Skip to main content
Erschienen in: Inflammation 4/2018

14.04.2018 | ORIGINAL ARTICLE

NLRP3 Inflammasome Involves in the Acute Exacerbation of Patients with Chronic Obstructive Pulmonary Disease

verfasst von: Huaying Wang, Chun’er Lv, Shi Wang, Huajuan Ying, Yuesong Weng, Wanjun Yu

Erschienen in: Inflammation | Ausgabe 4/2018

Einloggen, um Zugang zu erhalten

Abstract

The NLR pyrin domain-containing protein 3 (NLRP3) inflammasome, a multi-protein complex, produces the pro-inflammatory cytokines interleukin (IL)-1β and IL-18, which may contribute to the development of airway inflammation in chronic obstructive pulmonary disease (COPD). The aim of this study was to explore the correlation between circulating and local airway NLRP3 inflammasome activation with acute exacerbation of COPD (AECOPD). mRNA levels of NLRP3, Caspase (Casp)-1, apoptosis-associated speck-like protein containing CARD (ASC), IL-18, and IL-1β in peripheral blood mononuclear cells (PBMCs) and bronchial tissues were determined by real-time PCR in 32 smokers, 65 patients with AECOPD, 50 COPD patients in recovery stage, and 30 COPD patients in stable stage. The levels of IL-1β and IL-18 in serum and bronchoalveolar lavage fluid (BALF) supernatants were measured by ELISA. The load of six common pathogens in BALF samples were determined by real-time PCR. The potential correlation between the mRNA levels of NLRP3, Casp-1, ASC, IL-18 or IL-1β and the load of pathogens was evaluated individually. Significantly higher mRNA levels of NLRP3, Casp-1, ASC, IL-18, IL-1β and higher levels of IL-18 and IL-1β were found in patients with AECOPD than in smokers. These NLRP3 inflammasome mediators were significantly decreased when COPD patients in the same group became clinical stable. The increased mRNA levels of NLRP3 inflammasomes in bronchial tissues were positively correlated with the load of the six common pathogens in the lower respiratory tract. We conclude that systemic and local airway NLRP3 inflammasome activation is associated with the acute exacerbation, which might be predictive factors of the acute exacerbation and clinical outcomes in COPD patients.
Literatur
1.
Zurück zum Zitat Hogg, J.C., and W. Timens. 2009. The pathology of chronic obstructive pulmonary disease. Annual Review of Pathology 4: 435–459.CrossRefPubMed Hogg, J.C., and W. Timens. 2009. The pathology of chronic obstructive pulmonary disease. Annual Review of Pathology 4: 435–459.CrossRefPubMed
3.
Zurück zum Zitat Beasley, V., P.V. Joshi, A. Singanayagam, P.L. Molyneaux, S.L. Johnston, and P. Mallia. 2012. Lung microbiology and exacerbations in COPD. International Journal of Chronic Obstructive Pulmonary Disease 7: 555–569.PubMedPubMedCentral Beasley, V., P.V. Joshi, A. Singanayagam, P.L. Molyneaux, S.L. Johnston, and P. Mallia. 2012. Lung microbiology and exacerbations in COPD. International Journal of Chronic Obstructive Pulmonary Disease 7: 555–569.PubMedPubMedCentral
4.
Zurück zum Zitat De Nardo, D., C.M. De Nardo, and E. Latz. 2014. New insights into mechanisms controlling the NLRP3 inflammasome and its role in lung disease. The American Journal of Pathology 84: 42–54.CrossRef De Nardo, D., C.M. De Nardo, and E. Latz. 2014. New insights into mechanisms controlling the NLRP3 inflammasome and its role in lung disease. The American Journal of Pathology 84: 42–54.CrossRef
5.
Zurück zum Zitat Martinon, F., K. Burns, and J. Tschopp. 2002. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Molecular Cell 10: 417–426.CrossRefPubMed Martinon, F., K. Burns, and J. Tschopp. 2002. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Molecular Cell 10: 417–426.CrossRefPubMed
6.
Zurück zum Zitat van de Veerdonk, F., M. Netea, C. Dinarello, and L. Joosten. 2011. Inflammasome activation and IL-1beta and IL-18 processing during infection. Trends in Immunology 32: 110–116.CrossRefPubMed van de Veerdonk, F., M. Netea, C. Dinarello, and L. Joosten. 2011. Inflammasome activation and IL-1beta and IL-18 processing during infection. Trends in Immunology 32: 110–116.CrossRefPubMed
7.
Zurück zum Zitat Ritter, M., K. Straubinger, S. Schmidt, D.H. Busch, S. Hagner, H. Garn, C. Prazeres da Costa, and L.E. Layland. 2014. Functional relevance of NLRP3 inflammasome-mediated interleukin (IL)-1β during acute allergic airway inflammation. Clinical and Experimental Immunology 178: 212–223.CrossRefPubMedPubMedCentral Ritter, M., K. Straubinger, S. Schmidt, D.H. Busch, S. Hagner, H. Garn, C. Prazeres da Costa, and L.E. Layland. 2014. Functional relevance of NLRP3 inflammasome-mediated interleukin (IL)-1β during acute allergic airway inflammation. Clinical and Experimental Immunology 178: 212–223.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Nieto-Torres, J.L., C. Verdiá-Báguena, J.M. Jimenez-Guardeño, J.A. Regla-Nava, C. Castaño-Rodriguez, R. Fernandez-Delgado, J. Torres, V.M. Aguilella, and L. Enjuanes. 2015. Severe acute respiratory syndrome coronavirus E protein transports calcium ions and activates the NLRP3 inflammasome. Virology 485: 330–339.CrossRefPubMedPubMedCentral Nieto-Torres, J.L., C. Verdiá-Báguena, J.M. Jimenez-Guardeño, J.A. Regla-Nava, C. Castaño-Rodriguez, R. Fernandez-Delgado, J. Torres, V.M. Aguilella, and L. Enjuanes. 2015. Severe acute respiratory syndrome coronavirus E protein transports calcium ions and activates the NLRP3 inflammasome. Virology 485: 330–339.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Li, C., H. Zhihong, L. Wenlong, L. Xiaoyan, C. Qing, L. Wenzhi, X. Siming, and L. Shengming. 2016. The NLRP3 Inflammasome Regulates Bronchial Epithelial Cell Injury and Pro-apoptosis After Exposure to Biomass Fuel Smoke. American Journal of Respiratory Cell and Molecular Biology 55 (6): 815–824.CrossRefPubMed Li, C., H. Zhihong, L. Wenlong, L. Xiaoyan, C. Qing, L. Wenzhi, X. Siming, and L. Shengming. 2016. The NLRP3 Inflammasome Regulates Bronchial Epithelial Cell Injury and Pro-apoptosis After Exposure to Biomass Fuel Smoke. American Journal of Respiratory Cell and Molecular Biology 55 (6): 815–824.CrossRefPubMed
10.
Zurück zum Zitat Domej, W., Z. Foldes-Papp, E. Flogel, and B. Haditsch. 2006. Chronic obstructive pulmonary disease and oxidative stress. Current Pharmaceutical Biotechnology 7: 117–123.CrossRefPubMed Domej, W., Z. Foldes-Papp, E. Flogel, and B. Haditsch. 2006. Chronic obstructive pulmonary disease and oxidative stress. Current Pharmaceutical Biotechnology 7: 117–123.CrossRefPubMed
11.
Zurück zum Zitat Müller, T., R.P. Vieira, M. Grimm, T. Dürk, S. Cicko, R. Zeiser, T. Jakob, S.F. Martin, B. Blumenthal, S. Sorichter, D. Ferrari, F. Di Virgillio, and M. Idzko. 2011. A potential role for P2X7R in allergic airway inflammation in mice and humans. American Journal of Respiratory Cell and Molecular Biology 44: 456–464.CrossRefPubMed Müller, T., R.P. Vieira, M. Grimm, T. Dürk, S. Cicko, R. Zeiser, T. Jakob, S.F. Martin, B. Blumenthal, S. Sorichter, D. Ferrari, F. Di Virgillio, and M. Idzko. 2011. A potential role for P2X7R in allergic airway inflammation in mice and humans. American Journal of Respiratory Cell and Molecular Biology 44: 456–464.CrossRefPubMed
12.
Zurück zum Zitat Faner, R., P. Sobradillo, A. Noguera, C. Gomez, T. Cruz, A. López-Giraldo, E. Ballester, N. Soler, J.I. Arostegui, P. Pelegrín, R. Rodriguez-Roisin, J. Yagüe, B.G. Cosio, M. Juan, and A. Agustí. 2016. The inflammasome pathway in stable COPD and acute exacerbations. ERJ Open Research 2: 00002–02016.CrossRefPubMedPubMedCentral Faner, R., P. Sobradillo, A. Noguera, C. Gomez, T. Cruz, A. López-Giraldo, E. Ballester, N. Soler, J.I. Arostegui, P. Pelegrín, R. Rodriguez-Roisin, J. Yagüe, B.G. Cosio, M. Juan, and A. Agustí. 2016. The inflammasome pathway in stable COPD and acute exacerbations. ERJ Open Research 2: 00002–02016.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Rabe, K.F., S. Hurd, A. Anzueto, P.J. Barnes, S.A. Buist, P. Calverley, Y. Fukuchi, C. Jenkins, R. Rodriguez-Roisin, C. van Weel, and J. Zielinski. 2007. Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. American Journal of Respiratory and Critical Care Medicine 176: 532–555.CrossRefPubMed Rabe, K.F., S. Hurd, A. Anzueto, P.J. Barnes, S.A. Buist, P. Calverley, Y. Fukuchi, C. Jenkins, R. Rodriguez-Roisin, C. van Weel, and J. Zielinski. 2007. Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. American Journal of Respiratory and Critical Care Medicine 176: 532–555.CrossRefPubMed
14.
Zurück zum Zitat Anthonisen, N.R., J. Manfreda, C.P. Warren, E.S. Hershfield, G.K. Harding, and N.A. Nelson. 1987. Antibiotic therapy in exacerbations of chronic obstructive pulmonary disease. Annals of Internal Medicine 106: 196–204.CrossRefPubMed Anthonisen, N.R., J. Manfreda, C.P. Warren, E.S. Hershfield, G.K. Harding, and N.A. Nelson. 1987. Antibiotic therapy in exacerbations of chronic obstructive pulmonary disease. Annals of Internal Medicine 106: 196–204.CrossRefPubMed
15.
Zurück zum Zitat Rodriguez-Roisin, R. 2000. Toward a consensus definition for COPD exacerbations. Chest 117: 398S–401S.CrossRefPubMed Rodriguez-Roisin, R. 2000. Toward a consensus definition for COPD exacerbations. Chest 117: 398S–401S.CrossRefPubMed
16.
Zurück zum Zitat Hussain, S., S. Sangtian, S.M. Anderson, R.J. Snyder, J.D. Marshburn, A.B. Rice, J.C. Bonner, and S. Garantziotis. 2014. Inflammasome activation in airway epithelial cells after multi-walled carbon nanotube exposure mediates a profibrotic response in lung fibroblasts. Particle and Fibre Toxicology 11: 28.CrossRefPubMedPubMedCentral Hussain, S., S. Sangtian, S.M. Anderson, R.J. Snyder, J.D. Marshburn, A.B. Rice, J.C. Bonner, and S. Garantziotis. 2014. Inflammasome activation in airway epithelial cells after multi-walled carbon nanotube exposure mediates a profibrotic response in lung fibroblasts. Particle and Fibre Toxicology 11: 28.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Dihlmann, S., P. Erhart, A. Mehrabi, A. Nickkholgh, F. Lasitschka, D. Böckler, and M. Hakimi. 2014. Increased expression and activation of absent in melanoma 2 inflammasome components in lymphocytic infiltrates of abdominal aortic aneurysms. Molecular Medicine 20: 230–237.CrossRefPubMedPubMedCentral Dihlmann, S., P. Erhart, A. Mehrabi, A. Nickkholgh, F. Lasitschka, D. Böckler, and M. Hakimi. 2014. Increased expression and activation of absent in melanoma 2 inflammasome components in lymphocytic infiltrates of abdominal aortic aneurysms. Molecular Medicine 20: 230–237.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Kim, R.Y., J.W. Pinkerton, P.G. Gibson, M.A. Cooper, J.C. Horvat, and P.M. Hansbro. 2015. Inflammasomes in COPD and neutrophilic asthma. Thorax 70: 1199–1201.CrossRefPubMed Kim, R.Y., J.W. Pinkerton, P.G. Gibson, M.A. Cooper, J.C. Horvat, and P.M. Hansbro. 2015. Inflammasomes in COPD and neutrophilic asthma. Thorax 70: 1199–1201.CrossRefPubMed
21.
Zurück zum Zitat Hosseinian, N., Y. Cho, R.F. Lockey, and N. Kolliputi. 2015. The role of the NLRP3 inflammasome in pulmonary diseases. Therapeutic Advances in Respiratory Disease 9: 188–197.CrossRefPubMed Hosseinian, N., Y. Cho, R.F. Lockey, and N. Kolliputi. 2015. The role of the NLRP3 inflammasome in pulmonary diseases. Therapeutic Advances in Respiratory Disease 9: 188–197.CrossRefPubMed
22.
Zurück zum Zitat Dinarello, C.A. 2009. Immunological and inflammatory functions of the interleukin-1 family. Annual Review of Immunology 27: 519–550.CrossRefPubMed Dinarello, C.A. 2009. Immunological and inflammatory functions of the interleukin-1 family. Annual Review of Immunology 27: 519–550.CrossRefPubMed
23.
Zurück zum Zitat Sims, J.E., and D.E. Smith. 2010. The IL-1 family: regulators of immunity. Nature Reviews. Immunology 10: 89–102.CrossRefPubMed Sims, J.E., and D.E. Smith. 2010. The IL-1 family: regulators of immunity. Nature Reviews. Immunology 10: 89–102.CrossRefPubMed
24.
Zurück zum Zitat Kang, M., R.J. Homer, A. Gallo, C.G. Lee, K.A. Crothers, Sj Cho, C. Rochester, H. Cain, G. Chupp, H.J. Yoon, and J.A. Elias. 2007. IL-18 is induced and IL-18 receptor alpha plays a critical role in the pathogenesis of cigarette smoke-induced pulmonary emphysema and inflammation. Journal of Immunology 178: 1948–1959.CrossRef Kang, M., R.J. Homer, A. Gallo, C.G. Lee, K.A. Crothers, Sj Cho, C. Rochester, H. Cain, G. Chupp, H.J. Yoon, and J.A. Elias. 2007. IL-18 is induced and IL-18 receptor alpha plays a critical role in the pathogenesis of cigarette smoke-induced pulmonary emphysema and inflammation. Journal of Immunology 178: 1948–1959.CrossRef
25.
Zurück zum Zitat Petersen, A.M., M. Penkowa, M. Iversen, L. Frydelund-Larsen, J.L. Andersen, J. Mortensen, P. Lange, and B.K. Pedersen. 2007. Elevated levels of IL-18 in plasma and skeletal muscle in chronic obstructive pulmonary disease. Lung 185: 161–171.CrossRefPubMed Petersen, A.M., M. Penkowa, M. Iversen, L. Frydelund-Larsen, J.L. Andersen, J. Mortensen, P. Lange, and B.K. Pedersen. 2007. Elevated levels of IL-18 in plasma and skeletal muscle in chronic obstructive pulmonary disease. Lung 185: 161–171.CrossRefPubMed
26.
Zurück zum Zitat Rovina, N., E. Dima, C. Gerassimou, A. Kollintza, C. Gratziou, and C. Roussos. 2009. Interleukin-18 in induced sputum: association with lung function in chronic obstructive pulmonary disease. Respiratory Medicine 103: 1056–1062.CrossRefPubMed Rovina, N., E. Dima, C. Gerassimou, A. Kollintza, C. Gratziou, and C. Roussos. 2009. Interleukin-18 in induced sputum: association with lung function in chronic obstructive pulmonary disease. Respiratory Medicine 103: 1056–1062.CrossRefPubMed
27.
Zurück zum Zitat Imaoka, H., T. Hoshino, S. Takei, T. Kinoshita, M. Okamoto, T. Kawayama, S. Kato, H. Iwasaki, K. Watanabe, and H. Aizawa. 2008. Interleukin-18 production and pulmonary function in COPD. The European Respiratory Journal 31: 287–297.CrossRefPubMed Imaoka, H., T. Hoshino, S. Takei, T. Kinoshita, M. Okamoto, T. Kawayama, S. Kato, H. Iwasaki, K. Watanabe, and H. Aizawa. 2008. Interleukin-18 production and pulmonary function in COPD. The European Respiratory Journal 31: 287–297.CrossRefPubMed
28.
Zurück zum Zitat Bryan, N.B., A. Dorfleutner, Y. Rojanasakul, and C. Stehlik. 2009. Activation of inflammasomes requires intracellular redistribution of the apoptotic speck-like protein containing a caspase recruitment domain. Journal of Immunology 182: 3173–3182.CrossRef Bryan, N.B., A. Dorfleutner, Y. Rojanasakul, and C. Stehlik. 2009. Activation of inflammasomes requires intracellular redistribution of the apoptotic speck-like protein containing a caspase recruitment domain. Journal of Immunology 182: 3173–3182.CrossRef
29.
Zurück zum Zitat Eltom, S., M.G. Belvisi, C.S. Stevenson, S.A. Maher, E. Dubuis, K.A. Fitzgerald, and M.A. Birrell. 2014. Role of the Inflammasome-Caspase1/11-IL-1/18Axis in Cigarette Smoke Driven Airway Inflammation: An Insight into the Pathogenesis of COPD. PLoS One 9: e112829.CrossRefPubMedPubMedCentral Eltom, S., M.G. Belvisi, C.S. Stevenson, S.A. Maher, E. Dubuis, K.A. Fitzgerald, and M.A. Birrell. 2014. Role of the Inflammasome-Caspase1/11-IL-1/18Axis in Cigarette Smoke Driven Airway Inflammation: An Insight into the Pathogenesis of COPD. PLoS One 9: e112829.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Franchi, L., T.-D. Kanneganti, G.R. Dubyak, and G. Nuñez. 2007. Differential requirement of P2X7 receptor and intracellular K+ for caspase-1 activation induced by intracellular and extracellular bacteria. The Journal of Biological Chemistry 282: 18810–18818.CrossRefPubMed Franchi, L., T.-D. Kanneganti, G.R. Dubyak, and G. Nuñez. 2007. Differential requirement of P2X7 receptor and intracellular K+ for caspase-1 activation induced by intracellular and extracellular bacteria. The Journal of Biological Chemistry 282: 18810–18818.CrossRefPubMed
31.
Zurück zum Zitat Harder, J., L. Franchi, R. Muñoz-Planillo, J.H. Park, T. Reimer, and G. Núñez. 2009. Activation of the Nlrp3 inflammasome by Streptococcus pyogenes requires streptolysin O and NF-kappa B activation but proceeds independently of TLR signaling and P2X7 receptor. Journal of Immunology 183: 5823–5829.CrossRef Harder, J., L. Franchi, R. Muñoz-Planillo, J.H. Park, T. Reimer, and G. Núñez. 2009. Activation of the Nlrp3 inflammasome by Streptococcus pyogenes requires streptolysin O and NF-kappa B activation but proceeds independently of TLR signaling and P2X7 receptor. Journal of Immunology 183: 5823–5829.CrossRef
32.
Zurück zum Zitat Kumar, H., Y. Kumagai, T. Tsuchida, P.A. Koenig, T. Satoh, Z. Guo, M.H. Jang, T. Saitoh, S. Akira, and T. Kawai. 2009. Involvement of the NLRP3 inflammasome in innate and humoral adaptiveimmune responses to fungal beta-glucan. Journal of Immunology 183: 8061–8067.CrossRef Kumar, H., Y. Kumagai, T. Tsuchida, P.A. Koenig, T. Satoh, Z. Guo, M.H. Jang, T. Saitoh, S. Akira, and T. Kawai. 2009. Involvement of the NLRP3 inflammasome in innate and humoral adaptiveimmune responses to fungal beta-glucan. Journal of Immunology 183: 8061–8067.CrossRef
33.
Zurück zum Zitat McNeela, E.A., A. Burke, D.R. Neill, C. Baxter, V.E. Fernandes, D. Ferreira, S. Smeaton, R. El-Rachkidy, R.M. McLoughlin, A. Mori, B. Moran, K.A. Fitzgerald, J. Tschopp, V. Pétrilli, P.W. Andrew, A. Kadioglu, and E.C. Lavelle. 2010. Pneumolysin activates the NLRP3 inflammasome and promotes proinflammatory cytokines independently of TLR4. PLoS Pathogens 6: e1001191.CrossRefPubMedPubMedCentral McNeela, E.A., A. Burke, D.R. Neill, C. Baxter, V.E. Fernandes, D. Ferreira, S. Smeaton, R. El-Rachkidy, R.M. McLoughlin, A. Mori, B. Moran, K.A. Fitzgerald, J. Tschopp, V. Pétrilli, P.W. Andrew, A. Kadioglu, and E.C. Lavelle. 2010. Pneumolysin activates the NLRP3 inflammasome and promotes proinflammatory cytokines independently of TLR4. PLoS Pathogens 6: e1001191.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Perret, M., C. Badiou, G. Lina, S. Burbaud, Y. Benito, M. Bes, V. Cottin, F. Couzon, C. Juruj, O. Dauwalder, N. Goutagny, B.A. Diep, F. Vandenesch, and T. Henry. 2012. Cross-talk between Staphylococcus aureus leukocidins-intoxicated macrophages and lung epithelial cells triggers chemokine secretion in an inflammasome-dependent manner. Cellular Microbiology 14: 1019–1036.CrossRefPubMed Perret, M., C. Badiou, G. Lina, S. Burbaud, Y. Benito, M. Bes, V. Cottin, F. Couzon, C. Juruj, O. Dauwalder, N. Goutagny, B.A. Diep, F. Vandenesch, and T. Henry. 2012. Cross-talk between Staphylococcus aureus leukocidins-intoxicated macrophages and lung epithelial cells triggers chemokine secretion in an inflammasome-dependent manner. Cellular Microbiology 14: 1019–1036.CrossRefPubMed
35.
Zurück zum Zitat Willingham, S.B., I.C. Allen, D.T. Bergstralh, W.J. Brickey, M.T. Huang, D.J. Taxman, J.A. Duncan, and J.P. Ting. 2009. NLRP3 (NALP3, Cryopyrin) facilitates in vivo caspase-1 activation, necrosis, and HMGB1 release via inflammasome-dependent and -independent pathways. Journal of Immunology 183: 2008–2015.CrossRef Willingham, S.B., I.C. Allen, D.T. Bergstralh, W.J. Brickey, M.T. Huang, D.J. Taxman, J.A. Duncan, and J.P. Ting. 2009. NLRP3 (NALP3, Cryopyrin) facilitates in vivo caspase-1 activation, necrosis, and HMGB1 release via inflammasome-dependent and -independent pathways. Journal of Immunology 183: 2008–2015.CrossRef
36.
Zurück zum Zitat Wonnenberg, B., T. Tschernig, M. Voss, M. Bischoff, C. Meier, S.H. Schirmer, F. Langer, R. Bals, and C. Beisswenger. 2014. Probenecid reduces infection and inflammation in acute Pseudomonas aeruginosa pneumonia. International Journal of Medical Microbiology 304: 725–729.CrossRefPubMed Wonnenberg, B., T. Tschernig, M. Voss, M. Bischoff, C. Meier, S.H. Schirmer, F. Langer, R. Bals, and C. Beisswenger. 2014. Probenecid reduces infection and inflammation in acute Pseudomonas aeruginosa pneumonia. International Journal of Medical Microbiology 304: 725–729.CrossRefPubMed
37.
Zurück zum Zitat Rotta Detto Loria, J., K. Rohmann, D. Droemann, P. Kujath, J. Rupp, T. Goldmann, and K. Dalhoff. 2013. Non-typeable haemophilus influenzae infection upregulates the NLRP3 inflammasome and leads to Caspase-1-dependent secretion of interleukin-1β—A possible pathway of exacerbations in COPD. PLoS One 8: e66818.CrossRefPubMedPubMedCentral Rotta Detto Loria, J., K. Rohmann, D. Droemann, P. Kujath, J. Rupp, T. Goldmann, and K. Dalhoff. 2013. Non-typeable haemophilus influenzae infection upregulates the NLRP3 inflammasome and leads to Caspase-1-dependent secretion of interleukin-1β—A possible pathway of exacerbations in COPD. PLoS One 8: e66818.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Yang, W., H. Ni, H. Wang, and H. Gu. 2015. NLRP3 inflammasome is essential for the development of chronic obstructive pulmonary disease. International Journal of Clinical and Experimental Pathology 8: 13209–13216.PubMedPubMedCentral Yang, W., H. Ni, H. Wang, and H. Gu. 2015. NLRP3 inflammasome is essential for the development of chronic obstructive pulmonary disease. International Journal of Clinical and Experimental Pathology 8: 13209–13216.PubMedPubMedCentral
Metadaten
Titel
NLRP3 Inflammasome Involves in the Acute Exacerbation of Patients with Chronic Obstructive Pulmonary Disease
verfasst von
Huaying Wang
Chun’er Lv
Shi Wang
Huajuan Ying
Yuesong Weng
Wanjun Yu
Publikationsdatum
14.04.2018
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 4/2018
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-018-0780-0

Weitere Artikel der Ausgabe 4/2018

Inflammation 4/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.