMedCentralCrossRef He D, Chatterjee A, Fan X, et al. Feasibility of Dynamic Contrast-Enhanced Magnetic Resonance Imaging Using Low-Dose Gadolinium: Comparative Performance With Standard Dose in Prostate Cancer Diagnosis. Investigative Radiology. 2018; 53(10):609-15.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Chatterjee A, He D, Fan X, et al. Performance of ultrafast DCE-MRI for diagnosis of prostate cancer. Academic Radiology. 2018; 25(3):349-58.PubMedCrossRef Chatterjee A, He D, Fan X, et al. Performance of ultrafast DCE-MRI for diagnosis of prostate cancer. Academic Radiology. 2018; 25(3):349-58.PubMedCrossRef
64.
Zurück zum Zitat Turco S, Lavini C, Heijmink S, Barentsz J, Wijkstra H, Mischi M. Evaluation of Dispersion MRI for Improved Prostate Cancer Diagnosis in a Multicenter Study. American Journal of Roentgenology. 2018; 211(5):W242-W51.PubMedCrossRef Turco S, Lavini C, Heijmink S, Barentsz J, Wijkstra H, Mischi M. Evaluation of Dispersion MRI for Improved Prostate Cancer Diagnosis in a Multicenter Study. American Journal of Roentgenology. 2018; 211(5):W242-W51.PubMedCrossRef
65.
Zurück zum Zitat Sun C, Chatterjee A, Yousuf A, et al. Comparison of T2-Weighted Imaging, DWI, and Dynamic Contrast-Enhanced MRI for Calculation of Prostate Cancer Index Lesion Volume: Correlation With Whole-Mount Pathology. American Journal of Roentgenology. 2018; 212(2):351-6.PubMedCrossRef Sun C, Chatterjee A, Yousuf A, et al. Comparison of T2-Weighted Imaging, DWI, and Dynamic Contrast-Enhanced MRI for Calculation of Prostate Cancer Index Lesion Volume: Correlation With Whole-Mount Pathology. American Journal of Roentgenology. 2018; 212(2):351-6.PubMedCrossRef
66.
Zurück zum Zitat Chatterjee A, Oto A. Future Perspectives in Multiparametric Prostate MR Imaging. Magnetic Resonance Imaging Clinics of North America. 2019; 27(1):117-30.PubMedCrossRef Chatterjee A, Oto A. Future Perspectives in Multiparametric Prostate MR Imaging. Magnetic Resonance Imaging Clinics of North America. 2019; 27(1):117-30.PubMedCrossRef
67.
Zurück zum Zitat Nelson SJ, Kurhanewicz J, Vigneron DB, et al. Metabolic imaging of patients with prostate cancer using hyperpolarized [1–13C]pyruvate. Sci Transl Med. 2013; 5(198):198ra08-ra08. Nelson SJ, Kurhanewicz J, Vigneron DB, et al. Metabolic imaging of patients with prostate cancer using hyperpolarized [1–13C]pyruvate. Sci Transl Med. 2013; 5(198):198ra08-ra08.
68.
Zurück zum Zitat Armato SG, 3rd, Huisman H, Drukker K, et al. PROSTATEx Challenges for computerized classification of prostate lesions from multiparametric magnetic resonance images. Journal of medical imaging (Bellingham, Wash). 2018; 5(4):044501.PubMedCentral Armato SG, 3rd, Huisman H, Drukker K, et al. PROSTATEx Challenges for computerized classification of prostate lesions from multiparametric magnetic resonance images. Journal of medical imaging (Bellingham, Wash). 2018; 5(4):044501.PubMedCentral
69.
Zurück zum Zitat Chatterjee A, Nolan P, Sun C, et al. Effect of Echo Times on Prostate Cancer Detection on T2-Weighted Images. Academic Radiology. 2020. Chatterjee A, Nolan P, Sun C, et al. Effect of Echo Times on Prostate Cancer Detection on T2-Weighted Images. Academic Radiology. 2020.
70.
Zurück zum Zitat Peng Y, Jiang Y, Antic T, et al. Apparent Diffusion Coefficient for Prostate Cancer Imaging: Impact of b Values. American Journal of Roentgenology. 2014; 202(3):W247-W53.PubMedCrossRef Peng Y, Jiang Y, Antic T, et al. Apparent Diffusion Coefficient for Prostate Cancer Imaging: Impact of b Values. American Journal of Roentgenology. 2014; 202(3):W247-W53.PubMedCrossRef
71.
Zurück zum Zitat Othman AE, Falkner F, Weiss J, et al. Effect of Temporal Resolution on Diagnostic Performance of Dynamic Contrast-Enhanced Magnetic Resonance Imaging of the Prostate. Invest Radiol. 2016; 51(5):290-6.PubMedCrossRef Othman AE, Falkner F, Weiss J, et al. Effect of Temporal Resolution on Diagnostic Performance of Dynamic Contrast-Enhanced Magnetic Resonance Imaging of the Prostate. Invest Radiol. 2016; 51(5):290-6.PubMedCrossRef
72.
Zurück zum Zitat Jambor I. Optimization of prostate MRI acquisition and post-processing protocol: a pictorial review with access to acquisition protocols. Acta Radiol Open. 2017; 6(12):2058460117745574-. Jambor I. Optimization of prostate MRI acquisition and post-processing protocol: a pictorial review with access to acquisition protocols. Acta Radiol Open. 2017; 6(12):2058460117745574-.
73.
Zurück zum Zitat Caglic I, Barrett T. Optimising prostate mpMRI: prepare for success. Clinical Radiology. 2019; 74(11):831-40.PubMedCrossRef Caglic I, Barrett T. Optimising prostate mpMRI: prepare for success. Clinical Radiology. 2019; 74(11):831-40.PubMedCrossRef
Metadaten
Titel
New prostate MRI techniques and sequences
verfasst von
Aritrick Chatterjee
Carla Harmath
Aytekin Oto
Publikationsdatum
04.04.2020
Verlag
Springer US
Erschienen in
Abdominal Radiology / Ausgabe 12/2020
Print ISSN: 2366-004X
Elektronische ISSN: 2366-0058
DOI
https://doi.org/10.1007/s00261-020-02504-8

Weitere Artikel der Ausgabe 12/2020

Abdominal Radiology 12/2020 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.